Transverse observables in Higgs and Drell-Yan production at N³LL'+NNLO

Luca Rottoli

University of Zurich^{UZH}

SWISS NATIONAL SCIENCE FOUNDATION

Based on: Re, LR & Torrielli 2104.07509

RadISH formalism: Monni, Re, Torrielli 1604.02191, Bizon, Monni, Re, LR & Torrielli 1705.09127

Transverse observables in colour-singlet production

Parameterized as

for a **single soft** QCD emission k **collinear** to incoming leg. **Independent of the rapidity** of radiation. $V \rightarrow 0$ for soft/collinear radiation. **Inclusive observables** (e.g. transverse momentum p_t) probe directly the kinem $V(k_1,\ldots,k_n) =$

Clean experimental and theoretical environment for precision physics

- little or no sensitivity to multi-parton interactions
- reduced sensitivity to non-perturbative effects
- measured extremely precisely at experiments

Very accurate theoretical predictions needed

ό 10-3 1/α

 10^{-1}

ee-channel

Combined

Statistical uncertainty

Total uncertainty

 10^{2}

$$= V(k_1 + \ldots + k_n)$$

Example: the Higgs transverse momentum

[ATLAS 1802.04146]

- Sensitivity to New Physics (e.g. **light** Yukawa couplings, trilinear Higgs (Coupling) [Bishara et al. '16][Soreq et al. '16] coupling) [Bizon et al. 1610.05771]
- Experimental analyses categorize events into jet bins according to the jet multiplicity

Increased sensitivity to Higgs boson kinematics, spin-CP properties, BSM effects...

Example: the Higgs transverse momentum

Example: the Higgs transverse momentum

[ATLAS 1802.04146

Rencontres de Blois 2021, 19th October 2021

Fixed order predictions no longer reliable: all order resummation of the perturbative series mandatory

$L = \ln(p_t^H/m_H) \qquad p_t^H \ll m_H$

Resummation of the transverse momentum spectrum

Resummation of transverse momentum is delicate because p_t is a vectorial quantity

Two concurring mechanisms leading to a system with small *p*_t

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression

Large kinematic cancellations *p*_t ~0 far from the Sudakov limit

Power suppression

Resummation of the transverse momentum spectrum

Resummation of transverse momentum is delicate because p_t is a vectorial quantity

Two concurring mechanisms leading to a system with small *p*_t

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression

[Parisi, Petronzio, 1979]

RadISH in a nutshell

RadISH in a nutshell

Resummation of the p_t spectrum in direct space Result at NLL accuracy (with fixed PDFs) can be written as

$$\sigma(p_t) = \sigma_0 \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(v_1)} \quad \text{Unresolved} \qquad v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$
$$\times e^{R'(v_1)}R'(v_1) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\varepsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(\zeta_i v_1) \Theta\left(p_t - |\vec{k}_{t,i} + \cdots + \vec{k}_{t,n+1}|)\right)$$

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

Resolved

RadISH in a nutshell

Resummation of the p_t spectrum in direct space Result at NLL accuracy (with fixed PDFs) can be written as

$$\sigma(p_{t}) = \sigma_{0} \int \frac{dv_{1}}{v_{1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-R(v_{1})} \quad \text{Unresolved} \qquad v_{i} = k_{t,i}/m_{H}, \quad \zeta_{i} = v_{i}/v_{1}$$

$$\times e^{R'(v_{1})}R'(v_{1}) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\varepsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} R'(\zeta_{i}v_{1}) \Theta\left(p_{t} - |\vec{k}_{t,i} + \cdots + \vec{k}_{t,n+1}|)\right)$$
Resolved

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes (as $\mathcal{O}(\epsilon)$) and result is **finite** in four dimensions

Sudakov and **azimuthal mechanisms** accounted for, **no assumption** on k_{t,i} vs p_t hierarchy.

Logarithmic accuracy defined in terms of $\ln(m_H/k_{t1})$

Result formally equivalent to the *b*-space formulation [Bizon, Monni, Re, LR, Torrielli '17]

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

Now include effect of **collinear radiation** and terms beyond NLL accuracy

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1,c_2} \frac{d|M_B|_{c_1c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

$$\begin{split} \hat{\Sigma}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) &= \left[\mathbf{C}_{N_{1}}^{c_{1},T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ck_{t1})} \\ &\times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \Gamma_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \Gamma_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ &\times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}'\left(k_{t1}\right) + \frac{\alpha_{s}(k_{t1})}{\pi} \Gamma_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \Gamma_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \right) \\ &\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{c}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\ &\times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'\left(k_{ti}\right) + \frac{\alpha_{s}(k_{ti})}{\pi} \Gamma_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \Gamma_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \end{split}$$

Unresolved

$v = p_t/M$

Now include effect of **collinear radiation** and terms beyond NLL accuracy

 $\hat{\mathbf{\Sigma}}_{N}^{c_{1}}$

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N}$$

Sudakov radiator

$$\begin{split} & \sum_{k=0}^{k} (v) = \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0})) H(\mu_{R}) \mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})} \\ & \times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ & \times \sum_{\ell=1}^{2} \left(\mathbf{R}_{\ell_{1}}'\left(k_{t1}\right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \right) \\ & \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\ & \times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'\left(k_{t1}\right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \end{split}$$

Rencontres de Blois 2021, 19th October 2021

$$v = p_t/M$$

Now include effect of **collinear radiation** and terms beyond NLL accuracy

Hard-virtual coefficient

hard-momentum region of the virtual corrections to the Born process

$$\begin{aligned} \hat{\Sigma}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) &= \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0})) \mathbf{H}(\mu_{R}) \mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ek_{t1})} \\ &\times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ &\times \sum_{\ell_{1}=1}^{2} \left(\mathbf{R}_{\ell_{1}}'\left(k_{t1}\right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \right) \end{aligned}$$
Resolved

$$&\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{c}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\ &\times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'\left(k_{ti}\right) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \end{aligned}$$

Rencontres de Blois 2021, 19th October 2021

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1,c_2} \frac{d|M_B|_{c_1c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

$$v = p_t/M$$

Now include effect of **collinear radiation** and terms beyond NLL accuracy

Rencontres de Blois 2021, 19th October 2021

$$N_{1}x_{2}^{-N_{2}}\sum_{c_{1},c_{2}}\frac{d|M_{B}|_{c_{1}c_{2}}^{2}}{d\Phi_{B}}\mathbf{f}_{N_{1}}^{T}(\mu_{0})\mathbf{\hat{\Sigma}}_{N_{1},N_{2}}^{c_{1},c_{2}}(v)\mathbf{f}_{N_{2}}(\mu_{0}),$$

$$\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \left[\int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})} \right] \\
\frac{d_{0}}{dk_{t}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right] \\
\frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \\
\int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\
\frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \\$$

$$v = p_t / M$$

Now include effect of **collinear radiation** and terms beyond NLL accuracy

 $\hat{\Sigma}_{\lambda}^{c_1}$

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1,c_2} \frac{d|M_B|_{c_1c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

DGLAP evolution

$$\sum_{i,N_{2}}^{c_{2}}(v) = \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})} \\ \times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ \times \sum_{\ell_{1}=1}^{2} \left(\mathbf{R}_{\ell_{1}}'(k_{t1}) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \\ \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\ \times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'(k_{ti}) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \right)$$

Rencontres de Blois 2021, 19th October 2021

$$v = p_t/M$$

Capture **all constant terms** of relative order $\mathcal{O}(\alpha_s^3)$

- α_s^3 is N⁴LL (since $\alpha_s^n L^{n-3}$) but sufficient to get all $\alpha_s^n L^{2n-6}$ in the cumulant

• Allows for the computation of N³LO cross section for H, DY production based on p_t -slicing methods [Billis et al. '21][Cieri et al. '21] [Chen et al. '21]

Sources of N³LL' correction, neglected in previous RadISH implementation

Three-loop hard-virtual coefficient

$$H(\alpha_s) = 1 + \left(\frac{\alpha_s}{2\pi}\right) H_1 + \left(\frac{\alpha_s}{2\pi}\right)^2 H_2 + \left(\frac{\alpha_s}{2\pi}\right)^3 H_3$$

[Gehrmann et al. '10]

Three-loop Wilson coefficient for Higgs EFT [Schroder, Steinhauser '05]

$$\begin{aligned} (\mathbf{y}) &= \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0})) \mathbf{H}(\mu_{R}) \mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ck_{t1})} \\ & \times \exp\left\{ -\sum_{\ell'=1}^{2} \left(\int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ & \times \sum_{\ell'_{1}=1}^{2} \left(\mathbf{R}_{\ell'_{1}}(k_{t1}) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell'_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell'_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \\ & \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{c}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}) \right), \\ & \times \sum_{\ell'_{i}=1}^{2} \left(\mathbf{R}_{\ell'_{i}}(k_{ti}) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell'_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell'_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \end{aligned}$$

Sources of N³LL' correction, neglected in previous RadISH implementation

Three-loop coefficient functions

$$\hat{\Sigma}_{N_{1},N_{2}}^{c_{1}c_{2}}(v) = \left[\mathbf{C}_{N_{1}}^{c_{1}c_{2}}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0}))\right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ck_{t1})}$$

$$C(\alpha_{s},z) = \delta(1-z) + \left(\frac{\alpha_{s}}{2\pi}\right)^{2} C_{1}(z) + \left(\frac{\alpha_{s}}{2\pi}\right)^{2} C_{2}(z) + \left(\frac{\alpha_{s}}{2\pi}\right)^{3} C_{3}(z) \times \exp\left\{-\sum_{\ell=1}^{2} \left(\int_{ck_{n}}^{\mu_{0}} \frac{dk_{t}}{k_{l}} \frac{\alpha_{s}(k_{l})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{l})) + \int_{ck_{n}}^{\mu_{0}} \frac{dk_{t}}{k_{l}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{l}))\right)\right\}$$

$$[\text{Li, Zhu '16][Vladimirov '16][Luo et al. '19][Ebert et al. '20]} \times \sum_{\ell_{1}=1}^{2} \left(\mathbf{R}_{\ell_{1}}^{t}(k_{t1}) + \frac{\alpha_{s}(k_{l})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1}))\right)$$
For Higgs production: two-loop G coefficient functions

$$[Catani, Grazzini '11]$$

$$G(\alpha_{s}, z) = \left(\frac{\alpha_{s}}{2\pi}\right) G_{1}(z) + \left(\frac{\alpha_{s}}{2\pi}\right)^{2} G_{2}(z)$$

$$\sum_{\ell_{s}=1}^{\infty} \left(\mathbf{R}_{\ell_{1}}^{t}(k_{t1}) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1}))\right)$$

$$G(\alpha_s, z) = \left(\frac{\alpha_s}{2\pi}\right) G_1(z) + \left(\frac{\alpha_s}{2\pi}\right)^2 G_2(z)$$

[Luo et al. '19]

Rencontres de Blois 2021, 19th October 2021

7

Sources of N³LL' correction, neglected in previous RadISH implementation

$$\begin{aligned} \hat{\Sigma}_{N_{1},N_{2}}^{c_{1}c_{2}}(v) &= \left[\mathbf{C}_{N_{1}}^{c_{1}(T_{3}(\mu_{0}))}H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})} \\ R(k_{t1}) &= -\log\frac{M}{k_{t1}}g_{1} - g_{2} - \left(\frac{\alpha_{s}}{\pi}\right)g_{3} - \left(\frac{\alpha_{s}}{\pi}\right)^{2}g_{4} - \left(\frac{\alpha_{s}}{\pi}\right)^{3}g_{5} \\ \times \exp\left\{-\sum_{\ell=1}^{2}\left(\int_{\epsilon k_{1}}^{\mu_{0}} \frac{dk_{\ell}}{k_{\ell}}\frac{\alpha_{s}(k_{\ell})}{\pi}\mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{\ell})) + \int_{\epsilon k_{1}}^{\mu_{0}} \frac{dk_{\ell}}{k_{\ell}}\mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{\ell})) \right) \right\} \\ \text{Resummation scale } Q \sim M \\ &= \frac{2}{k_{t1}}\left(\mathbf{R}_{\ell_{1}}^{*}(k_{t1}) + \frac{\alpha_{s}(k_{t1})}{\pi}\mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1}))\right) \right) \\ &= \ln\frac{M}{k_{t1}} \rightarrow \ln\frac{Q}{k_{t1}} + \ln\frac{M}{Q} \\ \text{Constant terms expanded in } \alpha_{s} \text{ and included in } H \\ &= \sum_{\ell_{l}=1}^{2}\left(\mathbf{R}_{\ell_{l}}^{*}(k_{l}) + \frac{\alpha_{s}(k_{l})}{\pi}\mathbf{\Gamma}_{N_{\ell_{l}}}(\alpha_{s}(k_{l})) + \mathbf{\Gamma}_{N_{\ell_{l}}}^{(C)}(\alpha_{s}(k_{l}))\right) \right) \end{aligned}$$

$$\ln \frac{M}{k_{t1}} \to \ln \frac{Q}{k_{t1}} + \ln \frac{M}{Q}$$

Sources of N³LL' correction, neglected in previous RadISH implementation

Constants terms coming from resolved contributions

$$\Gamma(\alpha_s) = \Gamma^{(0)} + \left(\frac{\alpha_s}{2\pi}\right) \Gamma^{(1)}$$

$$\Gamma^{(C)}(\alpha_s) = \left(\frac{\alpha_s}{2\pi}\right)^2 \Gamma^{(C,1)}$$

7

$$\begin{aligned} (\mathbf{v}) &= \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ck_{t1})} \\ & \times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ & \times \sum_{\ell_{1}=1}^{2} \left(\mathbf{R}_{\ell_{1}}'\left(k_{t1}\right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \right) \\ & \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{e}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}) \right), \\ & \times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'\left(k_{ti}\right) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \end{aligned}$$

Momentum-space formula at N³LL

$$\begin{split} \frac{d\Sigma(v)}{d\Phi_{B}} &= \int \frac{dk_{i1}}{k_{i1}} \frac{d\phi_{1}}{2\pi} \partial_{L} \left(-e^{-R(k_{i1})} \mathscr{L}_{NUL1}(k_{i1}) \right) \int d\mathscr{Z} \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}) \right) \\ &+ \int \frac{dk_{i1}}{k_{i1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{i1})} \int d\mathscr{Z} \int_{0}^{1} \frac{d\zeta_{s}}{\zeta_{s}} \frac{d\phi_{s}}{2\pi} \left\{ \left(R'(k_{i1}) \mathscr{L}_{NNL1}(k_{i1}) - \partial_{L} \mathscr{L}_{NNL1}(k_{i1}) \right) \\ &\times \left(R''(k_{i1}) \ln \frac{1}{\zeta_{s}} + \frac{1}{2} R'''(k_{i1}) \ln^{2} \frac{1}{\zeta_{s}} \right) - R'(k_{i1}) \left(\partial_{L} \mathscr{L}_{NNL1}(k_{i1}) - 2 \frac{\beta_{0}}{\pi} a_{s}^{2}(k_{i1}) \hat{P}^{(0)} \otimes \mathscr{L}_{NL1}(k_{i1}) \ln \frac{1}{\zeta_{s}} \right) \\ &+ \frac{a_{s}^{2}(k_{i1})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathscr{L}_{NL1}(k_{i1}) \right\} \\ &\times \left\{ \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}) \right) \right\} \\ &+ \frac{1}{2} \int \frac{dk_{i1}}{k_{i1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{i1})} \int d\mathscr{Z} \int_{0}^{1} \frac{d\zeta_{s1}}{\zeta_{s1}} \frac{d\phi_{s1}}{2\pi} \int_{0}^{1} \frac{d\zeta_{s2}}{\zeta_{s2}} \frac{d\phi_{s2}}{2\pi} R'(k_{i1}) \left\{ \mathscr{L}_{NL1}(k_{i1}) \left(R''(k_{i1}) \right)^{2} \ln \frac{1}{\zeta_{s1}} \ln \frac{1}{\zeta_{s2}} - \partial_{L} \mathscr{L}_{NL1}(k_{i1}) R''(k_{i1}) \left(\ln \frac{1}{\zeta_{s1}} + \frac{a_{s}^{2}(k_{i1})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathscr{L}_{NL1}(k_{i1}) \right\} \\ &\times \left\{ \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s2}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s1}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s2}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s1}) \right) \right\} \right\} \\ & \times \left\{ \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s2}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s1}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s2}) \right) + \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{s1}) \right) \right\} \right\}$$

Momentum-space formula at N³LL'

$$\frac{d\Sigma(v)}{d\Phi_{B}} = \int \frac{dk_{n}}{k_{1}} \frac{d\phi_{1}}{2\pi} \partial_{L} \left(-e^{-R(k_{1})} \mathcal{L}_{NLL}(k_{0})\right) \int d\mathcal{L} \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right) \\ + \int \frac{dk_{11}}{k_{1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{0})} \int d\mathcal{L} \int_{0}^{1} \frac{d\zeta_{n}}{\zeta_{n}} \frac{d\phi_{n}}{2\pi} \left\{ \left(R^{\prime}(k_{n}) \mathcal{L}_{NNLL}(k_{n}) - \partial_{L} \mathcal{L}_{NNLL}(k_{n}) \right) - d_{L} \mathcal{L} \\ \times \left(R^{\prime\prime}(k_{n}) \ln \frac{1}{\zeta_{n}} + \frac{1}{2} R^{\prime\prime\prime}(k_{n}) \ln^{2} \frac{1}{\zeta_{n}} \right) - R^{\prime}(k_{1}) \left(\partial_{L} \mathcal{L}_{NNLL}(k_{1}) - 2\frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{1}) \hat{P}^{\prime(0)} \otimes \mathcal{L}_{NLL}(k_{1}) \ln \frac{1}{\zeta_{n}} \right) \\ + \frac{\alpha_{s}^{2}(k_{n})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{NLL}(k_{n}) - \beta_{0} \frac{\alpha_{s}^{2}(k_{n})}{\pi^{2}} \left(\hat{P}^{(0)} \otimes \hat{C}^{(1)} + \hat{C}^{(1)} \otimes \hat{P}^{(0)} \right) \otimes \mathcal{L}_{NLL}(k_{n}) + \frac{\alpha_{s}^{2}(k_{n})}{\pi^{2}} 2\beta_{0} \ln \frac{1}{\zeta_{s}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{NL} \\ + \frac{\alpha_{s}^{2}(k_{n})}{2\pi^{2}} \left(\hat{P}^{(0)} \otimes \hat{P}^{(1)} + \hat{P}^{(1)} \otimes \hat{P}^{(0)} \right) \otimes \mathcal{L}_{NLL}(k_{n}) \right\} \times \left\{ \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{n}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{n}) \right) \right\} \\$$
Convolution structure obtained after Mellin inversion
$$+ \frac{\alpha_{s}^{2}(k_{n})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{NLL}(k_{n}) + \frac{\alpha_{s}^{2}(k_{n})}{\pi^{2}} \left(\ln \frac{1}{\zeta_{s}} + \ln \frac{1}{\zeta_{s2}} \right) R^{\prime\prime}(k_{n}) \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{NLL}(k_{n}) \left(\ln \frac{1}{\zeta_{s}} + \ln \frac{1}{\zeta_{s2}} \right) R^{\prime\prime}(k_{n}) \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{NLL}(k_{n}) \left(\ln \frac{1}{\zeta_{s}} + \ln \frac{1}{\zeta_{s2}} \right) R^{\prime\prime}(k_{n}) \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{NLL}(k_{n}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{n}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{n}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{n}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{n}) \right) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{n}) \right) - \Theta \left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1}, k_{n}) \right) \right)$$

Relicontres de Diois 2021, 19th October 2021

structure

[Catani et al. '15]

Rencontres de Blois 2021, 19th October 2021

Born matrix element evaluated at $p_t = 0$

[Catani et al. '15]

Rencontres de Blois 2021, 19th October 2021

Generate singlet p_t by QCD radiation

[Catani et al. '15]

Rencontres de Blois 2021, 19th October 2021

Generate singlet p_t by QCD radiation

[Catani et al. '15]

 p_t

 e^{-}

Generate singlet p_t by QCD radiation

[Catani et al. '15]

 p_t

[Catani et al. '15]

 p_t

[Catani et al. '15]

Sufficient to capture the full linear fiducial power correction for p_t [Ebert et al. '20]

[Catani et al. '15]

Implementation in RadISH:

- Each contribution in the resummation formula boosted in the corresponding frame
- Derivative of the expansion computed on-the-fly, boost computed according to the value of p_t

Matching to fixed order

Two different families of matching schemes, defined at the differential level (due to the inclusion of recoil effects)

At NNLO+N³LL' the two matching schemes are on equal footing, differences starts at α_s^4

Damping function (does not act on linear power corrections)

$$Z(v) = \left[1 - (v/v_0)^2\right]^3 \Theta(v_0 - v)$$

 v_0 varied in the interval [2/3, 3/2] around central value to estimate matching uncertainty

Central value $v_0 = 1$ for p_{\perp} and $v_0 = 1/2$ for ϕ_n^*

11

$$\frac{d\Sigma^{N^{k}LL^{(\prime)}}(v)}{dv} = \left(\frac{d\Sigma^{N^{k}LL^{(\prime)}}(v)}{dv} - \frac{d\Sigma^{N^{k}LL^{(\prime)}}(v)}{dv}\right)Z(v) + \frac{d\Sigma^{N^{k-1}LO}(v)}{dv}$$
$$\frac{d\Sigma^{N^{k}LL^{(\prime)}}(v)}{dv} = \left(\frac{d\Sigma^{N^{k}LL^{(\prime)}}(v)/dv}{d\Sigma^{N^{k}LL^{(\prime)}}(v)/dv}\right)^{Z(v)}\frac{d\Sigma^{N^{k-1}LO}(v)}{dv}$$

Drell-Yan production: setup

Drell-Yan fiducial region defined as [ATLAS 2019]

$$p_t^{\ell^{\pm}} > 27 \,\text{GeV}, \qquad |\eta^{\ell^{\pm}}|$$

Central scales chosen as

$$\mu_R = \kappa_R M_t \qquad \mu_F = \kappa_F M_t,$$

In resummed predictions $M_t \to M_{\ell\ell} = M_t + \mathcal{O}\left(\frac{p_t^{\ell\ell}}{M_{\ell\ell}}\right)^2$

Scale uncertainty:

[canonical 7 scale variation + variation of κ_0 by a factor of 2 for central $\mu_{R'}$, μ_F] × 3 values of $v_0 \rightarrow 27$ variations

NNPDF31 NNLO parton densities with $\alpha_s = 0.118$. NNLO predictions from NNLOJET

$66 \,\mathrm{GeV} < m_{\ell\ell} < 116 \,\mathrm{GeV}$ < 2.5,

$$Q = \kappa_Q M_{\ell\ell} \qquad M_t = \sqrt{M_{\ell\ell}^2 + p_t^{\ell\ell^2}}$$

Transverse recoil effects in fiducial DY setup

Symmetric cuts on the dileptons induce linear power corrections in the fiducial spectrum Can be avoided by suitable choice of cuts [Salam, Slade '21]

Rencontres de Blois 2021, 19th October 2021

Recoil effectively captures the **full linear fiducial power correction** for p_t

Transverse recoil effects in fiducial DY setup

At the pure resummed level recoil prescription captures whole linear power corrections from fiducial cuts Effect reduce at 1-2% level after matching to fixed order (effect becomes $\mathcal{O}(\alpha_s^4)$) Pure resummed: band widening due to power corrections due to modified logs

Drell-Yan production: N³LL' effects

Reduction in theoretical uncertainty below 10 GeV

Rencontres de Blois 2021, 19th October 2021

Modification at the **5-10% level** below 10 GeV (similar effect, but larger, present at NNLL vs NNLL') **Minor differences** with respect to N³LL for value of p_t larger than 5 GeV

Drell-Yan production: comparison with ATLAS data

N³LL'+NNLO improves the description of data w.r.t. N³LL+NNLO Theoretical uncertainties at the few percent level across the whole range High statistic runs needed for the description of ϕ_n^* in the singular region (fixed-order component set to 0) Marginal effect of recoil after matching (1-2% effect)

16

Higgs production: setup

Higgs fiducial region defined as [ATLAS 2018] $\min(p_t^{\gamma_1}, p_t^{\gamma_2}) > 31.25 \text{ GeV}, \qquad \max(p_t^{\gamma_1}, p_t^{\gamma_2}) > 43.75 \text{ GeV}$ $0 < |\eta^{\gamma_{1,2}}| < 1.37$ or $1.52 < |\eta^{\gamma_{1,2}}| < 2.37$, $|Y_{\gamma\gamma}| < 2.37$

Central scales chosen as

$$\mu_R = \kappa_R M_H \qquad \mu_F = \kappa_F M_H, \qquad Q = \kappa_Q M_H$$

Scale uncertainty:

PDF4LHC15 NNLO parton densities. NNLO predictions from NNLOJET

[canonical 7 scale variation + variation of κ_0 by a factor of 2 for central $\mu_{R'}, \mu_F$] × 3 values of $v_0 \rightarrow 27$ variations

Higgs production: N³LL' effects

Significant reduction in theoretical uncertainty below 15 GeV, especially below 5 GeV

Central value almost unchanged between N³LL and N³LL' Reduction in scale uncertainty limited at matched level (statistical fluctuations of the fixed order at small p_t) Rencontres de Blois 2021, 19th October 2021

 $\kappa_R = \kappa_F = \kappa_O = 1/2$

Higgs production: comparison with ATLAS data

ATLAS preliminary data from https://cds.cern.ch/record/2682800

Theoretical predictions rescaled by $K_{\rm rEFT} = 1.06584$ to account for exact LO top-mass dependence

Recapitulation and outlook

- relative order α_s^3 in the RadISH formalism
- Precise theoretical prediction in the fiducial region for $Z/\gamma^* \to \ell^+ \ell^-$ and $H \to \gamma \gamma$
- Reduction of theoretical uncertainty at N³LL'. Improved description of DY data
- Resummation uncertainty at the few percent level (DY), 5-10% level (Higgs)
- Marginal effect of recoil in matched results

• Results for singlet p_t (H/DY production) and ϕ_n^* (DY) at N³L'+NNLO accuracy by including all constant terms of

• RadISH now includes recoil effects which improve the description of decay kinematics in the fiducial region.

Ambiguity in the definition of primed accuracy

$$\begin{aligned} \mathscr{L}_{\text{NNLL}}(k_{t1}) &= \sum_{c,c'} \frac{d \left| \mathscr{M}_{B} \right|_{cc'}^{2}}{d\Phi_{B}} \sum_{i,j} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} f_{i} \left(k_{t1}, \frac{x_{1}}{z_{1}} \right) f_{j} \left(k_{t1}, \frac{x_{2}}{z_{2}} \right) \\ &\times \left\{ \delta_{ci} \delta_{c'j} \delta(1 - z_{1}) \,\delta(1 - z_{2}) \left(1 + \frac{\alpha_{s}(\mu_{R})}{2\pi} H^{(1)}(\mu_{R}) \right) \right. \\ &\left. \left. \left(\frac{\alpha_{s}(\mu_{R})/(2\pi)}{1 - 2\alpha_{s}(\mu_{R})\beta_{0} \ln(\mu_{R}/k_{t1})} \left(\mathcal{C}_{ci}^{(1)}(z_{1})\delta(1 - z_{2})\delta_{c'j} + \{z_{1}, c, i \leftrightarrow z_{2}, c', j\} \right) \right\} \end{aligned}$$

Scale at which the α_s^k term is evaluated is subleading at N^kLL' accuracy One can evaluate this contribution with $\alpha_s(\mu_R) \rightarrow$ difference reflects **ambiguity** of these subleading effects NLL' with running: $\mathscr{L}_{NLL'} = \mathscr{L}_{NNLL}$ NLL' without running: $\mathscr{L}_{NLL'} = \mathscr{L}_{NNLL}$ with $\alpha_s(\mu_R)$ in the C_1 component (analogously at higher orders)

9

Our default choice

Ambiguity in the definition of primed accuracy

NNLL' with and without running closer to N³LL than NNLL is NNLL' with running band in better agreement to N³LL: N³LL contained within NNLL' with running uncertainty Band for NNLL' with running covers difference between two NNLL' \rightarrow reliable estimate of prime ambiguity

Matching systematics

Very mild matching scheme dependence both for central results and uncertainties Additive matching uncertainty band reliably estimate matching ambiguities

NLL result for p_{\perp}^{J}

 $\sigma(p_{\perp}^{\mathsf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$

NLL result for
$$p_{\perp}^{H}$$

$$\sigma(p_{\perp}^{H}) = \sigma_{0} \int d^{2} \overrightarrow{p}_{\perp}^{H} \int \frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\text{NLL}}(L)}$$

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$\sigma(v) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'(k_{t,1}) d\mathcal{Z} \Theta(v - V(k_1, \dots, k_{n+1}))$$

$$R_{\text{NLL}}(L) = -Lg_1(\alpha_s\beta_0 L) - g_2(\alpha_s\beta_0 L)$$
$$L = \ln(k_{t,1}/M)$$

Rencontres de Blois 2021, 19th October 2021

NLL result for p_{\perp}^{J}

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$$

NLL result for
$$p_{\perp}^{H}$$

$$\sigma(p_{\perp}^{H}) = \sigma_{0} \int d^{2} \overrightarrow{p}_{\perp}^{H} \int \frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\text{NLL}}(L)}$$

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$\sigma(p_{\perp}^{H}) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'\left(k_{t,1}\right) d\mathcal{Z} \Theta\left(p_T^{H} - |\vec{k}_{t,1} + \cdots \vec{k}_{t,n+1}|\right)$$

$$R_{\text{NLL}}(L) = -Lg_1(\alpha_s\beta_0 L) - g_2(\alpha_s\beta_0 L)$$
$$L = \ln(k_{t,1}/M)$$

6

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$$

CMW scheme

NLL result for
$$p_{\perp}^{H}$$

$$\sigma(p_{\perp}^{H}) = \sigma_{0} \int d^{2} \overrightarrow{p}_{\perp}^{H} \int \frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\text{NLL}}(L)}$$

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'(k_{t,1}) d\mathcal{Z} \Theta\left(p_T^{\mathbf{J}} - \max\{k_{t,1}, \dots, k_{t,n+1}\}\right)$$

$$R_{\text{NLL}}(L) = -Lg_1(\alpha_s\beta_0 L) - g_2(\alpha_s\beta_0 L)$$
$$L = \ln(k_{t,1}/M)$$

6

NLL result for p_{\perp}^{J}

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$$

NLL result for
$$p_{\perp}^{H}$$

$$\sigma(p_{\perp}^{H}) = \sigma_{0} \int d^{2} \overrightarrow{p}_{\perp}^{H} \int \frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\text{NLL}}(L)}$$

differential control in momentum space provides guidance to double-differential resummation

$$\sigma(p_{\perp}^{H}, p_{\perp}^{J}) = \sigma_{0} \int \frac{dk_{t,1}}{k_{t,1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t,1})} R'(k_{t,1}) dk_{t,1}$$

NLL result for p_{\perp}^{J}

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$$

[Monni, Re, LR, Torrielli '19]

 $d\mathcal{Z}\Theta\left(p_T^H - |\vec{k}_{t,1} + \cdots \vec{k}_{t,n+1}|\right)\Theta\left(p_T^J - \max\{k_{t,1}, \dots, k_{t,n+1}\}\right)$