Resummed predictions for the transverse momentum spectrum of EW bosons at the LHC

Luca Rottoli

Dipartimento di Fisica G. Occhialini, University of Milan-Bicocca

The quest for precision

Transverse observables are a clean experimental and theoretical environment for precision physics
Inclusive observables (e.g. transverse momentum p_{t}) probe directly the kinematics of the colour singlet

$$
V\left(k_{1}, \ldots k_{n}\right)=V\left(k_{1}+\ldots+k_{n}\right)
$$

- negligible or no sensitivity to multi-parton interactions
- reduced sensitivity to non-perturbative effects
- measured extremely precisely at experiments, challenging current theoretical predictions

Important implications for extraction of SM parameters (strong coupling and PDF determination, \boldsymbol{W} mass measurements...)

Precision physics at the LHC: theory

Key concept: collinear factorization

Long-distance, non-perturbative, universal objects

Precision physics at the LHC: theory

Key concept: collinear factorization

Precision physics at the LHC: theory

$$
\sigma\left(s, Q^{2}\right)=\sum_{a, b} \int d x_{1} d x_{2} f_{a / h_{1}}\left(x_{1}, Q^{2}\right) f_{b / h_{2}}\left(x_{2}, Q^{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(Q^{2}, x_{1} x_{2} s\right)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{p} / Q^{p}\right)
$$

Input
parameters:
strong coupling α_{s} PDFs f
few percent uncertainty; improvable

Non-perturbative effects
percent effect; not yet under control

Precision physics at the LHC: theory

$$
\begin{aligned}
& \sigma\left(s, Q^{2}\right)=\sum_{a, b} \int d x_{1} d x_{2} f_{a / h_{1}}\left(x_{1}, Q^{2}\right) f_{b / h_{2}}\left(x_{2}, Q^{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(Q^{2}, x_{1} x_{2} s\right)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{p} / Q^{p}\right) \\
& \tilde{\sigma}=1+\alpha_{s} \tilde{\sigma}_{1}+\alpha_{s}^{2} \tilde{\sigma}_{2}+\alpha_{s}^{3} \tilde{\sigma}_{3}+\ldots
\end{aligned} \alpha_{s} \sim 0.1 \quad \begin{array}{lll}
\\
\text { LO NLO NNLO NLO } & & \delta \sim 10-20 \% \\
\text { NLO } \\
\text { NO }
\end{array}
$$

NLO now standard and largely automated
NNLO available for an increasing number of processes
\mathbf{N}^{3} LO Higgs production in gluon fusion and VBF

QCD beyond fixed order

Perturbative QCD at fixed order

$$
\begin{gathered}
\tilde{\sigma}=1+\alpha_{s} \tilde{\sigma}_{1}+\alpha_{s}^{2} \tilde{\sigma}_{2}+\alpha_{s}^{3} \tilde{\sigma}_{3}+\ldots \\
\text { LO NLO NNLO } \quad \text { N}^{3} \text { LO }
\end{gathered}
$$

QCD beyond fixed order

Perturbative QCD at fixed order

$$
\begin{gathered}
\tilde{\sigma}=1+\alpha_{s} \tilde{\sigma}_{1}+\alpha_{s}^{2} \tilde{\sigma}_{2}+\alpha_{s}^{3} \tilde{\sigma}_{3}+\ldots \\
\text { LO NLO NNLO } \quad \text { N}^{3} \text { LO }
\end{gathered}
$$

Assumption: perturbative coefficients $\tilde{\sigma}_{n}$ are well behaved (renormalon ambiguity)
Many observables studied at the LHC depend on more than one scale; single or double logs of the ratio of those scales at all orders in perturbation theory

$$
\left(\alpha_{s} \ln R\right)^{n} \quad\left(\alpha_{s} \ln ^{2} R\right)^{n}
$$

If the logarithms are large the convergence of the series is spoiled

Assumption:

Fixed order predictions no longer reliable:
all order resummation of the perturbative series mandatory

Resum what?

Example: transverse momentum distribution in Higgs production

Resum what?

Example: transverse momentum distribution in Higgs production

Resum what?

Example: transverse momentum distribution in Higgs production

Resum what?

Example: transverse momentum distribution in Higgs production

Resum what?

Example: transverse momentum distribution in Higgs production

It's not a bug, it's a feature

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC safe observables

Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase space, restrictive cuts)

$$
\begin{aligned}
& \tilde{\sigma}_{1}(v) \sim \int \frac{d \theta}{\theta} \frac{d E}{E} \Theta(v-E \theta / Q)-\int \frac{d \theta}{\theta} \frac{d E}{E} \\
& \sim-\int \frac{d E}{E} \frac{d \theta}{\theta} \Theta(E \theta / Q-v) \sim-\frac{1}{2} \ln ^{2} v \quad \begin{array}{l}
\text { Sudakov } \\
\text { logarithms }
\end{array} \\
& v \rightarrow 0 \text { observable can } \\
& \text { become negative even in the } \\
& \text { perturbative regime }
\end{aligned}
$$

Double logarithms leftovers of the real-virtual cancellation of IRC divergences

Single logarithms appear also when exchanged gluon is soft (no collinear contribution). Highenergy resummation of $\alpha_{s} \ln \mathrm{~m}^{2} / \mathrm{s}$

Making pQCD great again: all-order resummation

Soft-collinear emission of two gluons

Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_{s}^{2} \ln ^{4} v$

All order structure

$$
\tilde{\sigma}(v)=\sum_{n=0}^{\infty} \alpha_{s}^{n} \sum_{m=1}^{2 n} c_{n m} L^{m}+\ldots \quad L=\ln (v)
$$

Origin of the logs is simple. Resum them to all orders by reorganizing the series

$$
\tilde{\sigma}(v)=f_{1}\left(\alpha_{s} L^{2}\right)+\frac{1}{L} f_{2}\left(\alpha_{s} L^{2}\right)+\ldots
$$

Leading logarithmic (LL) resummation of the perturbative series

Accurate for $L \sim 1 / \sqrt{\alpha_{s}}$

All-order resummation

$$
\tilde{\sigma}(v)=f_{1}\left(\alpha_{s} L^{2}\right)+\frac{1}{L} f_{2}\left(\alpha_{s} L^{2}\right)+\ldots
$$

All-order resummation: exponentiation

Independent emissions $k_{1}, \ldots k_{n}$ (plus corresponding virtual contributions) in the soft and collinear limit (eikonal approximation)

$$
d \Phi_{n}\left|\mathscr{M}\left(k_{1}, \ldots k_{n}\right)\right|^{2} \rightarrow \frac{1}{n!} \alpha_{s}^{n} \prod_{i=1}^{n} \frac{d E_{i}}{E_{i}} \frac{d \theta_{i}}{\theta_{i}}
$$

Calculate observable with arbitrary number of emissions: exponentiation
[Sudakov '54]

$$
\tilde{\sigma} \simeq \sum_{n=0}^{\infty} \frac{1}{n!} \alpha_{s}^{n} \prod_{i=1}^{n} \int \frac{d E_{i}}{E_{i}} \frac{d \theta_{i}}{\theta_{i}} \Theta\left(E_{i} \theta_{i} / Q-v\right) \simeq e^{-\alpha_{s} L^{2}}
$$

Sudakov suppression
Price for constraining real radiation

Exponentiated form allows for a more powerful reorganization

$$
\tilde{\sigma}(v)=\exp \left[\begin{array}{cc}
\sum_{n}\left(\mathcal{O}\left(\alpha_{s}^{n} L^{n+1}\right)+\mathcal{O}\left(\alpha_{s}^{n} L^{n}\right)+\mathcal{O}\left(\alpha_{s}^{n} L^{n-1}\right)+\ldots\right) \\
\mathbf{L L} & \mathbf{N L L} \\
\text { NNLL }
\end{array}\right]
$$

Region of applicability now valid up to $L \sim 1 / \alpha_{s,}$, successive terms suppressed by α_{s}
Exponentiation not always possible, e.g. Jade Jet Resolution [Brown, Stirling'90] or jet mass pruning (convolution of two exponentials) [Dasgupta, Marzani, Salam '13]

All-order resummation: (re)-factorization

Phase-space constraints do not usually factorize in direct space

$$
\tilde{\sigma}(v) \sim \int \prod_{i}^{n}\left[d k_{i}\right] \mathscr{M}\left(k_{1}, \ldots, k_{n}\right) \Theta_{\mathrm{PS}}\left(v-V\left(k_{1}, \ldots k_{n}\right)\right)
$$

Solution: move to conjugate space where phase space factorization is manifest

$$
\underset{\text { [Parisi, Petronzio '79; Collins, Soper, Sterman '85] }}{\text { e.g. } p_{t} \text { resummation }} \delta_{t}^{(2)}\left(\vec{p}_{t}-\sum_{\substack{i=1 \\ \text { two-dimensional momentum conservation }}}^{n} \vec{k}_{t, i}\right)=\int d^{2} b \frac{1}{4 \pi^{2}} e^{i \vec{b} \cdot \vec{p}_{t}} \prod_{i=1}^{n} e^{-i \vec{b} \cdot \vec{k}_{t, i}}
$$

Exponentiation in conjugate space; inverse transform to move back to direct space

Extremely successful approach

- Catani, Trentadue, Mangano, Marchesini, Webber, Nason, Dokshitzer...
- Collins, Soper, Sterman, Laenen, Magnea...
- Manohar, Bauer, Stewart, Becher, Neubert....
+ many others!

Emphasis on properties of QCD matrix elements and QCD radiation

> Factorization properties in the singular region and associated RGE (factorization \rightarrow evolution \rightarrow resummation)

All-order resummation: (re)-factorization

Phase-space constraints do not usually factorize in direct space

$$
\tilde{\sigma}(v) \sim \int \prod_{i}^{n}\left[d k_{i}\right] \mathscr{M}\left(k_{1}, \ldots, k_{n}\right) \Theta_{\mathrm{PS}}\left(v-V\left(k_{1}, \ldots k_{n}\right)\right)
$$

Solution: move to conjugate space where phase space factorization is manifest

$$
\underset{\text { [Parisi, Petronzio '79; Collins, Soper, Sterman'85] }}{\text { e.g. } p_{t} \text { resummation }} \delta_{t}^{(2)}\left(\vec{p}_{t}-\sum_{\substack{i=1 \\ \text { two-dimensional momentum conservation }}}^{n} \vec{k}_{t, i}\right)=\int d^{2} b \frac{1}{4 \pi^{2}} e^{i \vec{b} \cdot \vec{p}_{t}} \prod_{i=1}^{n} e^{-i \vec{b} \cdot \vec{k}_{t, i}}
$$

Exponentiation in conjugate space; inverse transform to move back to direct space
Extremely successful approach

Limitation: it is process-dependent, and must be performed manually and analytically for each observable (error prone)

All-order resummation: (re)-factorization

Is it possible to achieve

 resummation without the need to establish factorization properties on a case-by-case basis?Limitation: it is process-dependent, and must be performed manually and analytically for each observable

All-order resummation: (re)-factorization

Is it possible to achieve

 resummation without the need to establish factorization properties on a case-by-case basis?
Limitation: it is process-dependent, and must be performed manually and analytically for each observable Yes

CAESAR/ARES approach: towards automated resummation

Translate the resummability of the observable into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety [Banfi, Salam, Zanderighi $\left.{ }^{\circ} 01,{ }^{\circ} 03,{ }^{\circ} 04\right]$
a) in the presence of multiple soft and/or collinear emissions the observable has the same scaling properties as with just one of them
b) there exists a resolution scale q_{0}, independent of the observable, such that emissions below q_{0} do not contribute significantly to the observable's value.

$$
\begin{array}{rll}
\tilde{\sigma}(v) & \sim \int d\left[k_{1} \sqrt{e^{-R\left(q_{0} V\left(k_{1}\right)\right)}} \quad \begin{array}{l}
\text { Unresolved emission can be treated as totally uncorrelated } \\
\longrightarrow \text { exponentiation }
\end{array}\right. \\
& \times\left(\sum_{m=0}^{\infty} \frac{1}{m!} \int \prod_{i=2}^{m+1}\left[d k_{i}\right]\left|\mathscr{M}\left(k_{i}\right)\right|^{2} \Theta\left(V\left(k_{i}\right)-q_{0} V\left(k_{1}\right)\right) \Theta\left(v-V\left(k_{1}, \ldots, k_{m+1}\right)\right)\right. & \begin{array}{l}
\text { Resolved emission treated exclusively } \\
\text { with Monte Carlo methods }
\end{array}
\end{array}
$$

The curious case of the transverse momentum

Resummation of transverse momentum is particularly delicate because p_{t} is a vectorial quantity
Two concurring mechanisms leading to a system with small p_{t}

$$
p_{t}^{2} \sim k_{t, i}^{2} \ll M^{2}
$$

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression

Large kinematic cancellations
$p_{t} \sim 0$ far from the Sudakov limit

$$
\sum_{i=1}^{n} \vec{k}_{t, i} \simeq 0
$$

Power suppression

The curious case of the transverse momentum

Resummation of transverse momentum is particularly delicate because p_{t} is a vectorial quantity
Two concurring mechanisms leading to a system with small p_{t}

$$
\begin{aligned}
& p_{t}^{2} \sim k_{t, i}^{2} \ll M^{2} \\
& \text { cross section naturally } \\
& \text { suppressed as there is } \\
& \text { no phase space left for } \\
& \text { gluon emission } \\
& \text { (Sudakov limit) } \\
& \text { Exponential } \\
& \text { suppression }
\end{aligned}
$$

Dominant at small p_{t}

$$
\begin{aligned}
& \sum_{i=1}^{n} \vec{k}_{t, i} \simeq 0 \\
& \text { Large kinematic cancellations } \\
& p_{t} \sim 0 \text { far from the Sudakov limit }
\end{aligned}
$$

Resummation in direct space: the p_{t} case

Non-trivial problem: not possible to find a closed analytic expression in direct space which is both
a) free of logarithmically subleading corrections
b) free of singularities at finite p_{t} values [Frixione, Nason, Ridolfi '98]

A naive logarithmic counting at small p_{t} is not sensible, as one loses the correct power-suppressed scaling if only logarithms are retained

It is not possible to reproduce a power-like behaviour with logs of p_{t} / M

Can we apply the CAESAR method to transverse-momentum resummation?

Resummation in direct space: the p_{t} case

Non-trivial problem: not possible to find a closed analytic expression in direct space which is both
a) free of logarithmically subleading corrections
b) free of singularities at finite p_{t} values [Frixione, Nason, Ridolfi '98]

A naive logarithmic counting at small p_{t} is not sensible, as one loses the correct power-suppressed scaling if only logarithms are retained

It is not possible to reproduce a power-like behaviour with logs of p_{t} / M

Can we apply the CAESAR method to transverse-momentum resummation?

Yes!

All-order structure of the matrix element

$$
v=p_{t} / M
$$

single-particle phase space

Transverse observable resummation with RadISH

1. Establish a logarithmic counting for the squared matrix element $\left|\mathscr{M}\left(\Phi_{B}, k_{1}, \ldots k_{n}\right)\right|^{2}$

Transverse observable resummation with RadISH

1. Establish a logarithmic counting for the squared matrix element $\left|\mathscr{M}\left(\Phi_{B}, k_{1}, \ldots k_{n}\right)\right|^{2}$

Decompose the squared amplitude in terms of \boldsymbol{n}-particle correlated blocks, denoted by $\left|\tilde{M}\left(k_{1}, \ldots, k_{n}\right)\right|^{2}$ $\left(\left|\tilde{M}\left(k_{1}\right)\right|^{2}=\left|\mathscr{M}\left(k_{1}\right)\right|^{2}\right.$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|\mathscr{M}\left(\Phi_{B}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\mid \mathscr{M}_{B}\left(\left.\Phi_{B}\right|^{2}\right. \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|\cdot \mathcal{M L}\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a k} k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right. \\
& \left.+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{\mathscr{M}}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\bar{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\delta \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right)\right\} \equiv\left|\mathscr{M}_{B}\left(\Phi_{B}\right)\right|^{2} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n}\left|\cdot \mathscr{M}\left(k_{i}\right)\right|_{\text {inc }}^{2} \\
& \left|\tilde{M}\left(k_{1}\right)\right|^{2}=\frac{\left|M\left(k_{1}\right)\right|^{2}}{\left|M_{B}\right|^{2}}=\left|M\left(k_{1}\right)\right|^{2} \\
& \left|\tilde{M}\left(k_{1}, k_{2}\right)\right|^{2}=\frac{\left|M\left(k_{1}, k_{2}\right)\right|^{2}}{\left|M_{B}\right|^{2}}-\frac{1}{2!}\left|M\left(k_{1}\right)\right|^{2} M\left|\left(k_{2}\right)\right|^{2} \\
& \text { *expression valid for } \\
& \text { inclusive observables }
\end{aligned}
$$

Upon integration over the phase space, the expansion can be put in a one to one correspondence with the logarithmic structure

Systematic recipe to include terms up to the desired logarithmic accuracy

Transverse observable resummation with RadISH

2. Exploit rIRC safety to single out the IRC singularities of the real matrix element and achieve the cancellation of the exponentiated divergences of virtual origin

Resummation in direct space: the p_{t} case

2. Exploit rIRC safety to single out the IRC singularities of the real matrix element and achieve the cancellation of the exponentiated divergences of virtual origin

Introduce a slicing parameter $\epsilon \ll 1$ such that all inclusive blocks with $k_{t, i}<\epsilon k_{t, 1}$, with $k_{t, 1}$ hardest emission, can be neglected in the computation of the observable

$$
\begin{aligned}
& \Sigma(v)=\int d \Phi_{B}\left|\mathscr{M}_{B}\left(\Phi_{B}\right)\right|^{2} \mathscr{V}\left(\Phi_{B}\right) \quad \text { unresolved emissions } \\
& \left.\times \int\left[d k_{1}\right] \mid \mathscr{M}\left(k_{1}\right)\right)_{\text {inc }}^{2}\left(\sum_{l=0}^{\infty} \frac{1}{l!} \int \prod_{i=2}^{l+1}\left[d k_{j}\right]\left|\cdot \mathscr{M}\left(k_{j}\right)\right|_{\text {inc }}^{2} \Theta\left(\epsilon V\left(k_{1}\right)-V\left(k_{j}\right)\right)\right) \\
& \times\left(\sum_{m=0}^{\infty} \frac{1}{m!} \int \prod_{i=2}^{m+1}\left[d k_{i}\right]\left|\mathscr{M}\left(k_{i}\right)\right|_{\text {inc }}^{2} \Theta\left(V\left(k_{i}\right)-\epsilon V\left(k_{1}\right)\right) \Theta\left(v-V\left(\Phi_{B}, k_{1}, \ldots, k_{m+1}\right)\right)\right)
\end{aligned}
$$

resolved emissions
Unresolved emission doesn't contribute to the evaluation of the observable: it can be exponentiated directly and employed to cancel the virtual divergences, giving rise to a Sudakov radiator

$$
\mathscr{V}\left(\Phi_{B}\right) \exp \left\{\int[d k]|\mathscr{M}(k)|_{\text {inc }}^{2} \Theta\left(\epsilon V\left(k_{1}\right)-V(k)\right)\right\} \simeq e^{-R\left(\epsilon V\left(k_{1}\right)\right)}
$$

Resummation in direct space: the p_{t} case

Result at NLL accuracy can be written as

$$
\begin{array}{rlr}
\Sigma(v)= & \sigma^{(0)} \int \frac{d v_{1}}{v_{1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(\left(v_{1}\right)\right.} R^{\prime}\left(v_{1}\right) \quad v_{i}=V\left(k_{i}\right), \quad \zeta_{i}=v_{i} / v_{1} \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} v_{1}\right) \Theta\left(v-V\left(\Phi_{B}, k_{1}, \ldots, k_{n+1}\right)\right)
\end{array}
$$

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes exactly and result is finite in four dimensions

It contains subleading effect which in the original CAESAR approach are disposed of by expanding R and R^{\prime} around v

Not possible! valid only if the ratio v_{i} / v remains of order one in the whole emission phase space, but for observables which feature kinematic cancellations there are configurations with $v_{i} \gg v$. Subleading effects necessary

Resummation in direct space: the p_{t} case

Result at NLL accuracy can be written as

$$
\begin{array}{rlr}
\Sigma(v)= & \sigma^{(0)} \int \frac{d v_{1}}{v_{1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(\left(v_{1}\right)\right.} R^{\prime}\left(v_{1}\right) \quad v_{i}=V\left(k_{i}\right), \quad \zeta_{i}=v_{i} / v_{1} \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} v_{1}\right) \Theta\left(v-V\left(\Phi_{B}, k_{1}, \ldots, k_{n+1}\right)\right)
\end{array}
$$

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes exactly and result is finite in four dimensions

Convenient to perform an expansion around $k_{t 1}$ (more efficient and simpler implementation)

$$
\begin{aligned}
& R\left(\epsilon k_{t 1}\right)=R\left(k_{t 1}\right)+\frac{d R\left(k_{t 1}\right)}{d \ln \left(1 / k_{t 1}\right)} \ln \frac{1}{\epsilon}+\mathcal{O}\left(\ln ^{2} \frac{1}{\epsilon}\right) \\
& R^{\prime}\left(k_{t i}\right)=R^{\prime}\left(k_{t 1}\right)+\mathcal{O}\left(\ln \frac{k_{t 1}}{k_{t i}}\right)
\end{aligned}
$$

Subleading effects retained: no divergence at small v, power-like behaviour respected
Logarithmic accuracy defined in terms of $\ln \left(M / k_{t 1}\right)$
Result formally equivalent to the b-space formulation

Resummation at NLL accuracy

Final result at NLL

$$
\begin{aligned}
\frac{d \Sigma(v)}{d \Phi_{B}} & =\int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} \epsilon^{R^{\prime}\left(k_{t, 1}\right)} \mathscr{L}_{\mathrm{NLL}}\left(k_{t, 1}\right) R^{\prime}\left(k_{t, 1}\right) \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} k_{t, 1}\right) \Theta\left(v-V\left(\Phi_{B}, k_{1}, \ldots, k_{n+1}\right)\right)
\end{aligned}
$$

This formula can be evaluated by means of fast Monte Carlo methods RadISH (Radiation off Initial State Hadrons)

Parton luminosity at NLL reads

$$
\mathscr{L}_{\mathrm{NLL}}\left(k_{t, 1}\right)=\sum_{c} \frac{d\left|M_{B}\right|_{c \bar{c}}^{2}}{d \Phi_{B}} f_{c}\left(x_{1}, k_{t, 1}^{2}\right) f_{\bar{c}}\left(x_{2}, k_{t, 1}^{2}\right)
$$

At higher logarithmic accuracy, it includes coefficient functions and hard-virtual corrections

Result at \mathbf{N}^{3} LL accuracy

$$
\left.\begin{array}{l}
\frac{d \Sigma(v)}{d \Phi_{B}}=\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{N}^{3} \mathrm{LL}}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right) \\
+\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s}}{\zeta_{s}} \frac{d \phi_{s}}{2 \pi}\left\{\left(R^{\prime}\left(k_{t 1}\right) \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)\right)\right. \\
\times\left(R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}+\frac{1}{2} R^{\prime \prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\zeta_{s}}\right)-R^{\prime}\left(k_{t 1}\right)\left(\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-2 \frac{\beta_{0}}{\pi}{\left.\alpha_{s}^{2}\left(k_{t 1}\right) \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}\right)}_{\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\}\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}}^{+\frac{1}{2} \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s 1}}{\zeta_{s 1}} \frac{d \phi_{s 1}}{2 \pi} \int_{0}^{1} \frac{d \zeta_{s 2}}{\zeta_{s 2}} \frac{d \phi_{s 2}}{2 \pi} R^{\prime}\left(k_{t 1}\right)}\right. \\
\times\left\{\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\left(R^{\prime \prime}\left(k_{t 1}\right)\right)^{2} \ln \frac{1}{\zeta_{s 1}} \ln \frac{1}{\zeta_{s 2}}-\partial_{L} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) R^{\prime \prime}\left(k_{t 1}\right)\left(\ln \frac{1}{\zeta_{s 1}}+\ln \frac{1}{\zeta_{s 2}}\right)\right. \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\} \\
\times\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}, k_{s 2}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}\right)\right)-\right. \\
\left.\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 2}\right)\right)+\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}+\mathcal{O}\left(\alpha_{s}^{n} \ln 2 n-6\right. \\
v
\end{array}\right),
$$

[Bizon, Monni, Re, LR, Torrielli '17]
All ingredients to perform resummation at \mathbf{N}^{3} LL accuracy are now available
[Catani et al. '11, '12][Gehrmann et al. '14][Li, Zhu '16, Vladimirov '16][Moch et al. '18, Lee et al. '19]
Fixed-order predictions now available at NNLO

Matching to fixed order: multiplicative matching

Cumulative cross section should reduce to the fixed order at large v

$$
\begin{aligned}
\Sigma_{\text {matched }}^{\text {mult }}(v) \sim \Sigma_{\text {res }}(v)\left[\frac{\Sigma_{\text {f.o. }}(v)}{\Sigma_{\text {res }}(v)}\right]_{\text {expanded }} & \begin{array}{l}
\text { - allows to include constant terms from } \\
\\
\\
\text { NNLO (if N3LO total xs available) }
\end{array} \\
\Sigma_{\text {f.o }}(v)=\sigma_{\text {f.o. }}-\int_{v}^{\infty} \frac{d \sigma}{d v} d v & \begin{array}{l}
\text { physical suppression at small } v \text { cures }
\end{array}
\end{aligned}
$$

To ensure that resummation does not affect the hard region of the spectrum when the matching is performed we introduce modified logarithms

This corresponds to restrict the rapidity phase space at large k_{t}

Q : perturbative resummation scale

$$
\ln \left(Q / k_{t 1}\right) \rightarrow \frac{1}{p} \ln \left(1+\left(\frac{Q}{k_{t 1}}\right)^{p}\right)
$$

p : arbitrary matching parameter

Predictions for the Z spectrum at 8 TeV

- Good description of the data in all fiducial regions
- Perturbative uncertainty at the few percent level, still does not match the precision of the ATLAS data

Theoretical predictions for Z and W observables at 13 TeV

Results obtained using the following fiducial cuts (agreed with ATLAS)

$$
\begin{gathered}
p_{t}^{\ell^{ \pm}}>25 \mathrm{GeV}, \quad\left|\eta^{\ell^{ \pm}}\right|<2.5, \quad 66 \mathrm{GeV}<M_{\ell \ell}<116 \mathrm{GeV} \\
p_{t}^{\ell}>25 \mathrm{GeV}, \quad\left|\eta^{\ell}\right|<2.5, \quad E_{T}^{\nu_{\ell}}>25 \mathrm{GeV}, \quad m_{T}>50 \mathrm{GeV}
\end{gathered}
$$

using NNPDF3.1 with $\alpha_{s}\left(M_{z}\right)=0.118$ and setting the central scales to

$$
\mu_{R}=\mu_{F}=M_{T}=\sqrt{M_{\ell \ell^{\prime}}^{2}+p_{T}^{2}}, \quad Q=\frac{M_{\ell \ell^{\prime}}}{2}
$$

5 flavour (massless) scheme: no HQ effects, LHAPDF PDF thresholds

Scale uncertainties estimated by varying renormalization and factorization scale by a factor of two around their central value (7 point variation) and varying the resummation scale by a factor of 2 around its central value for factorization and renormalization scales set to their central value: $\mathbf{9}$ point envelope

Matching parameter p set to 4 as a default

No non perturbative parameters included in the following

Predictions for the Z spectrum

Predictions for the W^{+}and W^{-}spectra

Ratio of differential distributions

Z and W production share a similar pattern of QCD radiative corrections

Crucial to understand correlation between Z and W spectra to exploit data-driven predictions

$$
\frac{1}{\sigma^{W}} \frac{d \sigma^{W}}{p_{\perp}^{W}} \sim \frac{1}{\sigma_{\text {data }}^{Z}} \frac{d \sigma_{\text {data }}^{Z}}{p_{\perp}^{Z}} \frac{\frac{1}{\sigma_{\text {theory }}^{W}} \frac{d \sigma_{\text {theory }}^{W}}{p_{\perp}^{W}}}{\frac{1}{\sigma_{\text {theory }}^{Z}} \frac{d \sigma_{\text {theory }}^{Z}}{p_{\perp}^{Z}}}
$$

Several choices are possible:

- Correlate resummation and renormalisation scale variations, keep factorisation scale uncorrelated, while keeping

$$
\frac{1}{2} \leq \frac{\mu_{\mathrm{F}}^{\mathrm{num}}}{\mu_{\mathrm{F}}^{\text {den }}} \leq 2
$$

- More conservative estimate: vary both renormalisation and factorisation scales in an uncorrelated way with

$$
\frac{1}{2} \leq \frac{\mu^{\mathrm{num}}}{\mu^{\mathrm{den}}} \leq 2
$$

Results for $W^{-/} W^{+}$ratio

Results for Z / W^{+}ratio

Recapitulation

- Perturbation theory must be pushed to its limit to reduce the theory uncertainty to match the precision of the data.
- New formalism formulated in direct space for all-order resummation up to N3 $\mathbf{N L}$ accuracy for inclusive, transverse observables.
- Preliminary results at NNLO+N3LL for W and Z differential distributions with uncertainties at the few percent level. Some discrepancies with the Pythia8 AZ tune results to be understood. Monte Carlo tunes for subpercent precision must be handled with care.
- Preliminary results on the W^{+} / W^{-}ratios and Z / W ratios. Large correlations are observed between $W^{+}, \boldsymbol{W}^{-}$, and Z production in massless QCD

Backup

Parton luminosities

Consider configurations in which emissions are ordered in $k_{t, i,} k_{t, 1}$ hardest emission
Phase space for each secondary emission can be depicted in the Lund diagram

- DGLAP evolution can be performed inclusively up to $\epsilon k_{t, 1}$ thanks to rIRC safety
- In the overlapping region hard-collinear emissions modify the observable's value: the evolution should be performed exclusively (unintegrated in k_{t})
- At NLL the real radiation can be approximated with its soft limit: DGLAP can be performed inclusively up to $k_{t, 1}$ (i.e. one can evaluate $\mu_{\mathrm{F}}=k_{t, 1}$)

Beyond NLL

Extension to NNLL and beyond requires the systematic inclusion of the correlated blocks necessary to achieve the desired logarithmic accuracy

Moreover, one needs to relax a series of assumptions which give rise to subleading corrections neglected at NLL (for instance, exact rapidity bounds). These corrections can be included systematically by including additional terms in the expansion

$$
R\left(\epsilon v_{1}\right)=R\left(v_{1}\right)+\frac{d R\left(v_{1}\right)}{d \ln \left(1 / v_{1}\right)} \ln \frac{1}{\epsilon}+\mathcal{O}\left(\ln ^{2} \frac{1}{\epsilon}\right)
$$

Finally, one needs to specify a complete treatment for hard-collinear radiation. Starting at NNLL one or more real emissions can be hard and collinear to the emitting leg, and the available phase space for subsequent real emissions changes

Two classes of contributions:

- one soft by construction and which is analogous to the R^{\prime} contribution

$$
R^{\prime}\left(v_{i}\right)=R^{\prime}\left(v_{1}\right)+\mathcal{O}\left(\ln \frac{v_{1}}{v_{i}}\right)
$$

- another hard and collinear (exclusive DGLAP step): last step of DGLAP evolution must be performed unintegrated in k_{t}

Logarithmic counting

Necessary to establish a well defined logarithmic counting: possibile to do that by decomposing the squared amplitude in terms of n-particle correlated blocks (nPC)

$$
\text { e.g. pp } \rightarrow H+\text { emission of up to } 2 \text { (soft) gluons } O\left(\alpha_{s}{ }^{2}\right)
$$

Logarithmic counting defined in terms of nPC blocks (owing to rIRC safety of the observable)

Logarithmic counting: correlated blocks

15 this LL is absorbed in the resummation of $|\mathrm{M}(\mathrm{k})|^{2}$
Thanks to P. Monni

Equivalence with b-space formulation

$$
\frac{d \Sigma(v)}{d \Phi_{B}}=\int_{\mathscr{C}_{1}} \frac{d N_{1}}{2 \pi i} \int_{\mathscr{C}_{2}} \frac{d N_{2}}{2 \pi i} x_{1}^{-N_{1}} x_{2}^{-N_{2}} \sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}^{T}} \mathbf{f}_{N_{1}}^{T}\left(\mu_{0}\right) \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(\nu) \mathbf{f}_{N_{2}}\left(\mu_{0}\right)
$$

unresolved emission + virtual corrections

$$
\begin{array}{ll}
\text { ed } \\
\text { led virtual } \\
\text { ons } & \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(v)=\left[\mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}\left(\mu_{0}\right)\right) H\left(\mu_{R}\right) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(\mu_{0}\right)\right)\right] \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \\
& \sum^{-\mathbf{R}\left(k_{1}\right)} \exp \left\{-\sum_{t=1}^{2}\left(\int_{\epsilon k_{1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{t}}\left(\alpha_{s}\left(k_{t}\right)\right)+\int_{\epsilon k_{1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \boldsymbol{\Gamma}_{N_{t}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right)\right\}
\end{array}
$$

Result valid for all inclusive observables (e.g. $\left.p_{t,} \varphi^{*}\right)$

Formulation equivalent to \boldsymbol{b}-space result (up to a scheme change in the anomalous dimensions)

$$
\begin{aligned}
\frac{d^{2} \Sigma(v)}{d \Phi_{B} d p_{t}}= & \sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}} \int b d b p_{t} J_{0}\left(p_{t} b\right) \mathbf{f}^{T}\left(b_{0} / b\right) \mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}\left(b_{0} / b\right)\right) H(M) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(b_{0} / b\right)\right) \mathbf{f}\left(b_{0} / b\right) \\
& \times \exp \left\{-\sum_{\ell=1}^{2} \int_{0}^{M} \frac{d k_{t}}{k_{t}} \mathbf{R}_{\ell}^{\prime}\left(k_{t}\right)\left(1-J_{0}\left(b k_{t}\right)\right)\right\} \quad\left(1-J_{0}\left(b k_{t}\right)\right) \simeq \Theta\left(k_{t}-\frac{b_{0}}{b}\right)+\frac{\zeta_{3}}{12} \frac{\partial^{3}}{\partial \ln \left(M b / b_{0}\right)^{3}} \Theta\left(k_{t}-\frac{b_{0}}{b}\right)
\end{aligned}
$$

N^{3} LL effect: absorbed in the definition of H_{2}, B_{3}, A_{4} coefficients wrt to CSS
Dalitz seminar in Fundamental Physics, Oxford, 9 May 2019

The Landau pole and the small p_{T} limit

Running coupling $\alpha_{s}\left(k_{t 1^{2}}\right)$ and Sudakov radiator hit Landau pole at

$$
\alpha_{s}\left(\mu_{R}^{2}\right) \beta_{0} \ln Q / k_{t 1}=\frac{1}{2} \quad k_{t 1} \sim 0.01 \mathrm{GeV}, \quad \mu_{R}=Q=m_{Z}
$$

Only real cutoff in the calculation: emission probability is set to zero below this scale and parton densities are frozen.

At small p_{t} the large azimuthal cancellations dominate over the Sudakov suppression: the cutoff is never an issue in practice

$$
\frac{d^{2} \Sigma(v)}{d p_{t} d \Phi_{B}} \simeq 2 \sigma^{(0)}\left(\Phi_{B}\right) p_{t}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{M^{2}}\right)^{\frac{16}{25} \ln \frac{41}{16}}
$$

Behaviour at small p_{t}

Explicit evaluation shows that the Parisi-Petronzio perturbative scaling at small p_{t} is reproduced. At NLL, Drell-Yan pair production, $n_{f}=4$

As now higher logarithmic terms (up to $N^{3} L L$) are under control, the coefficient of this scaling can be systematically improved in perturbation theory (non-perturbative effects - of the same order - not considered)
N^{3} LL calculation allows one to have control over the terms of relative order $O\left(\alpha_{s}{ }^{2}\right)$. Scaling $L \sim 1 / \alpha_{s}$ valid in the deep infrared regime.

Numerical implementation

$$
\begin{aligned}
\frac{d \Sigma\left(p_{t}\right)}{d \Phi_{B}}= & \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R^{\prime}\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right) \times \\
& \times \underbrace{\epsilon^{R^{\prime}\left(k_{t 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(k_{t 1}\right)\right) \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t(n+1)}\right|\right)}_{\equiv \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t(n+1)}\right|\right)} .
\end{aligned}
$$

$-L=\ln \left(M / k_{t 1}\right)$; luminosity $\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)=\sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}} f_{c_{1}}\left(x_{1}, k_{t 1}\right) f_{c_{2}}\left(x_{2}, k_{t 1}\right)$.

- $\int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta$ finite as $\epsilon \rightarrow 0$:

$$
\begin{gathered}
\epsilon^{R^{\prime}\left(k_{t 1}\right)}=1-R^{\prime}\left(k_{t 1}\right) \ln (1 / \epsilon)+\ldots=1-\int_{\epsilon k_{t 1}}^{k_{t 1}} R^{\prime}\left(k_{t 1}\right)+\ldots, \\
\int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta=\left[1-\int_{\epsilon k_{t 1}}^{k_{t 1}} R^{\prime}\left(k_{t 1}\right)+\ldots\right]\left[\Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)+\int_{\epsilon k_{t 1}}^{k_{t 1}} R^{\prime}\left(k_{t 1}\right) \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\vec{k}_{t 2}\right|\right)+\ldots\right] \\
= \\
=\Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)+\underbrace{\int_{0}^{k_{t 1}}}_{\epsilon \rightarrow 0} R^{\prime}\left(k_{t 1}\right) \underbrace{\left[\Theta\left(p_{t}-\left|\vec{k}_{t 1}+\vec{k}_{t 2}\right|\right)-\Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)\right]}_{\text {finite: real-virtual cancellation }}+\ldots
\end{gathered}
$$

- Evaluated with Monte Carlo techniques: $\int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right]$ is generated as a parton shower over secondary emissions.

Numerical implementation

- Secondary radiation:

$$
\begin{aligned}
d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right)\right) \epsilon^{R^{\prime}\left(k_{t 1}\right)} \\
& =\sum_{n=0}^{\infty}\left(\prod_{i=2}^{n+1} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t(i-1)}} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right)\right) \epsilon^{R^{\prime}\left(k_{t 1}\right)} \\
\epsilon^{R^{\prime}\left(k_{t 1}\right)} & =e^{-R^{\prime}\left(k_{t 1}\right) \ln 1 / \epsilon}=\prod_{i=2}^{n+2} e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}},
\end{aligned}
$$

with $k_{t(n+2)}=\epsilon k_{t 1}$.

- Each secondary emissions has differential probability

$$
d w_{i}=\frac{d \phi_{i}}{2 \pi} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right) e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}=\frac{d \phi_{i}}{2 \pi} d\left(e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}\right) .
$$

- $k_{t(i-1)} \geq k_{t i}$. Scale $k_{t i}$ extracted by solving $e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}=r$, with r random number extracted uniformly in $[0,1]$. Shower ordered in $k_{t i}$.
- Extract ϕ_{i} randomly in $[0,2 \pi]$.

