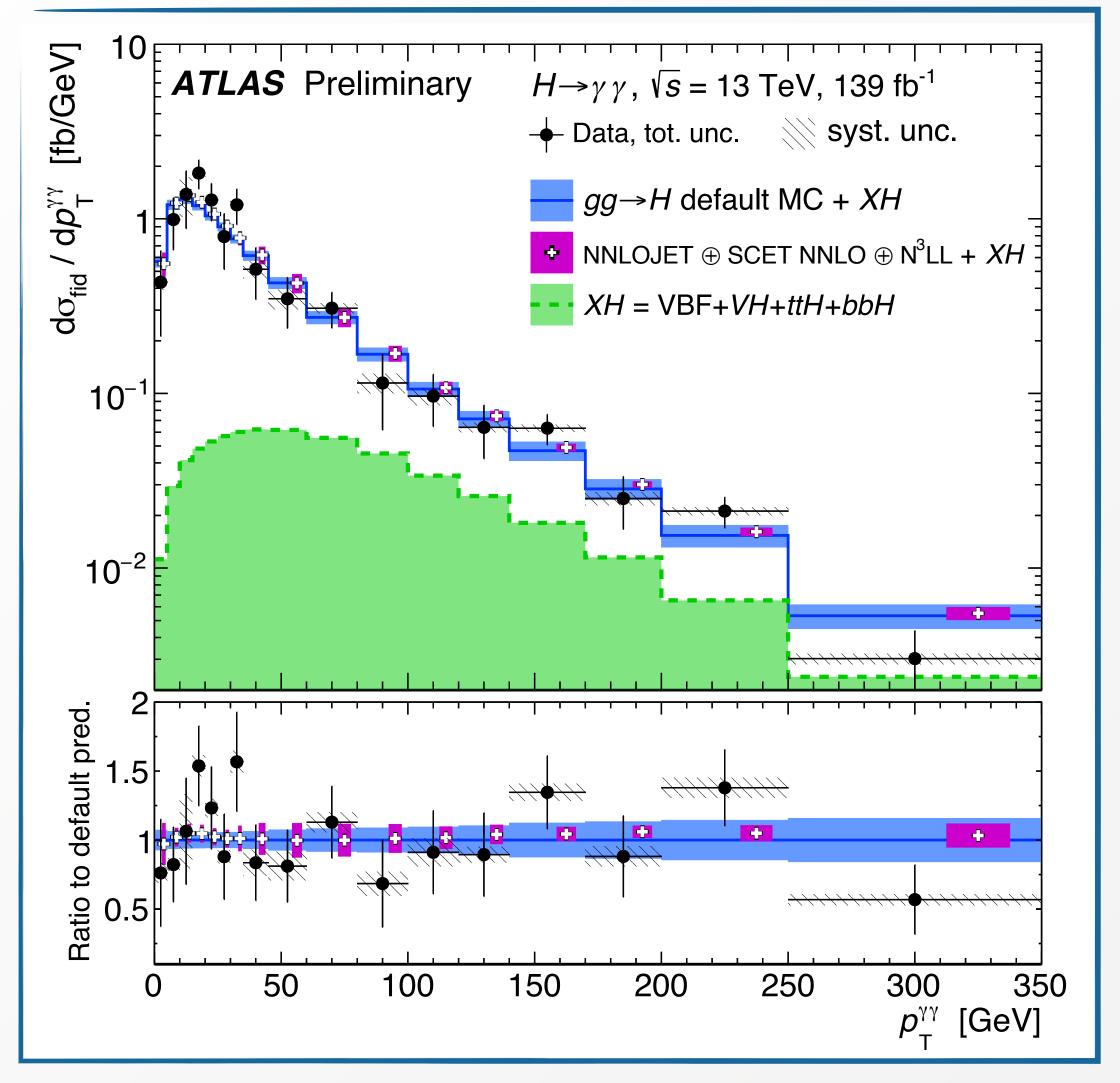
The Higgs transverse momentum at N³LL'+NNLO with RadISH

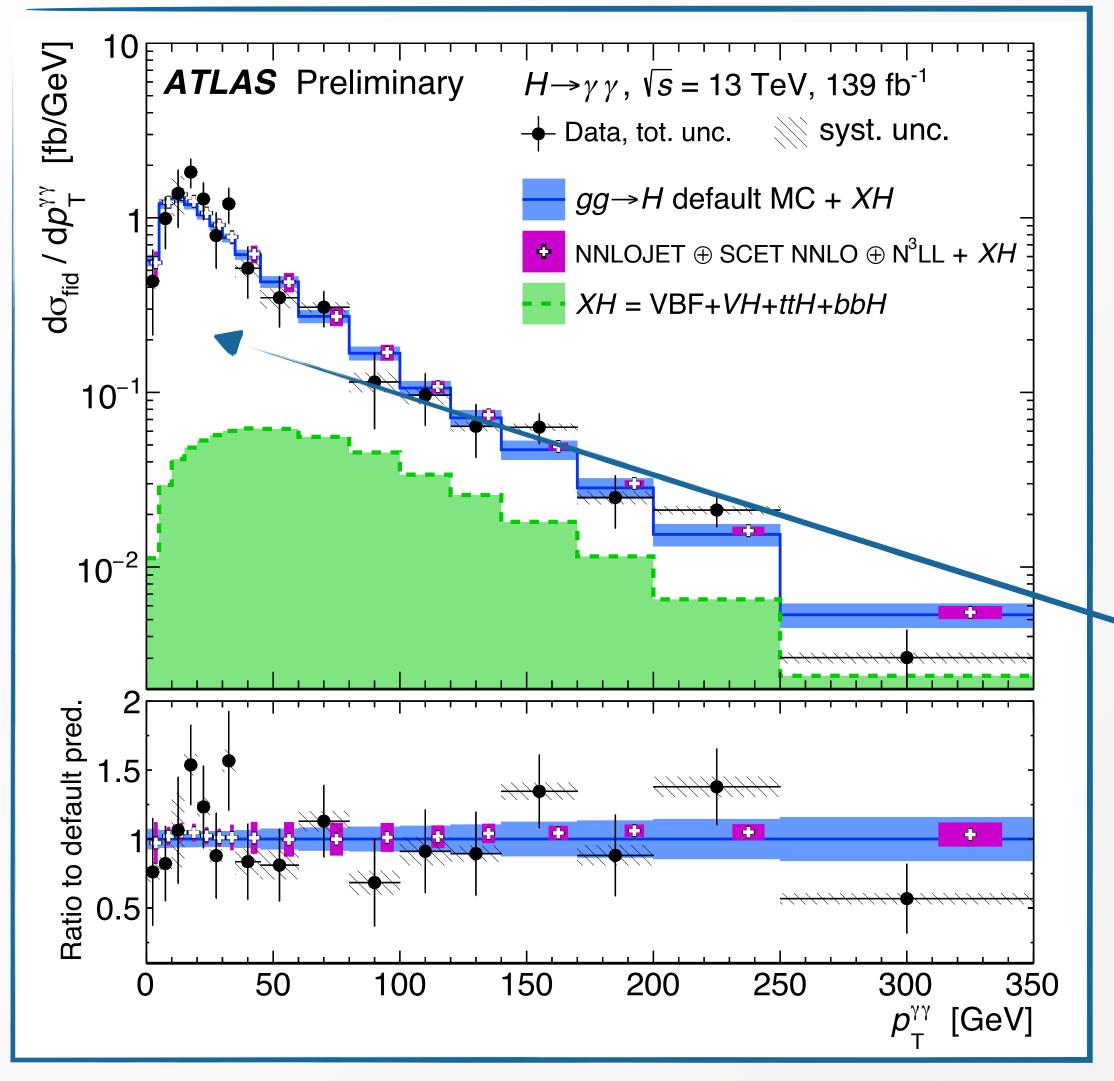
Paolo Torrielli, Emanuele Re, Luca Rottoli



Based on: Re, LR, Torrielli 2104.07509

RadISH formalism: Monni, Re, Torrielli 1604.02191, Bizon, Monni, Re, LR, Torrielli 1705.09127

The Higgs transverse momentum

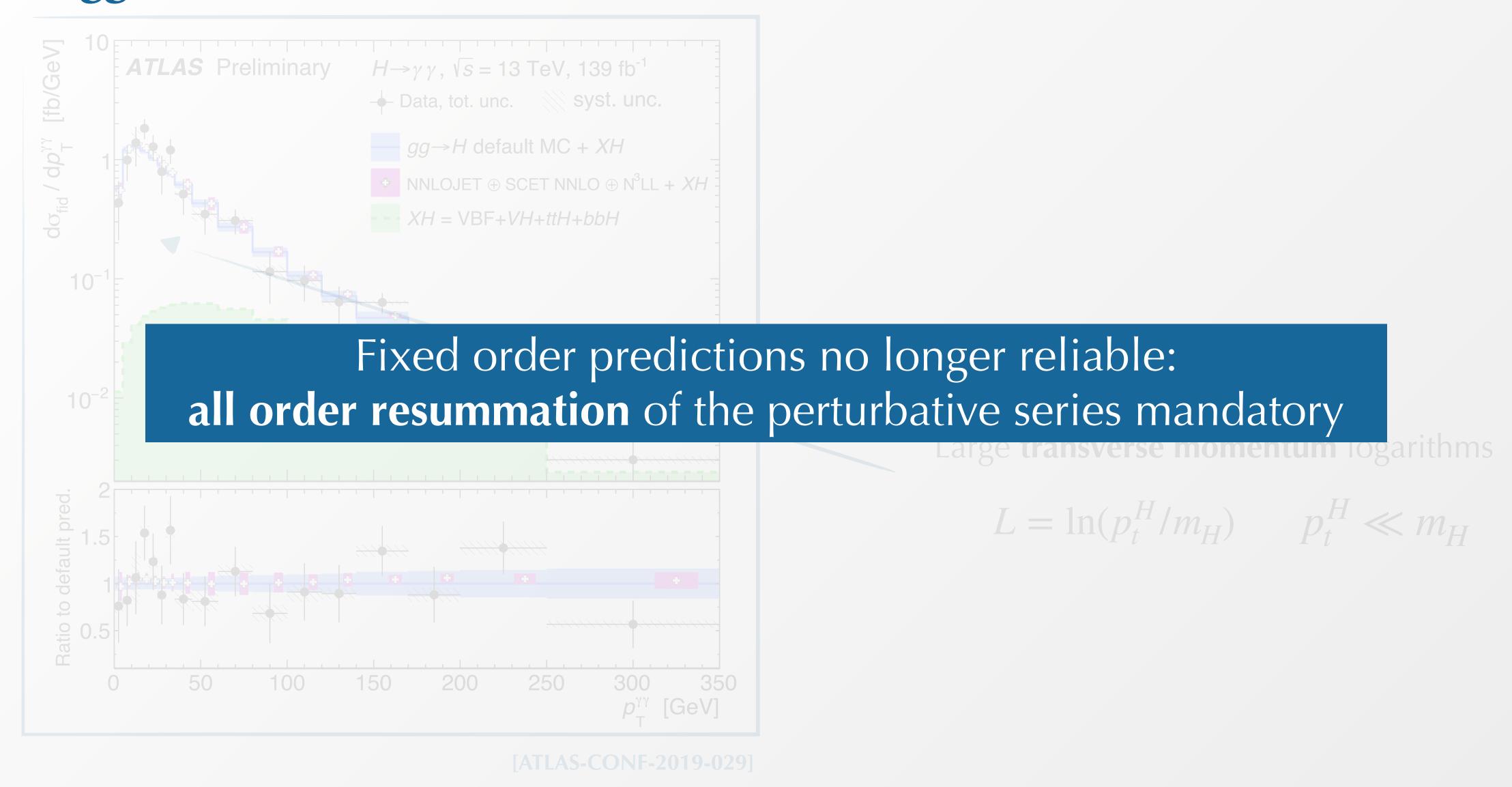

[ATLAS-CONF-2019-029]

- Relatively easy to measure
- Sensitivity to New Physics (e.g. **light Yukawa** couplings, **trilinear** Higgs

 coupling) [Bishara et al. '16][Soreq et al. '16]

 [Bizon et al. 1610.05771]
- Experimental analyses categorize events into **jet bins** according to the jet multiplicity
- Increased sensitivity to Higgs boson kinematics, spin-CP properties, BSM effects...

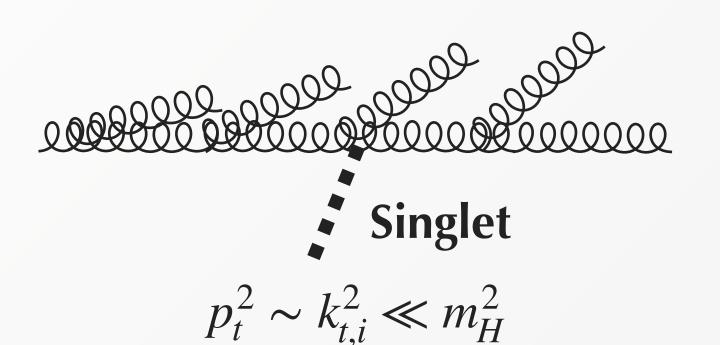
The Higgs transverse momentum



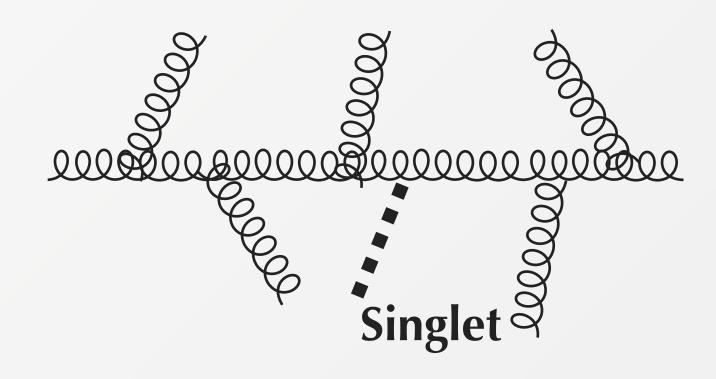
[ATLAS-CONF-2019-029]

Large transverse momentum logarithms

$$L = \ln(p_t^H/m_H) \qquad p_t^H \ll m_H$$


The Higgs transverse momentum

Resummation of the transverse momentum spectrum

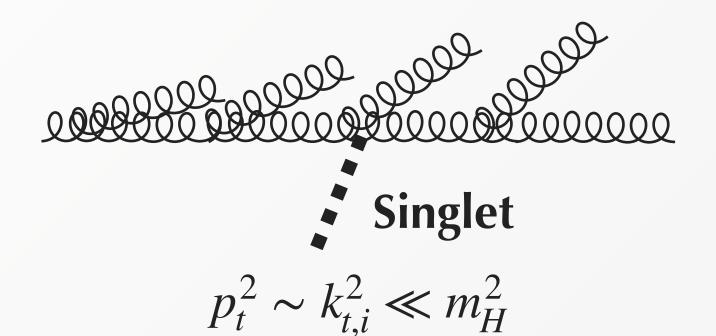

Resummation of transverse momentum is delicate because p_t is a vectorial quantity

Two concurring mechanisms leading to a system with small p_t

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression

$$\sum_{i=1}^{n} \overrightarrow{k}_{t,i} \simeq 0$$

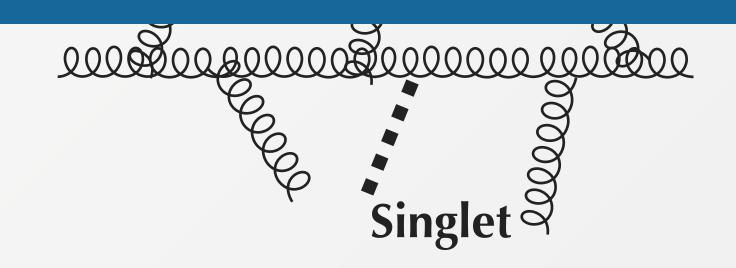

Large kinematic cancellations $p_t \sim 0$ far from the Sudakov limit

Power suppression

Resummation of the transverse momentum spectrum

Resummation of transverse momentum is delicate because p_t is a vectorial quantity

Two concurring mechanisms leading to a system with small p_t

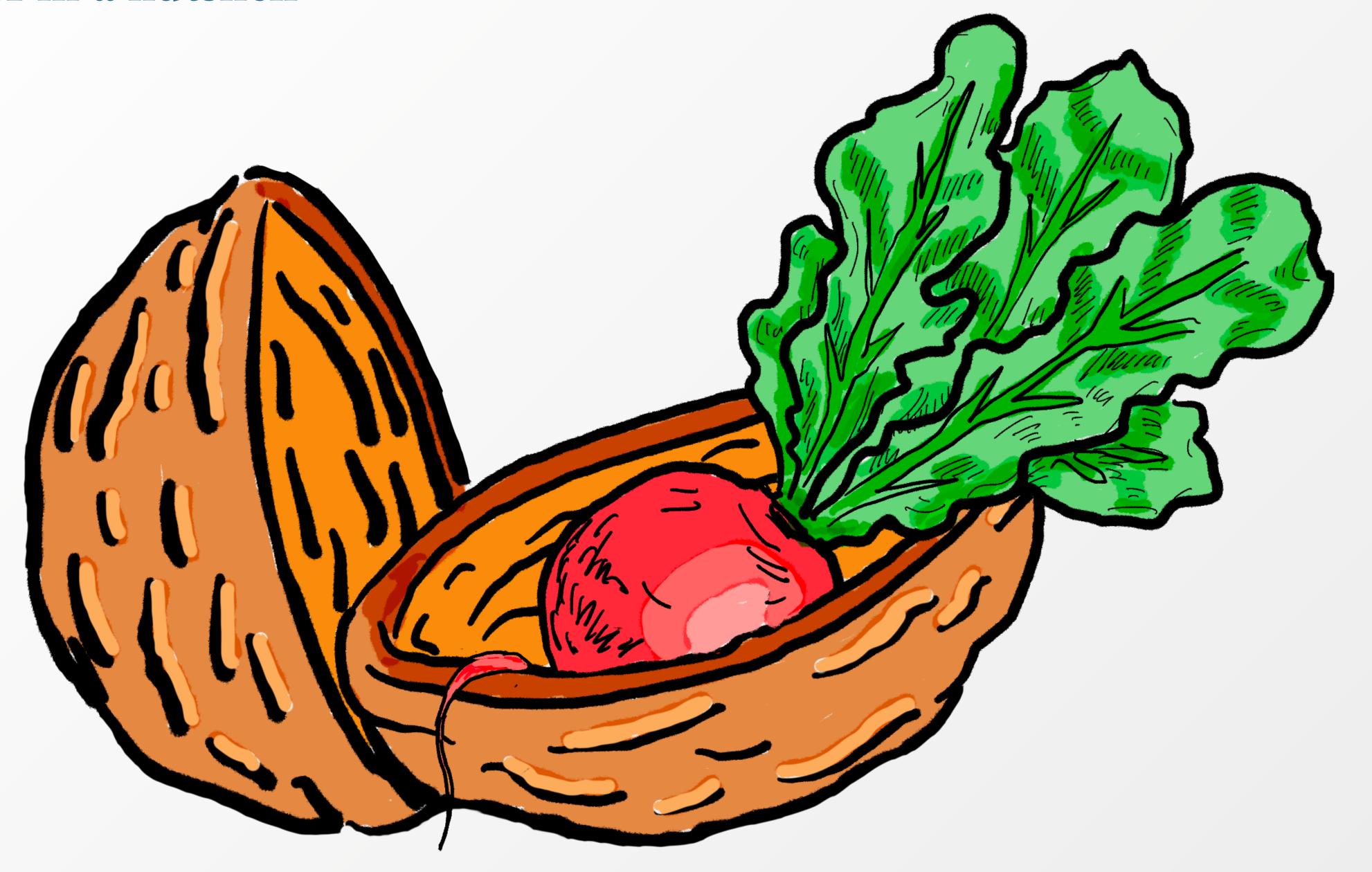


cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression

Dominant at small p_t

[Parisi, Petronzio, 1979]



$$\sum_{i=1}^{n} \overrightarrow{k}_{t,i} \simeq 0$$

Large kinematic cancellations $p_t \sim 0$ far from the Sudakov limit

Power suppression

RadISH in a nutshell

RadISH in a nutshell

Resummation of the p_t spectrum in direct space

Result at NLL accuracy (with fixed PDFs) can be written as

$$\sigma(p_t) = \sigma_0 \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(v_1)} \quad \text{Unresolved}$$

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

$$\times e^{R'(v_1)} R'(v_1) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(\zeta_i v_1) \Theta\left(p_t - |\overrightarrow{k}_{t,i} + \cdots \overrightarrow{k}_{t,n+1}|\right) \right)$$

Resolved

RadISH in a nutshell

Resummation of the p_t spectrum in direct space Result at NLL accuracy (with fixed PDFs) can be written as

$$\sigma(p_t) = \sigma_0 \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(v_1)} \quad \text{Unresolved}$$

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

$$\times e^{R'(v_1)} R'\left(v_1\right) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'\left(\zeta_i v_1\right) \Theta\left(p_t - |\overrightarrow{k}_{t,i} + \cdots \overrightarrow{k}_{t,n+1}|\right) \right)$$

Resolved

Sudakov and **azimuthal mechanisms** accounted for, **no assumption** on $k_{t,i}$ vs p_t hierarchy. **Subleading effects retained**: no divergence at small p_t , Parisi-Petronzio power-like behaviour respected

Logarithmic accuracy defined in terms of $ln(m_H/k_{t1})$

Result formally equivalent to the *b*-space formulation [Bizon, Monni, Re, LR, Torrielli '17]

Now include effect of collinear radiation and terms beyond NLL accuracy

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathcal{C}_1} \frac{dN_1}{2\pi i} \int_{\mathcal{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1, c_2} \frac{d|M_B|_{c_1 c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\mathbf{\Sigma}}_{N_1, N_2}^{c_1, c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

Unresolved

$$\hat{\Sigma}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) = \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ek_{t1})} \\
\times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\
\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}'(k_{t1}) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \\
\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{e}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\
\times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'(k_{ti}) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right)$$

 $v = p_t/M$

Now include effect of collinear radiation and terms beyond NLL accuracy

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathcal{C}_1} \frac{dN_1}{2\pi i} \int_{\mathcal{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1, c_2} \frac{d \left| M_B \right|_{c_1 c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\mathbf{\Sigma}}_{N_1, N_2}^{c_1, c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

Unresolved

Hard-virtual coefficient

$$\hat{\boldsymbol{\Sigma}}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) = \left[\boldsymbol{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))\boldsymbol{H}(\boldsymbol{\mu_{R}})\boldsymbol{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0}))\right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})} \\
\times \exp\left\{-\sum_{\ell=1}^{2} \left(\int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \boldsymbol{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t}))\right)\right\} \\
\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}'(k_{t1}) + \frac{\alpha_{s}(k_{t1})}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \boldsymbol{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1}))\right) \\
\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{c}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \boldsymbol{\Theta}\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\
\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}'(k_{ti}) + \frac{\alpha_{s}(k_{ti})}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{ti})) + \boldsymbol{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{ti}))\right)$$

 $v = p_t/M$

Now include effect of collinear radiation and terms beyond NLL accuracy

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathcal{C}_1} \frac{dN_1}{2\pi i} \int_{\mathcal{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1, c_2} \frac{d |M_B|_{c_1 c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1, N_2}^{c_1, c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

Collinear coefficient functions and their RGE

$$\hat{\mathbf{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v)$$

$$\hat{\mathbf{\Sigma}}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) = \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\varepsilon k_{t1})}$$

$$\times \exp \left\{ -\sum_{\ell=1}^{2} \left(\int_{\varepsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\varepsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\}$$

$$\times \sum_{\ell_{1}=1}^{2} \left(\mathbf{R}_{\ell_{1}}^{\prime} \left(k_{t1} \right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}} (\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)} (\alpha_{s}(k_{t1})) \right) \\
\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\varepsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta \left(v - V(\{\tilde{p}\}, k_{1}, ..., k_{n+1}) \right), \\
\times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}^{\prime} \left(k_{ti} \right) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}} (\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)} (\alpha_{s}(k_{ti})) \right)$$

$$\left\langle \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right),\right.$$

$$\times \sum_{\ell_i=1}^{2} \left(\mathbf{R}_{\ell_i}' \left(k_{ti} \right) + \frac{\alpha_s(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_i}} (\alpha_s(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_i}}^{(C)} (\alpha_s(k_{ti})) \right)$$

Unresolved

$$v = p_t/M$$

Now include effect of collinear radiation and terms beyond NLL accuracy

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathcal{C}_1} \frac{dN_1}{2\pi i} \int_{\mathcal{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1, c_2} \frac{d \left| M_B \right|_{c_1 c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\mathbf{\Sigma}}_{N_1, N_2}^{c_1, c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

Unresolved

DGLAP evolution

$$\hat{\boldsymbol{\Sigma}}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) = \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ck_{t1})} \\
\times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\
\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}^{\prime}\left(k_{t1}\right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \\
\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{c}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\
\times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}^{\prime}\left(k_{ti}\right) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right)$$

 $v = p_t/M$

Now include effect of collinear radiation and terms beyond NLL accuracy

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathcal{C}_1} \frac{dN_1}{2\pi i} \int_{\mathcal{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1, c_2} \frac{d \left| M_B \right|_{c_1 c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1, N_2}^{c_1, c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

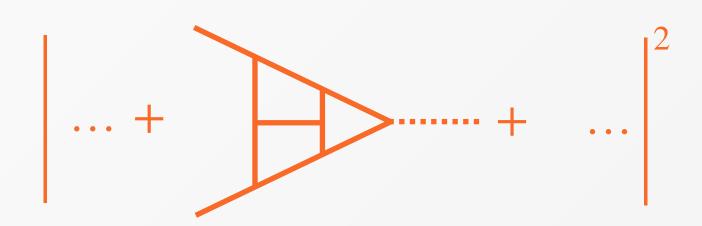
Unresolved

Sudakov radiator

$$\hat{\boldsymbol{\Sigma}}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) = \begin{bmatrix} \mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \end{bmatrix} \int_{0}^{M} \frac{dk_{r1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})} \\
\times \exp \left\{ -\sum_{\ell=1}^{2} \left(\int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\
\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell 1}^{\prime} \left(k_{t1} \right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell 1}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell 1}}^{(C)}(\alpha_{s}(k_{t1})) \right) \mathbf{Resolved} \\
\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}) \right), \\
\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell i}^{\prime} \left(k_{ti} \right) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell i}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell i}}^{(C)}(\alpha_{s}(k_{ti})) \right)$$

 $v = p_t/M$

Capture **all constant terms** of relative order $\mathcal{O}(\alpha_s^3)$


- α_s^3 is N⁴LL (since $\alpha_s^n L^{n-3}$) but sufficient to get all $\alpha_s^n L^{2n-6}$ in the cumulant
- Allows for the computation of N³LO cross section for H, DY production based on p_t -slicing methods

[Billis et al. '21] [Cieri et al. '21] [Chen et al. '21]

Sources of N3LL' correction, neglected in previous RadISH implementation

Three-loop hard-virtual coefficient

$$H(\alpha_s) = 1 + \left(\frac{\alpha_s}{2\pi}\right) H_1 + \left(\frac{\alpha_s}{2\pi}\right)^2 H_2 + \left(\frac{\alpha_s}{2\pi}\right)^3 H_3$$

[Gehrmann et al. '10]

Three-loop Wilson coefficient for Higgs EFT

[Schroder, Steinhauser '05]

$$\begin{split} \hat{\boldsymbol{\Sigma}}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) &= \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0})) \boldsymbol{H}(\boldsymbol{\mu_{R}}) \mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})} \\ &\times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \boldsymbol{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ &\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}'\left(k_{t1}\right) + \frac{\alpha_{s}(k_{t1})}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \boldsymbol{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \\ &\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \boldsymbol{\Theta}\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}) \right), \\ &\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}'\left(k_{ti}\right) + \frac{\alpha_{s}(k_{ti})}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{ti})) + \boldsymbol{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \end{split}$$

Sources of N³LL' correction, neglected in previous RadISH implementation

Three-loop coefficient functions

$$\hat{\mathbf{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) = \left[\mathbf{C}_{N_1}^{c_1;T}(\alpha_s(\mu_0))H(\mu_R)\mathbf{C}_{N_2}^{c_2}(\alpha_s(\mu_0)) \right] \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})}$$

$$C(\alpha_s, z) = \delta(1 - z) + \left(\frac{\alpha_s}{2\pi}\right)C_1(z) + \left(\frac{\alpha_s}{2\pi}\right)^2C_2(z) + \left(\frac{\alpha_s}{2\pi}\right)^3C_3(z) \times \exp\left\{-\sum_{\ell=1}^2 \left(\int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \frac{\alpha_s(k_t)}{\pi} \mathbf{\Gamma}_{N_\ell}(\alpha_s(k_t)) + \int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \mathbf{\Gamma}_{N_\ell}^{(C)}(\alpha_s(k_t))\right)\right\}$$

[Li, Zhu '16][Vladimirov '16][Luo et al. '19][Ebert et al. '20]
$$\times \sum_{\ell_1=1}^2 \left(\mathbf{R}_{\ell_1}' \left(k_{t1} \right) + \frac{\alpha_s(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_1}} (\alpha_s(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_1}}^{(C)} (\alpha_s(k_{t1})) \right)$$

For Higgs production: two-loop G coefficient functions

$$G(\alpha_s, z) = \left(\frac{\alpha_s}{2\pi}\right) G_1(z) + \left(\frac{\alpha_s}{2\pi}\right)^2 G_2(z)$$

[Luo et al. '19]

$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, ..., k_{n+1})\right),$$

$$\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_i}' \left(k_{ti} \right) + \frac{\alpha_s(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_i}} (\alpha_s(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_i}}^{(C)} (\alpha_s(k_{ti})) \right)$$

Sources of N3LL' correction, neglected in previous RadISH implementation

Constants terms coming from the Sudakov

$$\hat{\mathbf{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) = \left[\mathbf{C}_{N_1}^{c_1;T}(\alpha_s(\mu_0))H(\mu_R)\mathbf{C}_{N_2}^{c_2}(\alpha_s(\mu_0)) \right] \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})}$$

$$R(k_{t1}) = -\log\frac{M}{k_{t1}}g_1 - g_2 - \left(\frac{\alpha_s}{\pi}\right)g_3 - \left(\frac{\alpha_s}{\pi}\right)^2g_4 - \left(\frac{\alpha_s}{\pi}\right)^3g_5 \times \exp\left\{-\sum_{\ell=1}^2\left(\int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \frac{\alpha_s(k_t)}{\pi}\Gamma_{N_\ell}(\alpha_s(k_t)) + \int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t}\Gamma_{N_\ell}^{(C)}(\alpha_s(k_t))\right\}\right\}$$

Resummation scale $Q \sim M$

$$\ln \frac{M}{k_{t1}} \to \ln \frac{Q}{k_{t1}} + \ln \frac{M}{Q}$$

Constant terms expanded in $\alpha_{\!\scriptscriptstyle S}$ and included in H

$$\times \sum_{\ell_1=1}^{2} \left(\mathbf{R}'_{\ell_1} \left(k_{t1} \right) + \frac{\alpha_s(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_1}} (\alpha_s(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_1}}^{(C)} (\alpha_s(k_{t1})) \right)$$

$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, ..., k_{n+1})\right),$$

$$\times \sum_{\ell_i=1}^{2} \left(\mathbf{R}_{\ell_i}' \left(k_{ti} \right) + \frac{\alpha_s(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_i}} (\alpha_s(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_i}}^{(C)} (\alpha_s(k_{ti})) \right)$$

Sources of N3LL' correction, neglected in previous RadISH implementation

$$\hat{\mathbf{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) = \left[\mathbf{C}_{N_1}^{c_1;T}(\alpha_s(\mu_0))H(\mu_R)\mathbf{C}_{N_2}^{c_2}(\alpha_s(\mu_0)) \right] \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})}$$

Constants terms coming from resolved contributions

$$\Gamma(\alpha_s) = \Gamma^{(0)} + \left(\frac{\alpha_s}{2\pi}\right) \Gamma^{(1)}$$

$$\Gamma^{(C)}(\alpha_s) = \left(\frac{\alpha_s}{2\pi}\right)^2 \Gamma^{(C,1)}$$

$$\times \exp \left\{ -\sum_{\ell=1}^{2} \left(\int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\}$$

$$\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}' \left(k_{t1} \right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right)$$

$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta \left(v - V(\{\tilde{p}\}, k_{1}, ..., k_{n+1}) \right),$$

$$\times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}' \left(k_{ti} \right) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right)$$

Momentum-space formula at N³LL

$$\begin{split} \frac{d\Sigma(\mathbf{v})}{d\Phi_B} &= \int \frac{dk_{r_1}}{k_{r_1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_r)} \mathcal{L}_{\text{NUL}}(k_{r_1}) \right) \int d\mathcal{Z}\Theta \left(\mathbf{v} - V(\{\hat{p}\}, k_1, \dots, k_{n+1}) \right) \\ &+ \int \frac{dk_{r_1}}{k_{r_1}} \frac{d\phi_1}{2\pi} e^{-R(k_r)} \int d\mathcal{L}_0^1 \frac{d\phi_s}{\zeta_s} \frac{d\phi_s}{2\pi} \left\{ \left(R'(k_{r_1}) \mathcal{L}_{\text{NNLL}}(k_{r_1}) - \partial_L \mathcal{L}_{\text{NNLL}}(k_{r_1}) \right) \\ &\times \left(R''(k_{r_1}) \ln \frac{1}{\zeta_s} + \frac{1}{2} R'''(k_{r_1}) \ln^2 \frac{1}{\zeta_s} \right) - R'(k_{r_1}) \left(\partial_L \mathcal{L}_{\text{NNLL}}(k_{r_1}) - 2 \frac{\beta_0}{\pi} \alpha_s^2(k_{r_1}) \hat{P}^{k(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{r_1}) \ln \frac{1}{\zeta_s} \right) \\ &+ \frac{\alpha_s^2(k_{r_1})}{\pi^2} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{r_1}) \right\} \\ &\times \left\{ \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_s) \right) - \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}) \right) \right\} \\ &+ \frac{1}{2} \int \frac{dk_{r_1}}{k_{r_1}} \frac{d\phi_1}{2\pi} e^{-R(k_{r_1})} \int d\mathcal{L}_0^1 \frac{d\phi_{s_1}}{\zeta_{s_1}} \frac{d\phi_{s_2}}{2\pi} \int_0^1 \frac{d\zeta_{s_2}}{\zeta_{s_2}} \frac{d\phi_{s_2}}{2\pi} R'(k_{r_1}) \left\{ \mathcal{L}_{\text{NLL}}(k_{r_1}) \left(R''(k_{r_1}) \right)^2 \ln \frac{1}{\zeta_{s_1}} \ln \frac{1}{\zeta_{s_2}} - \partial_L \mathcal{L}_{\text{NLL}}(k_{r_1}) \left(\ln \frac{1}{\zeta_{s_1}} + \ln \frac{1}{\zeta_{s_2}} \right) \right. \\ &+ \frac{\alpha_s^2(k_{r_1})}{\pi^2} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{r_1}) \right\} \\ &\times \left\{ \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) - \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) - \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) - \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_{s_2}) \right) + \Theta \left(\mathbf{v} - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}$$

Momentum-space formula at N³LL'

$$\begin{split} \frac{d\Sigma(v)}{d\Phi_B} &= \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} \mathcal{L}_{\text{N}^3\text{LL}'}(k_{t1}) \right) \left[d\mathcal{Z}\Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}) \right) \right. \\ &+ \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(k_{t1})} \int d\mathcal{Z} \int_0^1 \frac{d\zeta_s}{\zeta_s} \frac{d\phi_s}{2\pi} \left\{ \left(R'(k_{t1}) \mathcal{L}_{\text{NNLL}}(k_{t1}) - \partial_L \mathcal{L}_{\text{NNLL}}(k_{t1}) \right) \right. \\ &+ \left. \left(R''(k_{t1}) \ln \frac{1}{\zeta_s} + \frac{1}{2} R'''(k_{t1}) \ln^2 \frac{1}{\zeta_s} \right) - R'(k_{t1}) \left(\partial_L \mathcal{L}_{\text{NNLL}}(k_{t1}) - 2 \frac{\beta_0}{\pi} \alpha_s^2(k_{t1}) \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \ln \frac{1}{\zeta_s} \right) \\ &+ \frac{\alpha_s^2(k_{t1})}{\pi^2} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}'}(k_{t1}) - \beta_0 \frac{\alpha_s^3(k_{t1})}{\pi^2} \left(\hat{P}^{(0)} \otimes \hat{C}^{(1)} + \hat{C}^{(1)} \otimes \hat{P}^{(0)} \right) \otimes \mathcal{L}_{\text{NLL}}(k_{(t1}) + \frac{\alpha_s^3(k_{t1})}{\pi^2} 2\beta_0 \ln \frac{1}{\zeta_s} \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{(t1}) \right) \end{split}$$

New structures appearing at α_s^3

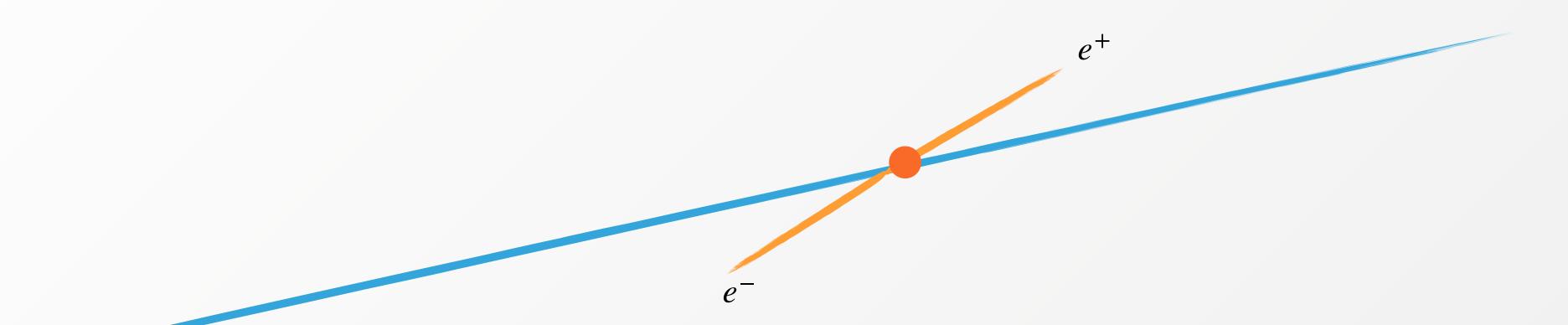
Convolution structure obtained after Mellin inversion

$$+\frac{\alpha_s^3(k_{t1})}{2\pi^2} \left(\hat{P}^{(0)} \otimes \hat{P}^{(1)} + \hat{P}^{(1)} \otimes \hat{P}^{(0)} \right) \otimes \mathcal{L}_{NLL}(k_{(t1})$$

$$\times \left\{ \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_s) \right) - \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}) \right) \right\}$$

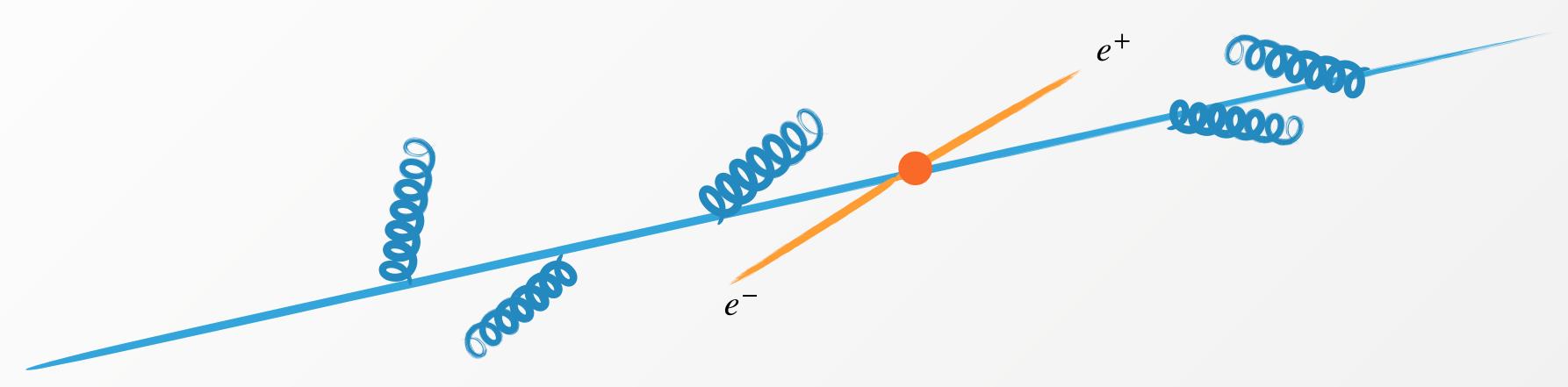
$$1 + ak_{t1} dk_{t2} dk_{t3} dk_{t4} dk_{t4} \int_{\Omega_s}^{1} d\zeta_{s1} d\phi_{s1} \int_{\Omega_s}^{1} d\zeta_{s2} d\phi_{s2} d\phi_{s3} d\phi_{s4} d\phi_{s4}$$

$$+\frac{1}{2}\int \frac{dk_{t1}}{k_{t1}} \frac{d\xi_{1}}{2\pi} e^{-i\zeta(k_{t1})} \int d\mathcal{Z} \int_{0}^{1} \frac{d\zeta_{s1}}{\zeta_{s1}} \frac{d\phi_{s1}}{2\pi} \int_{0}^{1} \frac{d\zeta_{s2}}{\zeta_{s2}} \frac{d\phi_{s2}}{2\pi} R'(k_{t1}) \left\{ \mathcal{L}_{NLL}(k_{t1}) \left(R''(k_{t1}) \right)^{2} \ln \frac{1}{\zeta_{s1}} \ln \frac{1}{\zeta_{s2}} - \partial_{L} \mathcal{L}_{NLL}(k_{t1}) R''(k_{t1}) \left(\ln \frac{1}{\zeta_{s1}} + \ln \frac{1}{\zeta_{s2}} \right) \right\} d\zeta_{s2} d\phi_{s3}$$

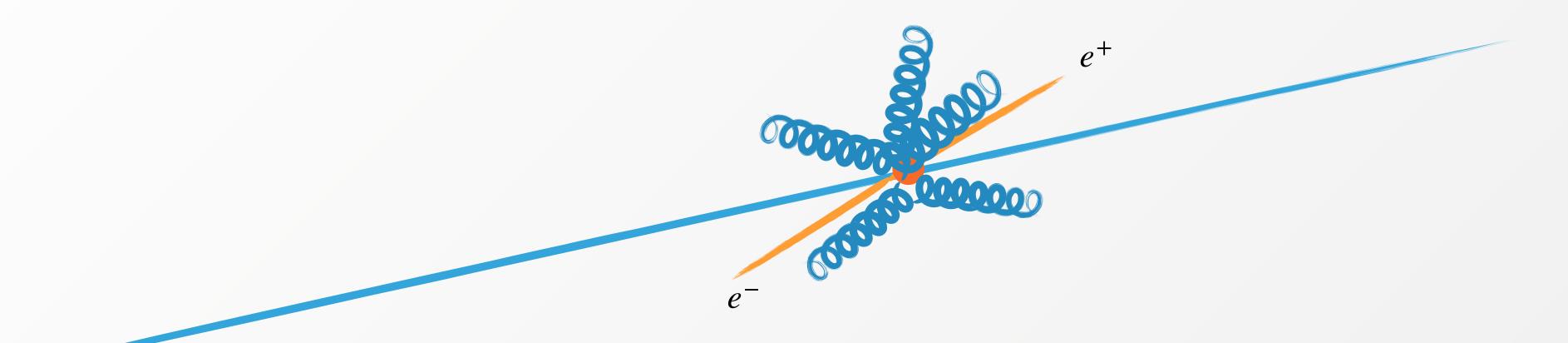

$$+\frac{\alpha_{s}^{2}(k_{t1})}{\pi^{2}}\hat{P}^{(0)}\otimes\hat{P}^{(0)}\otimes\mathcal{L}_{\mathrm{NLL}}(k_{t1}) + \frac{\alpha_{s}^{2}(k_{t1})}{\pi^{2}}\left(\ln\frac{1}{\zeta_{s1}} + \ln\frac{1}{\zeta_{s2}}\right)R''(k_{t1})\hat{P}^{(0)}\otimes\hat{P}^{(0)}\otimes\mathcal{L}_{\mathrm{NLL}}(k_{(t1}) - \ln\frac{1}{\zeta_{s1}}\ln\frac{1}{\zeta_{s2}}(R''(k_{t1})^{2}\partial_{L}\mathcal{L}_{\mathrm{NLL}}(k_{(t1})))$$

$$+\frac{\alpha_s^2(k_{t1})}{\pi^3}\hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{NLL}(k_{t1}) \right\} \times \left\{ \Theta\left(v - V(\{\tilde{p}\}, k_1, ..., k_{n+1}, k_{s1}, k_{s2})\right) - \Theta\left(v - V(\{\tilde{p}\}, k_1, ..., k_{n+1}, k_{s1})\right) - \Theta\left(v - V(\{\tilde{p}\}, k_1, ..., k_{n+1}, k_{s1})\right) - \Theta\left(v - V(\{\tilde{p}\}, k_1, ..., k_{n+1}, k_{s1}, k_{s2})\right) \right\} \right\}$$

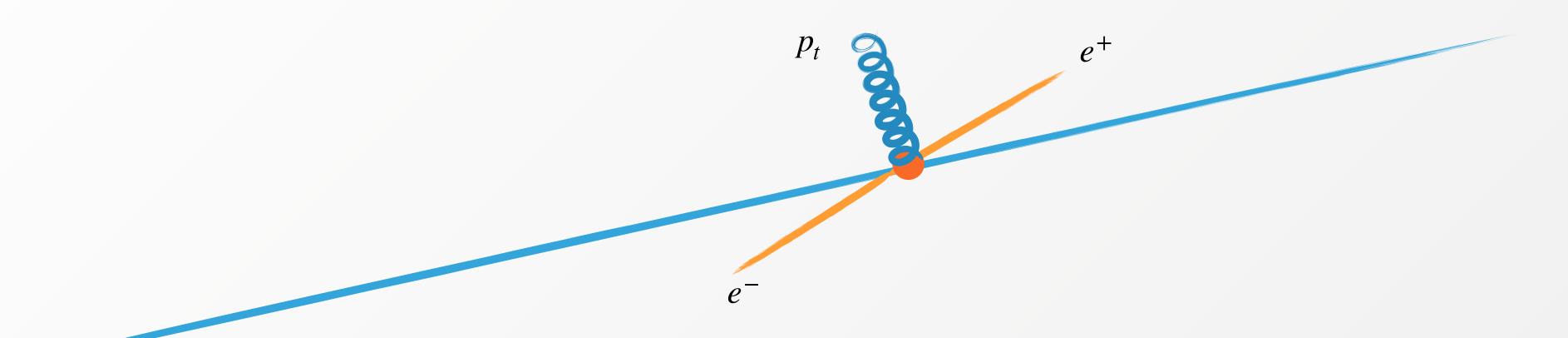
$$\Theta\left(v - V(\{\tilde{p}\}, k_1, ..., k_{n+1}, k_{s2})\right) + \Theta\left(v - V(\{\tilde{p}\}, k_1, ..., k_{n+1})\right) + O\left(\alpha_s^n \ln^{2n-7} \frac{1}{v}\right)$$


Extra column of logs predicted

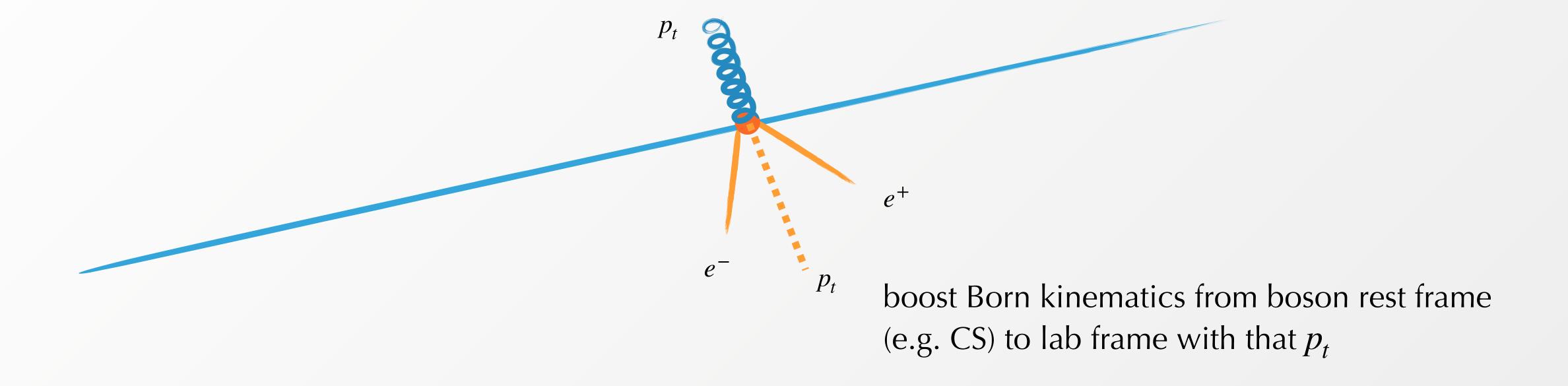
[Catani et al '15]


Born matrix element evaluated at $p_t = 0$

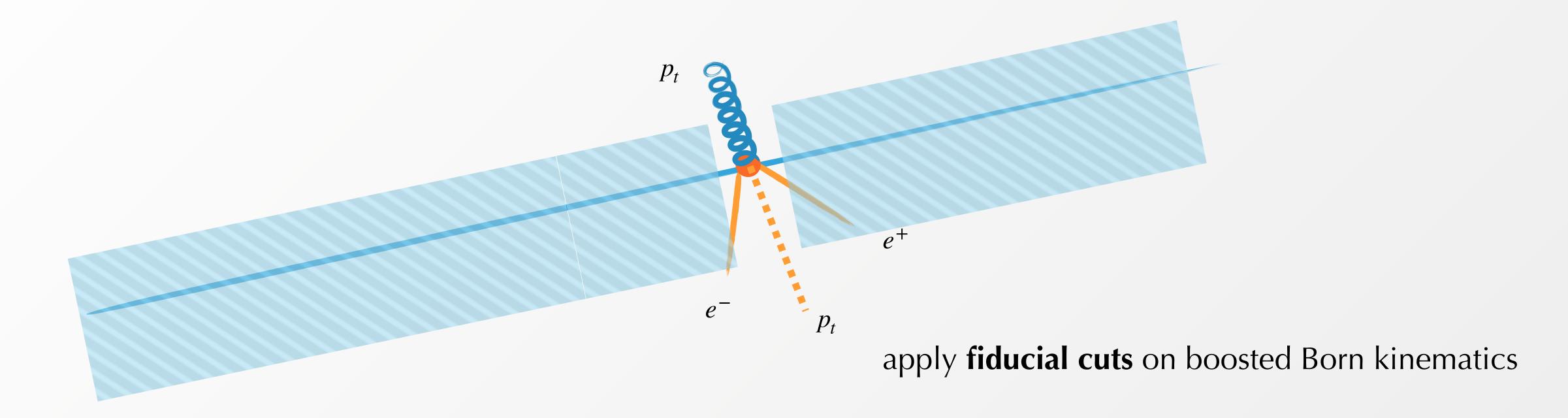
[Catani et al '15]


Generate singlet p_t by QCD radiation

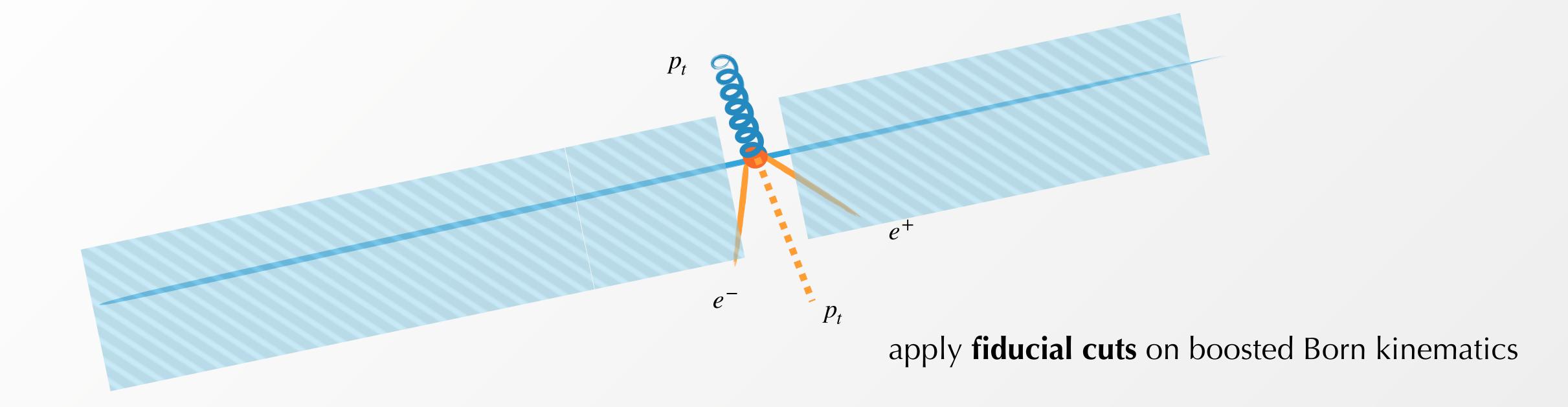
[Catani et al '15]


Generate singlet p_t by QCD radiation

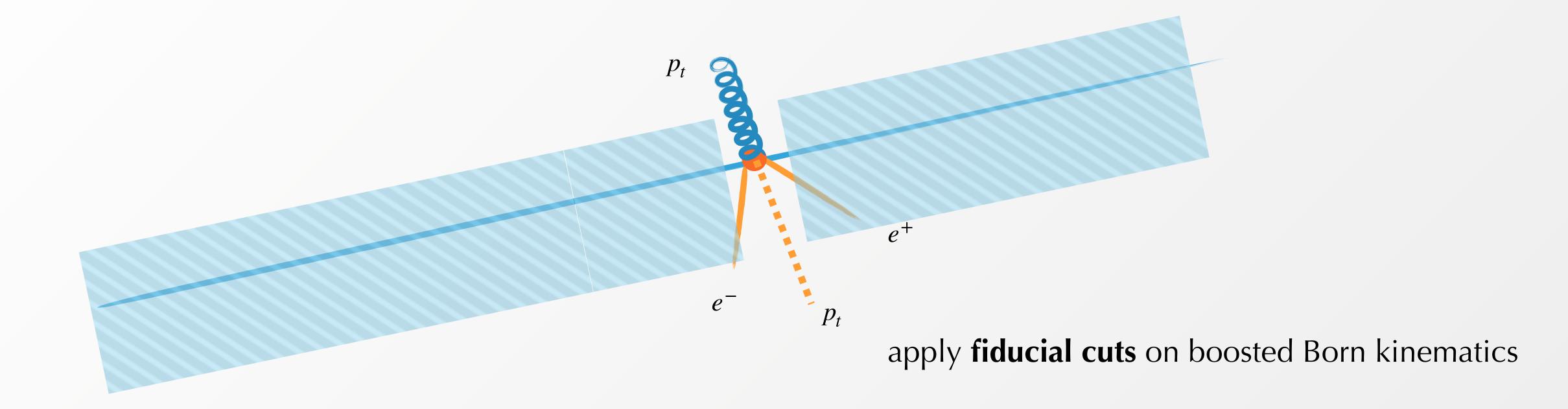
[Catani et al '15]



Generate singlet p_t by QCD radiation


[Catani et al '15]

[Catani et al '15]



[Catani et al '15]

Sufficient to capture the full linear fiducial power correction for p_t [Ebert et al. '20]

[Catani et al '15]

Implementation in RadISH:

- Each contribution in the resummation formula boosted in the corresponding frame
- ullet Derivative of the expansion computed on-the-fly, boost computed according to the value of p_t

Results

Higgs production: setup

Higgs fiducial region defined as [ATLAS 2018]

$$\min(p_t^{\gamma_1}, p_t^{\gamma_2}) > 31.25 \text{ GeV}, \qquad \max(p_t^{\gamma_1}, p_t^{\gamma_2}) > 43.75 \text{ GeV}$$

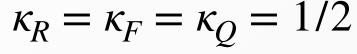
$$0 < |\eta^{\gamma_{1,2}}| < 1.37$$
 or $1.52 < |\eta^{\gamma_{1,2}}| < 2.37$, $|Y_{\gamma\gamma}| < 2.37$

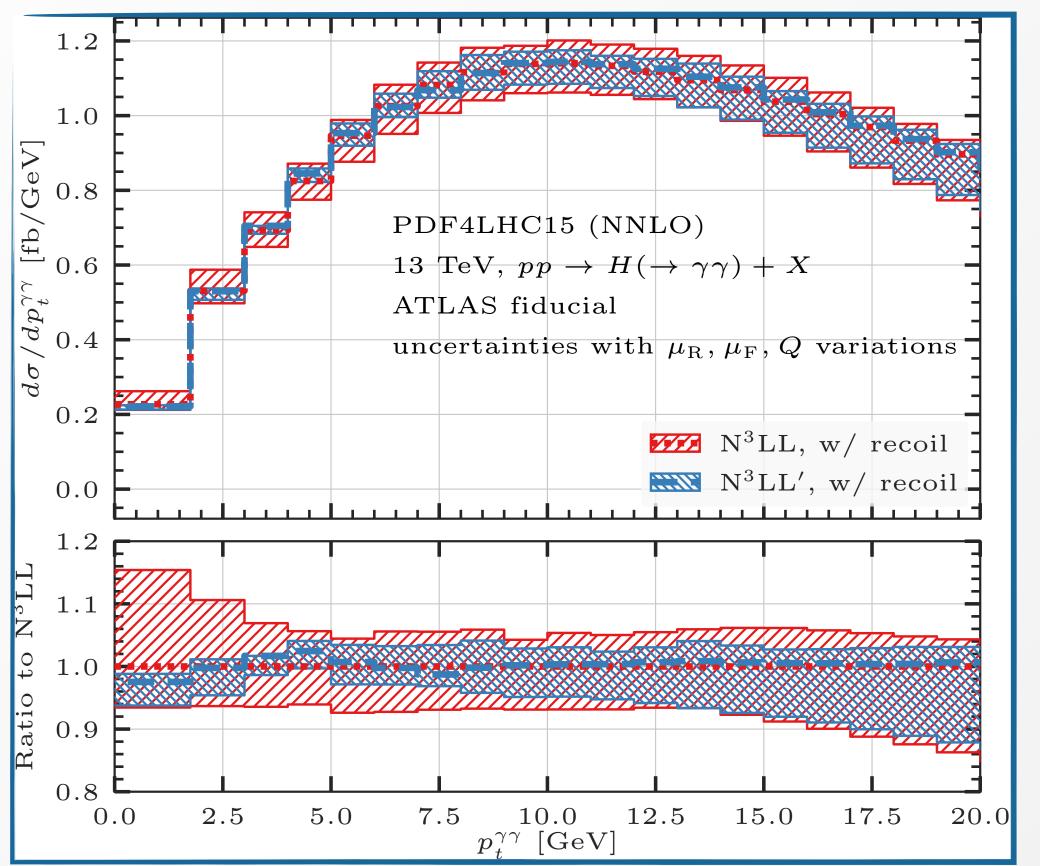
Central scales chosen as

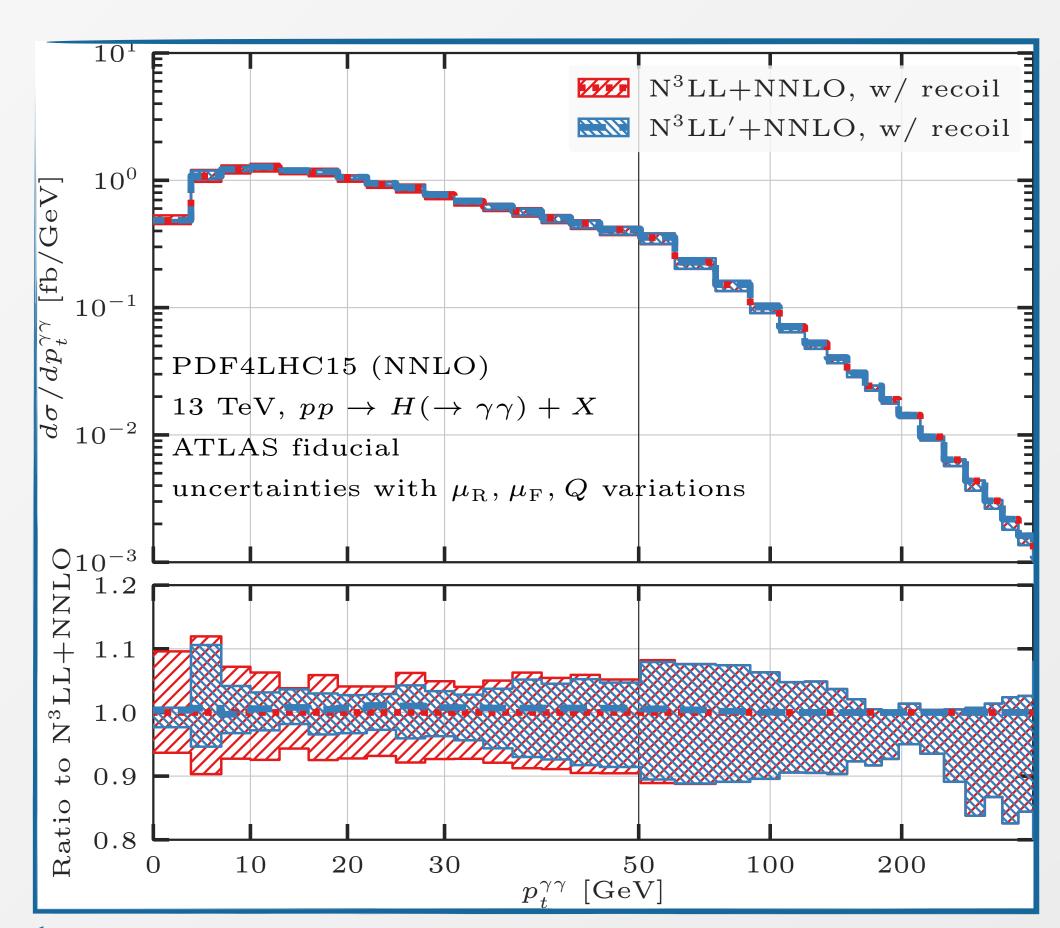
$$\mu_R = \kappa_R M_H$$
 $\mu_F = \kappa_F M_H$, $Q = \kappa_Q M_H$

Scale uncertainty:

[canonical 7 scale variation + variation of κ_Q by a factor of 2 for central μ_R , μ_F] × 3 matching scale choices \rightarrow **27** variations

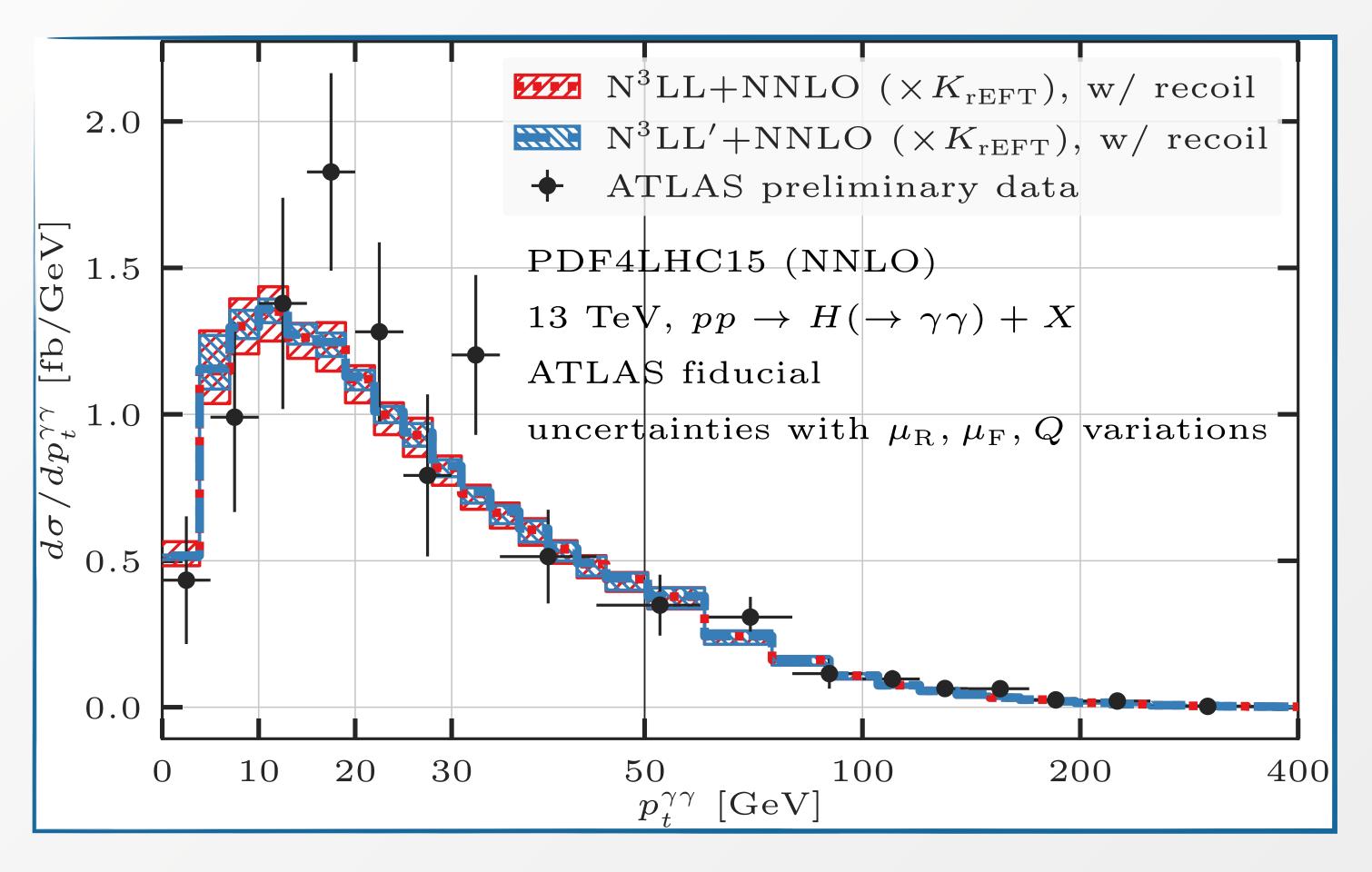

PDF4LHC15 NNLO parton densities. NNLO predictions from NNLOJET


Higgs production: N³LL' effects


Significant reduction in theoretical uncertainty below 15 GeV, especially below 5 GeV

Central value almost unchanged between N³LL and N³LL'

Reduction in scale uncertainty limited at matched level (statistical fluctuations of the fixed order at small p_t)



Higgs production: comparison with ATLAS data

ATLAS preliminary data from https://cds.cern.ch/record/2682800

Theoretical predictions rescaled by $K_{\text{rEFT}} = 1.06584$ to account for exact LO top-mass dependence

Recapitulation and outlook

- Results for Higgs p_t at N³LL'+NNLO accuracy by including **all constant terms of relative order** α_s^3 in the RadISH formalism
- RadISH now includes recoil effects which improve the description of decay kinematics in the fiducial region
- Precise theoretical prediction in the fiducial region for $H \to \gamma \gamma$
- Reduction of theoretical uncertainty at N³LL'. Resummation uncertainty at the 5-10% level
- Marginal effect of recoil in matched results

Backup

Matching to fixed order

Two different families of matching schemes, defined at the differential level (due to the inclusion of recoil effects)

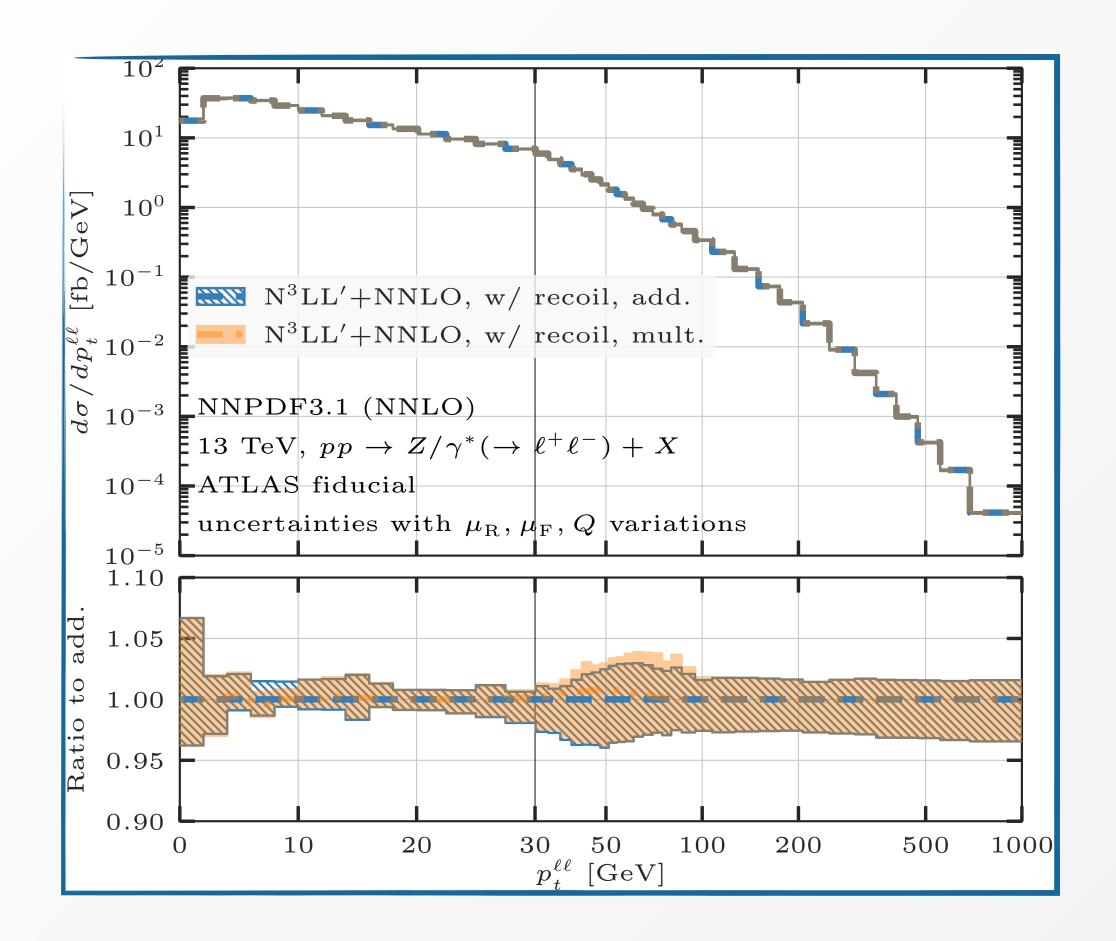
Additive matching

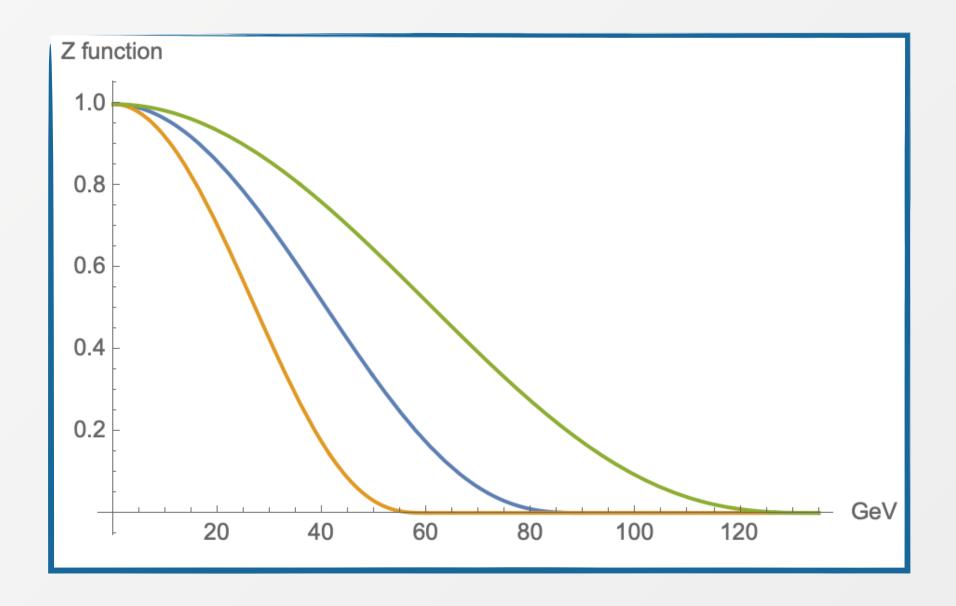
$$\frac{d\Sigma_{\text{add}}^{\text{N}^k\text{LL}^{(\prime)}}(v)}{dv} = \left(\frac{d\Sigma^{\text{N}^k\text{LL}^{(\prime)}}(v)}{dv} - \frac{d\Sigma_{\text{exp}}^{\text{N}^k\text{LL}^{(\prime)}}(v)}{dv}\right) Z(v) + \frac{d\Sigma^{\text{N}^k-1}\text{LO}}{dv}$$

Multiplicative matching

$$\frac{d\Sigma_{\text{mult}}^{\text{N}^k\text{LL}^{(\prime)}}(v)}{dv} = \left(\frac{d\Sigma^{\text{N}^k\text{LL}^{(\prime)}}(v)/dv}{d\Sigma_{\text{exp}}^{\text{N}^k\text{LL}^{(\prime)}}(v)/dv}\right)^{Z(v)} \frac{d\Sigma^{\text{N}^{k-1}\text{LO}}(v)}{dv}$$

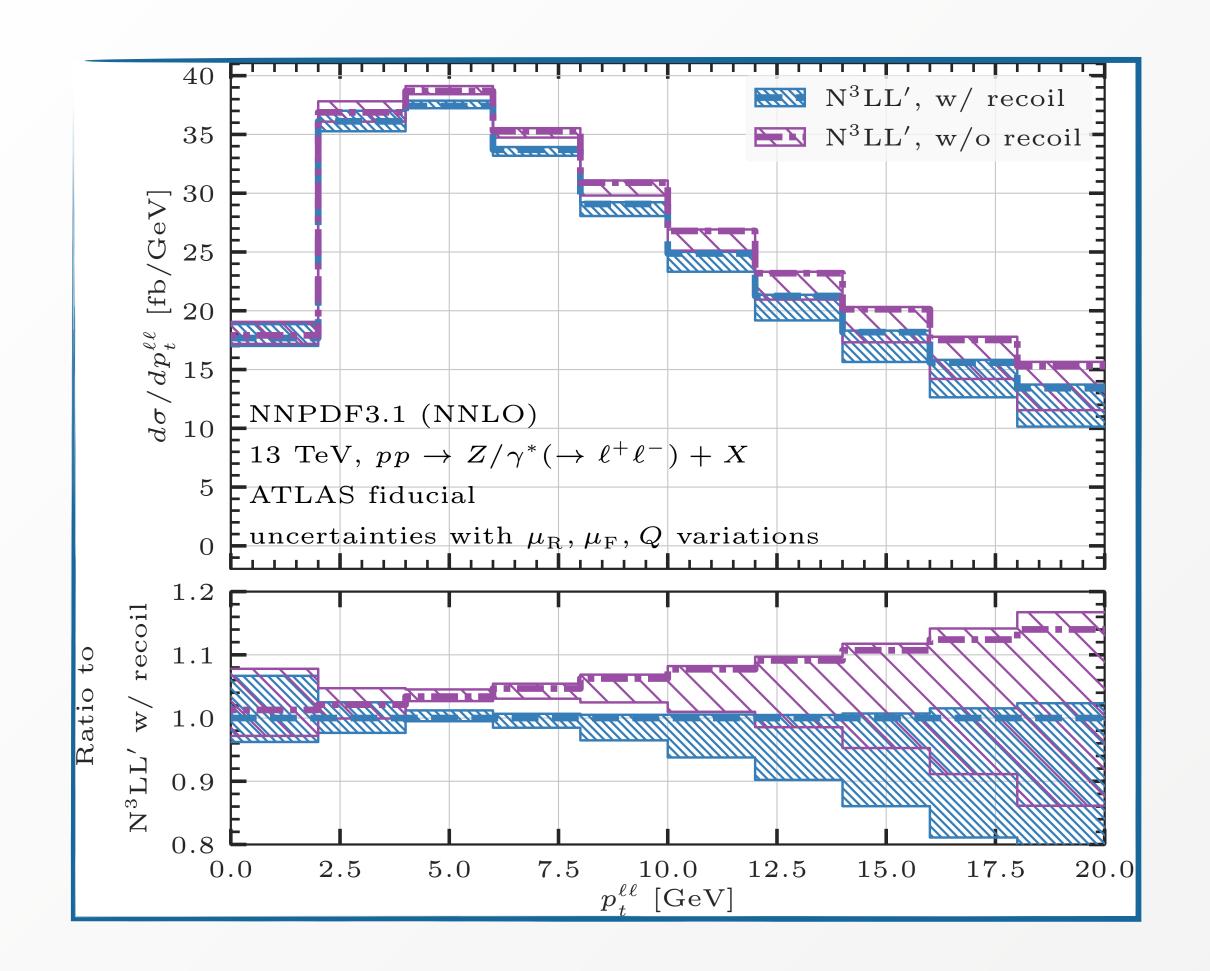
At NNLO+N³LL' the two matching schemes are on equal footing, differences starts at α_s^4

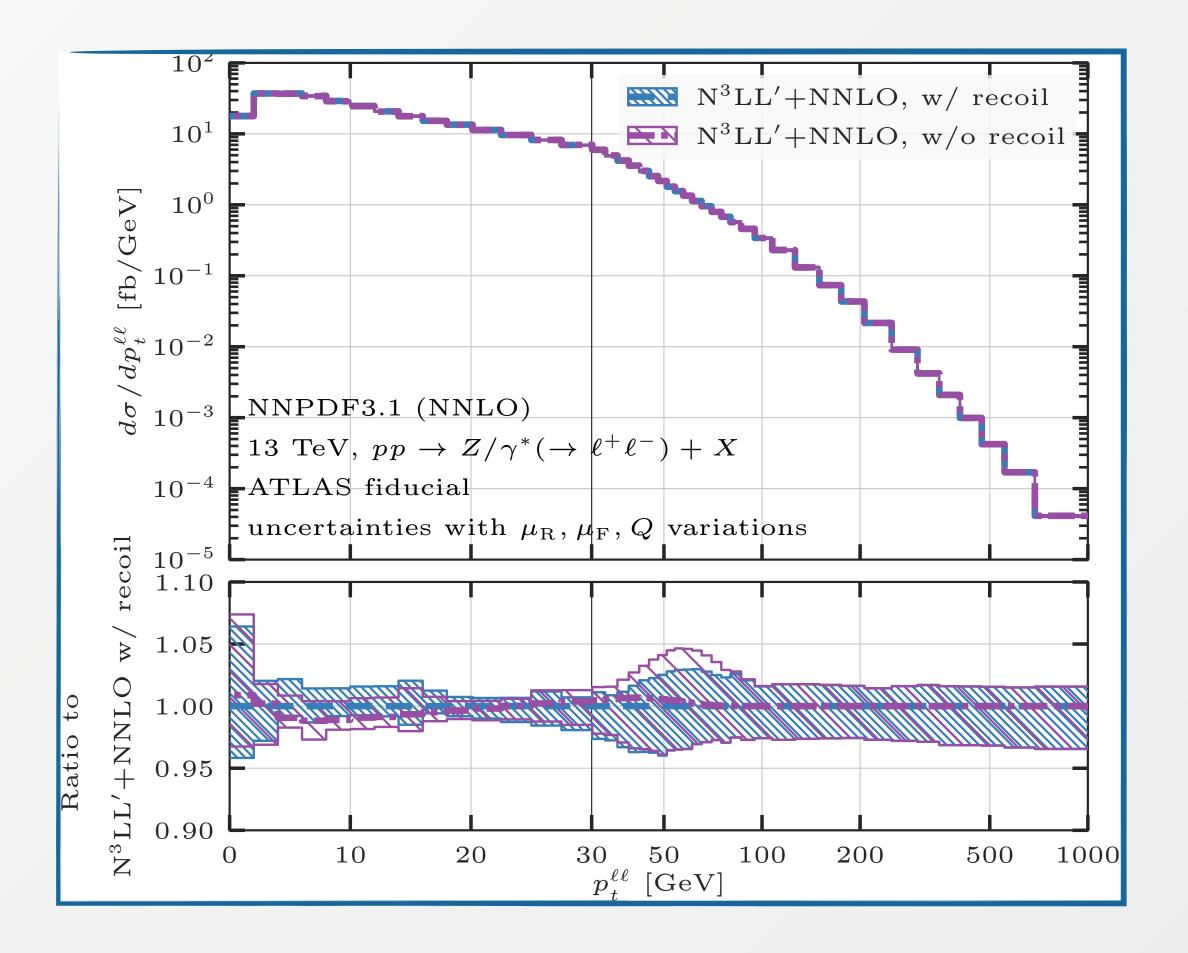

Damping function (does not act on linear power corrections)


$$Z(v) = \left[1 - (v/v_0)^2\right]^3 \Theta(v_0 - v)$$

 v_0 varied in the interval [2/3, 3/2] around central value to **estimate matching uncertainty**

Central value $v_0 = 1$ for p_\perp


Matching systematics



Very mild matching scheme dependence both for central results and uncertainties Additive matching uncertainty band reliably estimate matching ambiguities

Transverse recoil effects in fiducial DY setup

At the pure resummed level recoil prescription captures whole linear power corrections from fiducial cuts

Effect reduce at 1-2% level after matching to fixed order (effect becomes $\mathcal{O}(\alpha_s^4)$)

Pure resummed: band widening due to power corrections due to modified logs

$$\ln(Q/k_{t1}) \to 1/p \ln(1 + (Q/k_{t1})^p)$$

$$\int_0^M \frac{dk_{t1}}{k_{t1}} \to \int_0^\infty \frac{dk_{t1}}{k_{t1}} \frac{(Q/k_{t1})^p}{1 + (Q/k_{t1})^p}$$

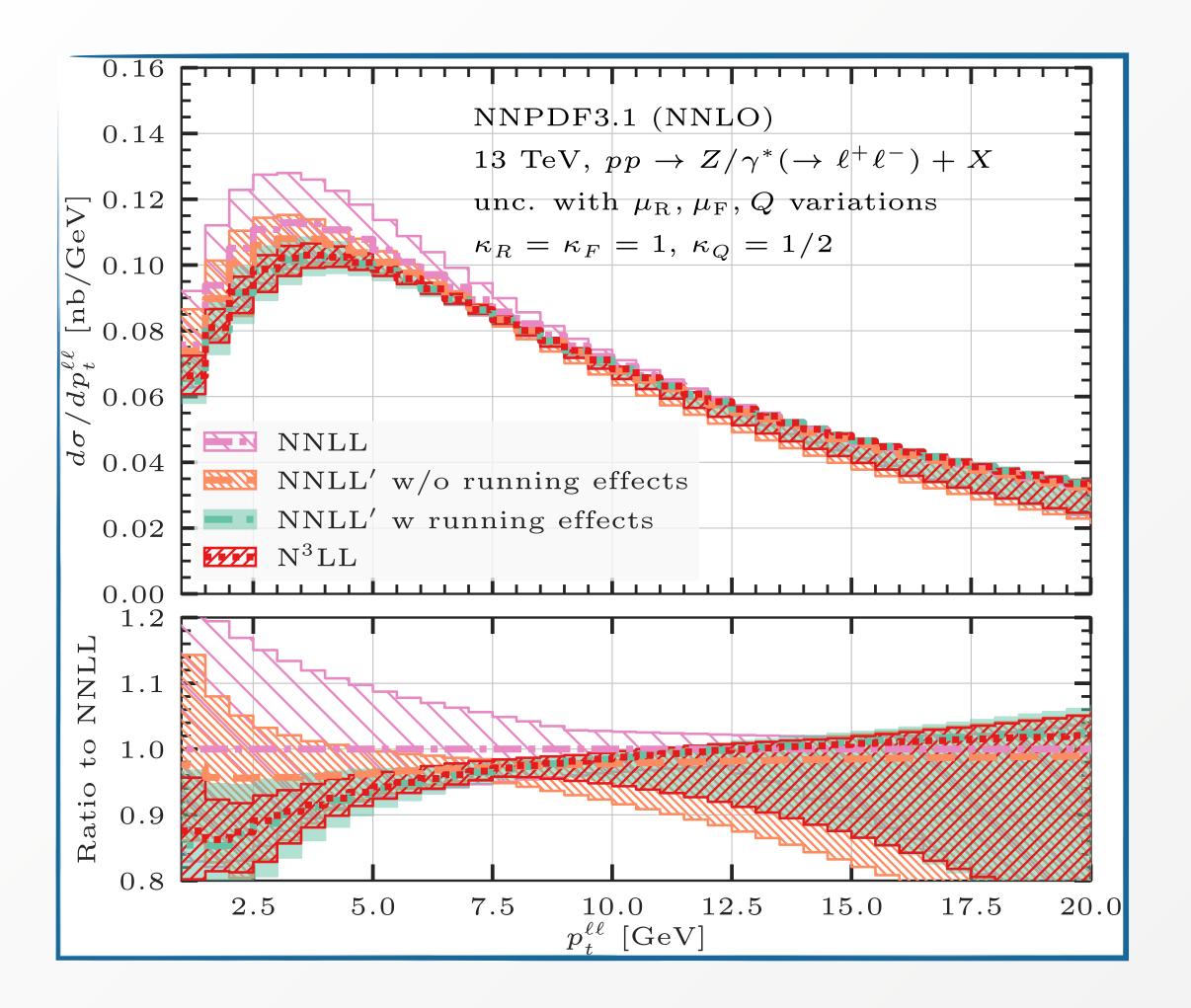
Ambiguity in the definition of primed accuracy

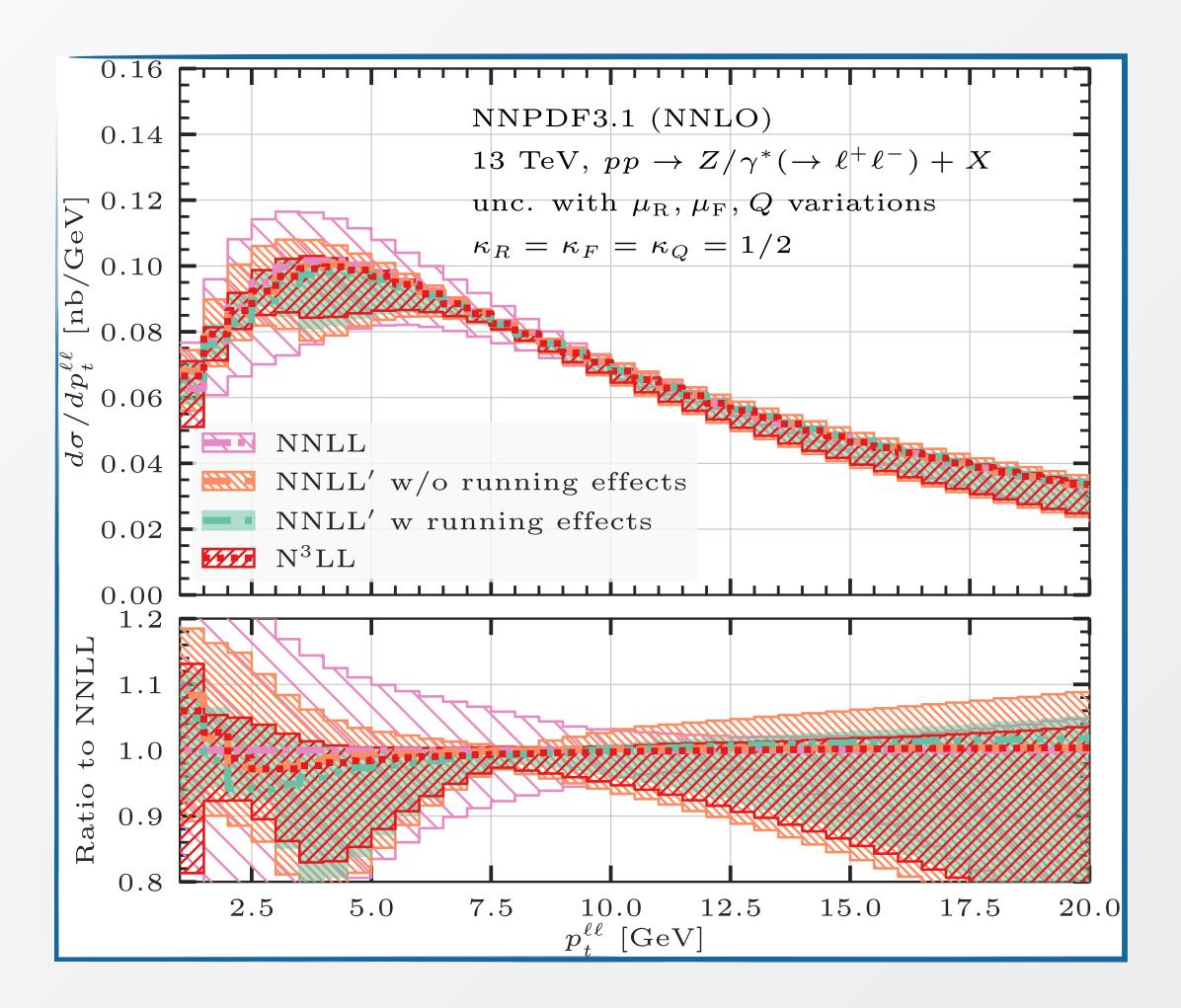
$$\mathcal{L}_{\text{NNLL}}(k_{t1}) = \sum_{c,c'} \frac{d \left| \mathcal{M}_{B} \right|_{cc'}^{2}}{d\Phi_{B}} \sum_{i,j} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} f_{i} \left(k_{t1}, \frac{x_{1}}{z_{1}} \right) f_{j} \left(k_{t1}, \frac{x_{2}}{z_{2}} \right)$$

$$\times \left\{ \delta_{ci} \delta_{c'j} \delta(1 - z_{1}) \delta(1 - z_{2}) \left(1 + \frac{\alpha_{s}(\mu_{R})}{2\pi} H^{(1)}(\mu_{R}) \right) \right.$$

$$\left. \frac{\alpha_{s}(\mu_{R})/(2\pi)}{1 - 2\alpha_{s}(\mu_{R})\beta_{0} \ln(\mu_{R}/k_{t1})} \left(\sum_{ci}^{(1)} (z_{1}) \delta(1 - z_{2}) \delta_{c'j} + \{z_{1}, c, i \leftrightarrow z_{2}, c', j\} \right) \right\}$$

Scale at which the α_s^k term is evaluated is subleading at N^kLL' accuracy


One can evaluate this contribution with $\alpha_s(\mu_R)$ rather \rightarrow difference reflects **ambiguity** of these subleading effects


NLL' with running: $\mathcal{L}_{\text{NLL'}} = \mathcal{L}_{\text{NNLL}}$

Our default choice

NLL' without running: $\mathcal{L}_{\text{NLL'}} = \mathcal{L}_{\text{NNLL}}$ with $\alpha_s(\mu_R)$ in the C_1 component

Ambiguity in the definition of primed accuracy

NNLL' with and without running closer to N³LL than NNLL is NNLL' with running band in better agreement to N³LL: N³LL contained within NNLL' with running uncertainty Band for NNLL' with running covers difference between two NNLL' \rightarrow reliable estimate of prime ambiguity