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The quest for precision

Transverse observables are a clean experimental and theoretical environment for precision physics

Inclusive observables (e.g. transverse momentum p;) probe directly the kinematics of the colour singlet

Viky, ...k ) = Vk; + ... + k)
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Precision physics at the LHC: theory

Key concept: collinear factorization \/E centre-of-mass energy
X () energy scale of the process

Clb—>X(Q2’ xleS) + @(AgCD/Qp)
Parton Distribution Functions (PDFs)

Long-distance, non-perturbative, universal objects
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Precision physics at the LHC: theory

Key concept: collinear factorization \/E centre-of-mass energy
X () energy scale of the process

o(s, 0% = ). deldxz IARCONOSTRENOR 6, (O, x1x,5) A OO

a,b
Hard-scattering matrix element

Short-distance, perturbative, process-dependent
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Precision physics at the LHC: theory

Input
parameters:

strong coupling

PDFs

o(s, Qz) — Z [dxldxz fa/hl(xp Qz)fb/hz(xza Q2)8ab—>X(Q29 X1X,S) -

f

a,b

few percent
uncertainty;
improvable
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Precision physics at the LHC: theory

o(s, Q%) = 2 [dxldxz S X1 O Vo (%2, Q96 4 x(Q%, X1%55) + O(ND ! Q)
a,b | v

6=1+as, +a’6,+ad,+ ... o ~ 0.1 5~10-20%  NLO
O~1-5% NNLO (or even N3LO)
LO NLO NNLO N3O

NLO now standard and largely automated
NNLO available for an increasing number of processes

N3LO Higgs production in gluon fusion and VBF (hadron-collider processes)
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QCD beyond fixed order

Perturbative QCD at fixed order

6=1+a6, +a’6,+ a6+ ...
LO NLO NNLO N3LO
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QCD beyond fixed order

Perturbative QCD at fixed order

6=1+a6, +a’6,+ a6+ ...
LO NLO NNLO N3LO

Assumption: perturbative coefficients 6, are well behaved (renormalon ambiguity)

Many observables studied at the LHC depend on more than one scale; single or double logs of the ratio of those
scales at all orders in perturbation theory

(a, In R)" (@ In? R)"

If the logarithms are large the convergence of the series is spoiled

Dalitz seminar in Fundamental Physics, Oxford, 9 May 2019



Fixed order predictions no longer reliable:

all order resummation of the perturbative series mandatory

Dalitz seminar in Fundamental Physics, Oxford, 9 May 2019



Resum what?
Example: transverse momentum distribution in Higgs production

d> |
; - o
dp, x

V 1
¢ 11 1]
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Resum what?

Example: transverse momentum distribution in Higgs production

dx T
dp, ! - Small p; region p, < my,

Transverse momentum logs

. | L =1In(p,/m,)

N
WY
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Resum what?

Example: transverse momentum distribution in Higgs production

Intermediate p, m, Sp, Sm,

4 Bottom logs
I
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Resum what?
Example: transverse momentum distribution in Higgs production

adx
dp,

A

Large p; p, 2 m,

L =1In(1 = (py + mp)*/3)

Treshold logs
&
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Resum what?

Example: transverse momentum distribution in Higgs production

dx
R - o
dp, o I
1
Large s s> m,%
x
High-energy logs
T 5 gy 10§

L =1n m,%/s

1
I I 1 1]
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It’s not a bug, it’s a feature

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC
safe observables

Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase
space, restrictive cuts)

5 (1) J'dé’ dE®( £0/0) J’d@ dE
G,(v) ~ v — —
1 0 E 0 E
) 99% v — 0 observable can
pecome negative even in the
perturbative regime
" dE do 1
~ - OEOIQ —v) ~ —— 12y Sudakov
] E 6 2 logarithms

Double logarithms leftovers of the real-virtual cancellation of IRC divergences

Single logarithms appear also when exchanged gluon is soft (no collinear contribution). High-
energy resummation of a Inm?/s
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Making pQCD great again: all-order resummation

Soft-collinear emission of two gluons

Two propagators nearly on shell, 4 divergences. Diagrams can potentially give aZIn*v

All order structure
o0 2n
o(v) = Z a; Z c,.L" + ... L = In(v)
n=0 m=1

Origin of the logs is simple. Resum them to all orders by reorganizing the series

o(v) + % fz(aSLz) + ...

Leading logarithmic (LL) resummation of the perturbative series

Accurate for L ~ 1/, fay
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All-order resummation

1
5(v) = fi(a,L?) + - HlaL?) + ...

“It's the sum that makes the total’*

\ )
r ) .

v

*E la somma che fa il totale
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All-order resummation: exponentiation

Independent emissions ki, ...k, (plus corresponding virtual contributions) in the soft and collinear limit (eikonal
approximation)

dE; db
do, | Mk, ...k) >n' H

Calculate observable with arbitrary number of emissions: exponentiation
[Sudakov "54]

dE; d9 > Sudakov suppression
~ _ ~ —a L
i 2 T HJ (EOIQ = v) = ¢ Price for constraining
real radiation

Exponentiated form allows for a more powerful reorganization

5(v) = exp [Z (O@@L") + O(a’L™) + O(a?’L™™ ") + ...)
. LL NLL NNLL

Region of applicability now valid up to L ~ 1/a,, successive terms suppressed by o
Exponentiation not always possible, e.g. Jade Jet Resolution Brown, stirling 901 Or jet mass pruning (convolution of two
exp()nentials) [Dasgupta, Marzani, Salam ’13]

I Dalitz seminar in Fundamental Physics, Oxford, 9 May 2019



All-order resummation: (re)-factorization

Phase-space constraints do not usually factorize in direct space

(V) ~ JH [dk) M (ky, ...,k )Ops(v — V(ky, ...k))

Solution: move to conjugate space where phase space factorization is manifest

n

—

e.g. P, resummation 5 pt—z k. =Jd2b—elb°pt e~lb ke

A7

[Parisi, Petronzio ’79; Collins, Soper, Sterman ’85] ] i—1

two-dimensional momentum conservation

Exponentiation in conjugate space; inverse transform to move back to direct space

Extremely successful approach

-
- Nason, Dokshitzer...
o
o
Z
=
L
L]
@
N

o SCET vs. dQCD not an issue

* Catani, Trentadue, Mangano, Marchesini, Webber,

Emphasis on properties of QCD
matrix elements and QCD radiation

e Collins, Soper, Sterman, Laenen, Magnea...

Factorization properties in the singular
region and associated RGE

* Manohar, Bauer, Stewart, Becher, Neubert.... (factorization — evolution —resummation)

+ many others!

[Sterman et al. "13, ’14][Bonvini, Forte, Ghezzi, Ridolfi, LR ’12, "13, ’14][Becher, Neubert et al. ’08, '11, 14]
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All-order resummation: (re)-factorization

Phase-space constraints do not usually factorize in direct space

(V) ~ JH [dk) M Ky, ..., k) Ops(v — Vky, .. .K,))

Solution: move to conjugate space where phase space factorization is manifest

—

< 1 L e
. —_ - .—> - . .
e.g.pt resummation 5(2) P E k i — szb—zelb P e ib kl‘,z
[Parisi, Petronzio ’79; Collins, Soper, Sterman ’85] i—1 4r 1

two-dimensional momentum conservation

Exponentiation in conjugate space; inverse transform to move back to direct space

Extremely successful approach

Limitation: it is process-dependent, and must be performed manually and analytically for each observable

(error prone)
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All-order resummation: (re)-factorization

Is it possible to achieve
resummation without the

need to establish factorization

properties on a case-by-case
basis?

10 Dalitz seminar in Fundamental Physics, Oxford, 9 May 2019



All-order resummation: (re)-factorization

Is it possible to achieve
resummation without the

need to establish factorization

properties on a case-by-case
basis?

Yes
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CAESAR/ARES approach: towards automated resummation

Translate the resummability of the observable into properties of the observable in the presence of multiple radiation:
recursive infrared and collinear (rIRC) safety [Banfi, salam, Zanderighi ‘01, ‘03, '04]

a) in the presence of multiple soft and/or collinear emissions the observable has the same scaling properties as with
just one of them

b) there exists a resolution scale go, independent of the observable, such that emissions below go do not contribute
significantly to the observable’s value.

5(v) Jd[k ¢ ~R(qpV(k)) Unresolved emission can be treated as totally uncorrelated
1 —> exponentiation

o | J"m > Resolved emission treated exclusivel
— | T tak1| k) > ©V(k) — gV )O (v = Vikys ..o k) . Y
mzzo m! g i ( ! i with Monte Carlo methods

Method entirely formulated in direct space
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The curious case Of the transverse momentum

Resummation of transverse momentum is particularly delicate because p; is a vectorial quantity

Two concurring mechanisms leading to a system with small p;

N

n
cross section naturally 2 .. ~0
v~

suppressed as there is
no phase space left for

=1

gluon emission Large kinematic cancellations

(Sudakov limit) p: ~0 far from the Sudakov limit
Exponential :
suppression Power suppression
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12

The curious case Of the transverse momentum

Resummation of transverse momentum is particularly delicate because p; is a vectorial quantity

Two concurring mechanisms leading to a system with small p;

Dominant at small p;

[Parisi, Petronzio '78]

pi ~ k7 << M?

cross section naturally
suppressed as there is
no phase space left for

gluon emission Large kinematic cancellations

(Sudakov limit) p: ~0 far from the Sudakov limit
Exponential :
suppression Power suppression
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Resummation in direct space: the p; case

Non-trivial problem: not possible to find a closed analytic expression in direct space which is both
a) free of logarithmically subleading corrections

b) free of singularities at finite p; values [Frixione, Nason, Ridolfi 98]

A naive logarithmic counting at small p; is not sensible, as one loses the correct power-suppressed scaling if only
logarithms are retained

It is not possible to reproduce a power-like behaviour with logs of pi/M

Can we apply the CAESAR method to transverse-momentum resummation?
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Resummation in direct space: the p; case

Non-trivial problem: not possible to find a closed analytic expression in direct space which is both
a) free of logarithmically subleading corrections

b) free of singularities at finite p; values [Frixione, Nason, Ridolfi 98]

A naive logarithmic counting at small p; is not sensible, as one loses the correct power-suppressed scaling if only
logarithms are retained

It is not possible to reproduce a power-like behaviour with logs of pi/M

Can we apply the CAESAR method to transverse-momentum resummation?

Yes , [Monni, Re, Torrielli ’16]
O [Bizon, Monni, Re, LR, Torrielli 717]
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All-order structure of the matrix element

v =p,/M

single-particle phase space

matrix element for n real emissions

/

£(v) = Jdcb %(@B@Jr[[dk]\/%(cbg, ki oo k) PO — V(@) Ky, . k)

4 n=0 ° =1
2
\?\I\/\N + ;@\W\/ n
all-order form factor /
(virtuals) 2
e.g. [Dixon, Magnea, Sterman ’08] /
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Transverse observable resummation with RadISH

1. Establish a logarithmic counting for the squared matrix element [.Z(®p.k;, ..
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Transverse observable resummation with RadISH

1. Establish a logarithmic counting for the squared matrix element | #(®p, k. ...k,)|*

Decompose the squared amplitude in terms of n-particle correlated blocks, denoted by | .Z(k,, ....k,) |’
(1 (ky) | = | M k) )

Y N M@y k. ... k) P = | M (@ .
=0 *expression valid for

o 1 n LL : ~N|-|- : N inclusive observables
X ), — H(I/%( + | [dk,|[dky) | M) |76 (K o + K gy = K )5V = 1))

n.
n=0 =1

~NN|_|_ . _ o LT 2
+J[dka][dkb][dkc]|/%(ka, ko k) 26O(RSE Ky + k. — T -5(Yabc—Yi>+...> = | M y(Dp)| %ﬁglﬂ(ki)linc

;

Upon integration over the phase space, the expansion can be put in a one to one correspondence with the
logarithmic structure

| M(k)) |
Mpl®
| M(k,, k)|

| My |

| M(ky) | = = | M(k)) |

| M(ky, ky) |* =

1
—;|M<k1>|2M|<k2>|2

R ~ 2

Systematic recipe to include terms up to the desired logarithmic accuracy
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Transverse observable resummation with RadISH

2. Exploit rIRC safety to single out the IRC singularities of the real matrix element and achieve the cancellation of
the exponentiated divergences of virtual origin
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Resummation in direct space: the p; case

2. Exploit rIRC safety to single out the IRC singularities of the real matrix element and achieve the cancellation of
the exponentiated divergences of virtual origin

Introduce a slicing parameter € « 1 such that all inclusive blocks with k;;< €k 1, with k;; hardest emission, can be
neglected in the computation of the observable

2 S
dOp | M z(Dp) |7 (Dp) unresolved emissions

© 1 [+1
|k awo | ¥ | [Tkt 1 ocevie) - vik)

1 m-+
—,[H [dk;] | A (k) |2 OV(k) — eV(k)O (v — V(D kys ... by )

m!
=2

resolved emissions

Unresolved emission doesn’t contribute to the evaluation of the observable: it can be exponentiated directly and
employed to cancel the virtual divergences, giving rise to a Sudakov radiator

7 (®p)exp { [[dk] | K| O€eVik;) - V(k))} ~ ¢~ REV)
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Resummation in direct space: the p; case

Result at NLL accuracy can be written as

dv, (" d
2(v) = G(O)J'lJ ﬂe_R(GVI)R’ (vl) v.=V(k), ¢ =vl/v
V1 0 27

o) 1n+1 ld- 2ﬂd-
XZ_HJ ﬁj ﬁR'(Qvl) O (v—V(Dpykysoeos k)

| :
n=0n°i=2 € Z‘:l 0 2

Formula can be evaluated with Monte Carlo method; dependence on € vanishes exactly and result is finite in four
dimensions

It contains subleading effect which in the original CAESAR approach are disposed of by expanding R and R” around v

dR ~
R(ev)) = R ) 1D | 0 <ln2L>

Nl ™ ev €V

R’ (Vi) =R ofmZ )™

Vi

Not possible! valid only if the ratio vi/v remains of order one in the whole emission phase space, but for observables
which feature kinematic cancellations there are configurations with vi> v. Subleading effects necessary
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Resummation in direct space: the p; case

Result at NLL accuracy can be written as

dv, (**d
2(v) = G(O)J'lJ ﬂe_R(GVI)R’ (vl) v, =V(k), ¢ =vlv
V1 0 272'

o0 1n+1 ld- 2ﬂd-
xZ—HJ ﬁj ﬁR’(Qvl) O (v—V(®pky, ... k)

| .
—nle e g, 0 27T

Formula can be evaluated with Monte Carlo method; dependence on € vanishes exactly and result is finite in four
dimensions

Convenient to perform an expansion around k¢; (more efficient and simpler implementation)

dR(ky) 1 , 1
R(ek,)) = R(k,;) + In O | In“—
din(l/k,) € €

k
R’ (k;) = R'(k;) + O (m ki>

7]

Subleading effects retained: no divergence at small v, power-like behaviour respected
Logarithmic accuracy defined in terms of In(M/k,)
Result formally equivalent to the b-space formulation
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Resummation at NLL accuracy

Final result at NLL

21
0 _ (b s o
dDp k1

00 n+1 d 27td
Z HJ _CJ z_iR (‘:ktl) (V_V((DB»kla---aan))

=’12€lO

kDL (kDR (k
) 271_ NLL( t,l) (t,l)

This formula can be evaluated by means of fast Monte Carlo methods RadISH (Radiation off Initial State Hadrons)

Parton luminosity at NLL reads

dlMB |35
dD, fC<X1, kgl)]%(xz’ kf1>

At higher logarithmic accuracy, it includes coefficient functions and hard-virtual corrections

Z NLL(kt,l) — Z

C
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Result at N3LL accuracy

d> dks1 d _ / ~
) - [Ty (—e ) L (b)) [ AZIR RO (0= V(LR )

1
+ / %%Q—R(ktl) /dZ[{R/,ki}]/ des dos { (R/(ktl)ﬁNNLL(kﬂ) — aLENNLL(kt1>)
0

k’tl 2T Cs 2T
1 1 | — 2 1 / Bo 2 »(0) 1
X R (ktl) In QT + iR (l{itl) In QT — R (ktl) 8LL’NNLL(kt1) - Q?as (k‘tl)P X /:'NLL(ktl) In Z
a; (k1) 5(0) o P(0) ~ -
+TP ® P ®£’NLL(kt1) @(v_V({p}aklw"?kn—l—laks)) _@(v_v({p}7kla°"7kn—|—l))
1 [ dkn dé1 g / : /1 (1 dos /1 dCsa dosa
= | SLEPL R [ GZU{R K
—|_ 2 / ktl 27T ¢ [{R ’ }] 0 Csl 27T 0 CSQ 27T R (ktl)
1 1 1 1
X ,CNLL(kﬂ) (R//(ktl))Q In In — GLCNLL(ktl)R”(kﬂ) (ln — 4 In —)
Csl CSQ Csl Cs2
a? (k) - A
T S(TH)P(O) ® P(O) ® ENLL(ktl)}
X {9 (v =V{Ph k1, knr, k1, ks2)) — O (v = VH{DY K1y oo kg, bs1)) —
. ) e ]
@(U_V({p}vklv"'akn-l—l?kSZ))+@(U_V({p}7k17°"7kn+1)) } + 0 (as 1Il2 65) ) (318)

[Bizon, Monni, Re, LR, Torrielli ’17]

All ingredients to perform resummation at N3LL accuracy are now available
[Catani et al. "11, ’12][Gehrmann et al. ’14][Li, Zhu ’16, Vladimirov ’'16][Moch et al. ’18, Lee et al. ‘19]

Fixed-order predictions now available at NNLO

[A. Gehrmann-De Ridder et al. '15, 16, '17][Boughezal et al. ’15, 16]
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Matching to fixed order: multiplicative matching

Cumulative cross section should reduce to the fixed order at large v

Zmult (V) - Zres(v) Zf.O.(V)

matched Zires(V) e allows to include constant terms from
expanded NNLO (if N3LO total xs available)
. * physical suppression at small v cures
do potential instabilities
2 V)=o0,, — | —dv
f.o f.O. dV

v

To ensure that resummation does not affect the hard region of the spectrum when the matching is performed we
introduce modified logarithms

his corresponds to restrict the rapidity phase space at large k;

Q : perturbative resummation scale
0 used to probe the size of subleading

P
1
In(Q/k;y) — ;ln [1 + (—> ] logarithmic corrections

ki
p : arbitrary matching parameter
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Predictions for the Z spectrum at 8 TeV

21
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® Good description of the data in all fiducial regions

* Perturbative uncertainty at the few percent level, still
does not match the precision of the ATLAS data
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Theoretical predictions for Z and W observables at 13 TeV

Bizon, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Monni, Re, LR, Walker, 190x.xxxx

Results obtained using the following fiducial cuts (agreed with ATLAS)
pl”>25GeV, |n° | <25, 66GeV <M, <116GeV

p >25GeV, |n"| <25, FE>25GeV, my>50GeV

using NNPDF3.1 with as(M7z)=0.118 and setting the central scales to

M,
2

/’tR:/’tF:MT: Mgf’ pzz,, 0 =

5 flavour (massless) scheme: no HQ effects, LHAPDF PDF thresholds

Scale uncertainties estimated by varying renormalization and factorization scale by a factor of two around their
central value (7 point variation) and varying the resummation scale by a factor of 2 around its central value for
factorization and renormalization scales set to their central value: 9 point envelope

Matching parameter p set to 4 as a default

No non perturbative parameters included in the following
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Predictions for the Z spectrum

23
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Thanks toKretzschde for providing the
PYTHIA8 AZ tune results
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Predictions for the W* and W spectra
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Ratio of differential distributions

Z and W production share a similar pattern of QCD radiative corrections

Crucial to understand correlation between Z and W spectra to exploit data-driven predictions

1 dgt‘l/‘lleory
|14 /Z
1 dG 1 dadata Gt‘l)‘l/eory p J‘iv

O W pJ‘iV O 4 pJZ_ 1 dat%leory

data
Z Z
Gtheory PT

Several choices are possible:

* Correlate resummation and renormalisation scale variations, keep factorisation scale uncorrelated, while
keeping

* More conservative estimate: vary both renormalisation and factorisation scales in an uncorrelated way with
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Results for W-/W-+ ratio
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Results for Z/ W+ ratio
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Recapitulation

23

® Perturbation theory must be pushed to its limit to reduce the theory uncertainty to match the precision of the
data.

* New formalism formulated in direct space for all-order resummation up to N3LL accuracy for inclusive,
transverse observables.

® Preliminary results at NNLO+N3LL for W and Z differential distributions with uncertainties at the few percent
level. Some discrepancies with the Pythia8 AZ tune results to be understood. Monte Carlo tunes for sub-
percent precision must be handled with care.

® Preliminary results on the W+/W- ratios and Z/W ratios. Large correlations are observed between W*, W-, and
Z production in massless QCD
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Parton luminosities

Consider configurations in which emissions are ordered in k;, k;; hardest emission

Phase space for each secondary emission can be depicted in the Lund diagram

In(k,/M)

n

DGLAP evolution governs rapidity in the centre-of-mass
the radiation in the strictly frame of the incoming partons
collinear limit L Sudakovsyppression.
In(k, /M)
.......................................... :‘.\‘\ln (e kt, : IM)

0y
Y
0
0y
0y
0y
.
0y
0y
0y

remaining unresolved real emissions are
resolved emissions live combined with the virtual corrections to
in this strip give rise to Sudakov suppression

* DGLAP evolution can be performed inclusively up to €k;; thanks to rIRC safety

* In the overlapping region hard-collinear emissions modify the observable's value: the evolution should be
performed exclusively (unintegrated in k)

* At NLL the real radiation can be approximated with its soft [imit: DGLAP can be performed inclusively up to ki 1
(i.e. one can evaluate ur=k 1)
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Beyond NLL

Extension to NNLL and beyond requires the systematic inclusion of the correlated blocks necessary to
achieve the desired logarithmic accuracy

Moreover, one needs to relax a series of assumptions which give rise to subleading corrections
neglected at NLL (for instance, exact rapidity bounds). These corrections can be included
systematically by including additional terms in the expansion

dR(Vl) 1 0 1
R(ev;)) = R(vy) + In—+ 0O [ In- —
din(l/vy) € €

Finally, one needs to specify a complete treatment for hard-collinear radiation. Starting at NNLL one
or more real emissions can be hard and collinear to the emitting leg, and the available phase space
for subsequent real emissions changes

Two classes of contributions:

® one soft by construction and which is analogous to the R" contribution

R (v;) = R(v) + O (m ﬁ)

Vi

* another hard and collinear (exclusive DGLAP step): last step of DGLAP evolution must be
performed unintegrated in k;
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Logarithmic counting

Necessary to establish a well defined logarithmic counting: possibile to do that by decomposing the
squared amplitude in terms of n-particle correlated blocks (nPC)

e.g. pp = H + emission of up to 2 (soft) gluons O(as2)

, only gluons for simplicity
outgoing partons

1 D Y =

Analogue structure with n
gluon emissions

1P 1PC0 )PCO

LL NLL LL NLL

Logarithmic counting defined in terms of nPC blocks (owing to rIRC safety of the observable)
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Logarithmic counting: correlated blocks

~ _|M(ﬁ17ﬁ27ka)|2 _
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15 this LL is absorbed in the resummation of |M(k)|?

Thanks to P. Monni
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Equivalence with b-space formulation
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* resolve = axl 2 a (k) :
Pt @) emission E Z = H[ 2 [ Z <R;i (k) + ﬂf Ly, (ay(k;)) +I’§V?(as(kﬁ))> :
= n=0" " i=2°7€ T =1 | -

Formulation equivalent to b-space result (up to a scheme change in the anomalous dimensions)

2 d| M- .
aLV) _ - Jb db pJo(pb) 17 (by/b)C (@ (by/ b)Y H(M)C5: (ax,(by/ b)f(by /)
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N3LL effect: absorbed in the definition
of Hs, B3, A4 coefficients wrt to CSS
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The Landau pole and the small p7 limit

Running coupling as(k:;2) and Sudakov radiator hit Landau pole at

1
as(ﬂl%)ﬁo InQ/k, = > ki ~0.01GeV, up=0=m,

Only real cutoft in the calculation: emission probability is set to zero below this scale and parton densities are frozen.

16
N I At small p; the large azimuthal cancellations dominate over the
Sudakov suppression: the cutoff is never an issue in practice
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Thanks to P. Monni
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Behaviour at small p,

Fxplicit evaluation shows that the Parisi-Petronzio perturbative scaling at small p; is reproduced. At NLL, Drell-Yan pair
broduction, n=4

41

16 1
d*E(v) Modky Abep N2
dptd(I)B AQCD kﬂ M

As now higher logarithmic terms (up to N3LL) are under control, the coefficient of this scaling can be systematically
improved in perturbation theory (non-perturbative effects — of the same order — not considered)

NSLL calculation allows one to have control over the terms of relative order O(as2). Scaling L ~ 1/« valid in the deep
infrared regime.
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Numerical implementation

M 27
dX(pt) / dk¢1 / dér 5 (_e_R/(km ENLL(kﬂ)) y
d® p 0 ki1 Jo 27
O n+1 k 9
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= [dZ[{R,k;}|O(pt—|ke1+.. +ki(ni1)))

. dMgplZ,
> L = ln(M/ktl); luminosity LNLL(ktl) — ch,CQ deDBl 2 fcl (3317 ktl)fCQ ($27 ktl)-

» [dZ[{R,k;}]O finite as ¢ — O:

/ L ktl
el (kt1) — 1 — R'(ky1)In(1/e) +... = 1 — R (ke1) + ...,
ekt
, ki1 / . ki1 , . .
/dZ[{R ki = [1 — R (k1) + ] [@(pt — |k¢1]) + R (kt1)©(pt — |kt1 + ke2|) + ]
ek¢q ekl
— ktl / — — —
=  O(pt — |ke1|) + R (k1) [@(pt — |kt1 + ki2|) — O(pe — |kt1|)} +...
0
\\/_/ —/—/
e—0 finite: real-virtual cancellation

» Evaluated with Monte Carlo techniques: [ dZ[{R’, k;}] is generated as a parton shower
over secondary emissions.

Thanks to P. Torielli
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Numerical implementation

» Secondary radiation:

oo n—+41 27Td 1 gk /
ZUR kY] = H/ Ao / Rl () | € (o1
n= O ki1 ktz
oo n+1 2 Ky
_ ( / d@ (1) dy; R/(ktl)) R (k)
ekl
n—+2
R(kt1)  _  —R'(kp)Inl/e _ HB—R’(ktl)lnktu_l)/kti’
=2

with kt(n—l—Z) — ek¢1.

» Each secondary emissions has differential probability

dwi - d¢’& dkt’& R/(ktl) R,(ktl)ln kt(i—l)/kti L %d (e—R’(ktl)ln kt(i—l)/kti> .
21 kg 27

> ki;—1) = ki Scale ky; extracted by solving e_R (Ben) Inkyi—1)/Fei — r, with r random
number extracted uniformly in [0, 1]. Shower ordered in ky;.

» Extract ¢; randomly in [0, 27].

Thanks to P. Torielli
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