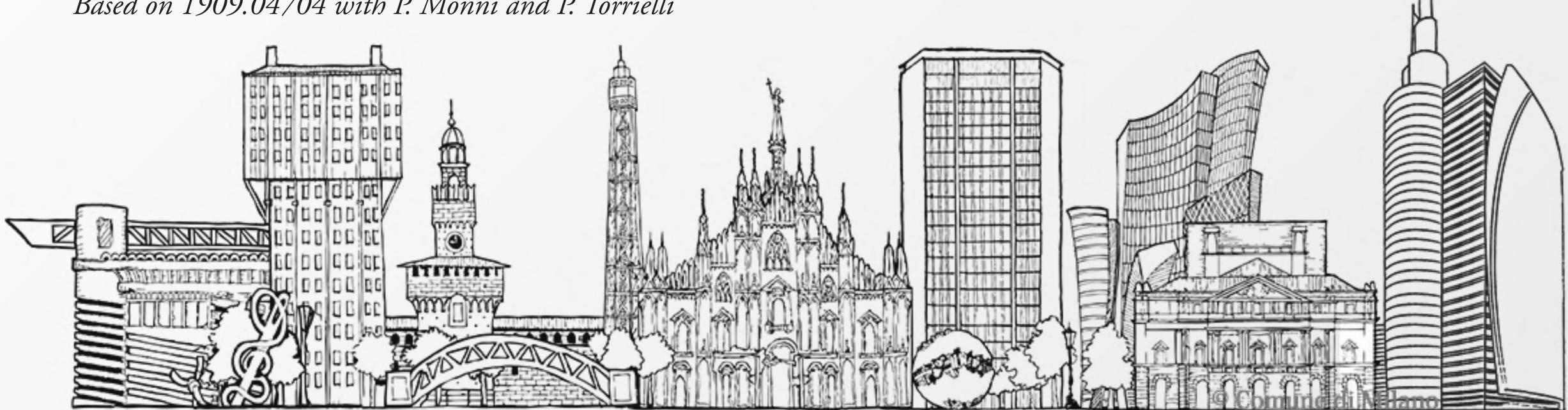
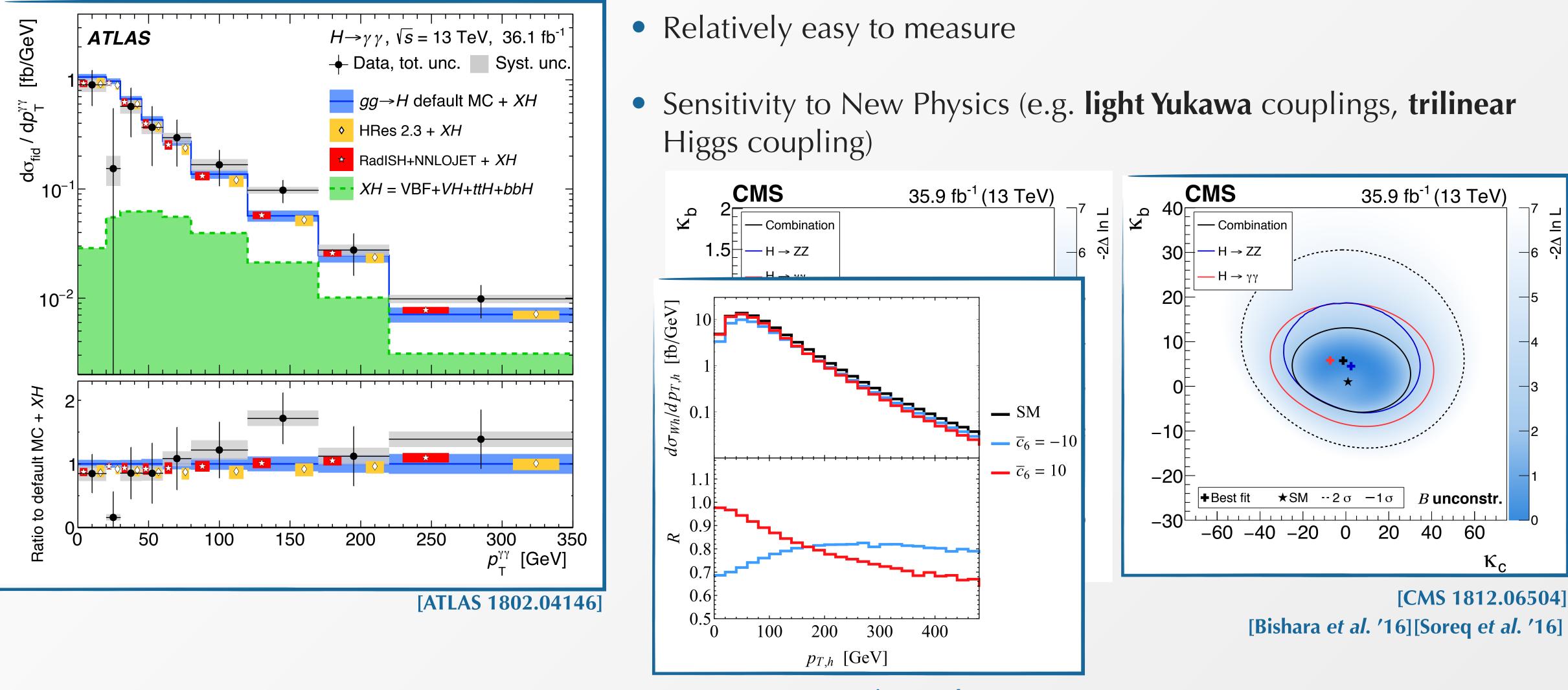
Colour-singlet transverse momentum with a jet veto: a double-differential resummation

Luca Rottoli

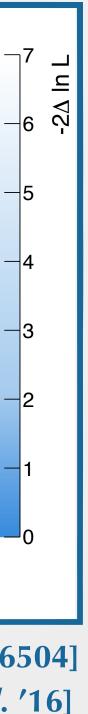
University of Milan-Bicocca & LBNL

Based on 1909.04704 with P. Monni and P. Torrielli



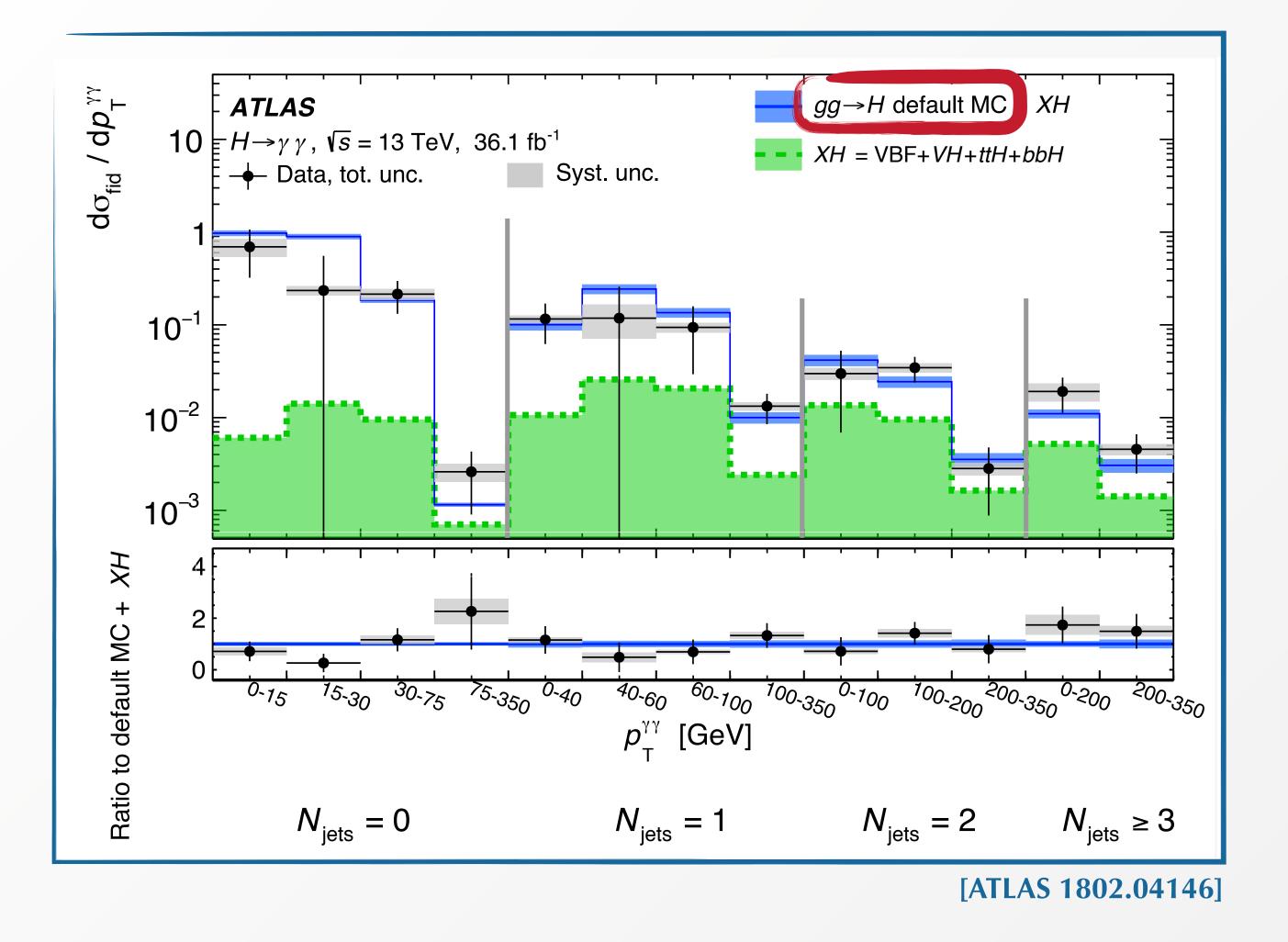


[Bizon et al. 1610.05771]

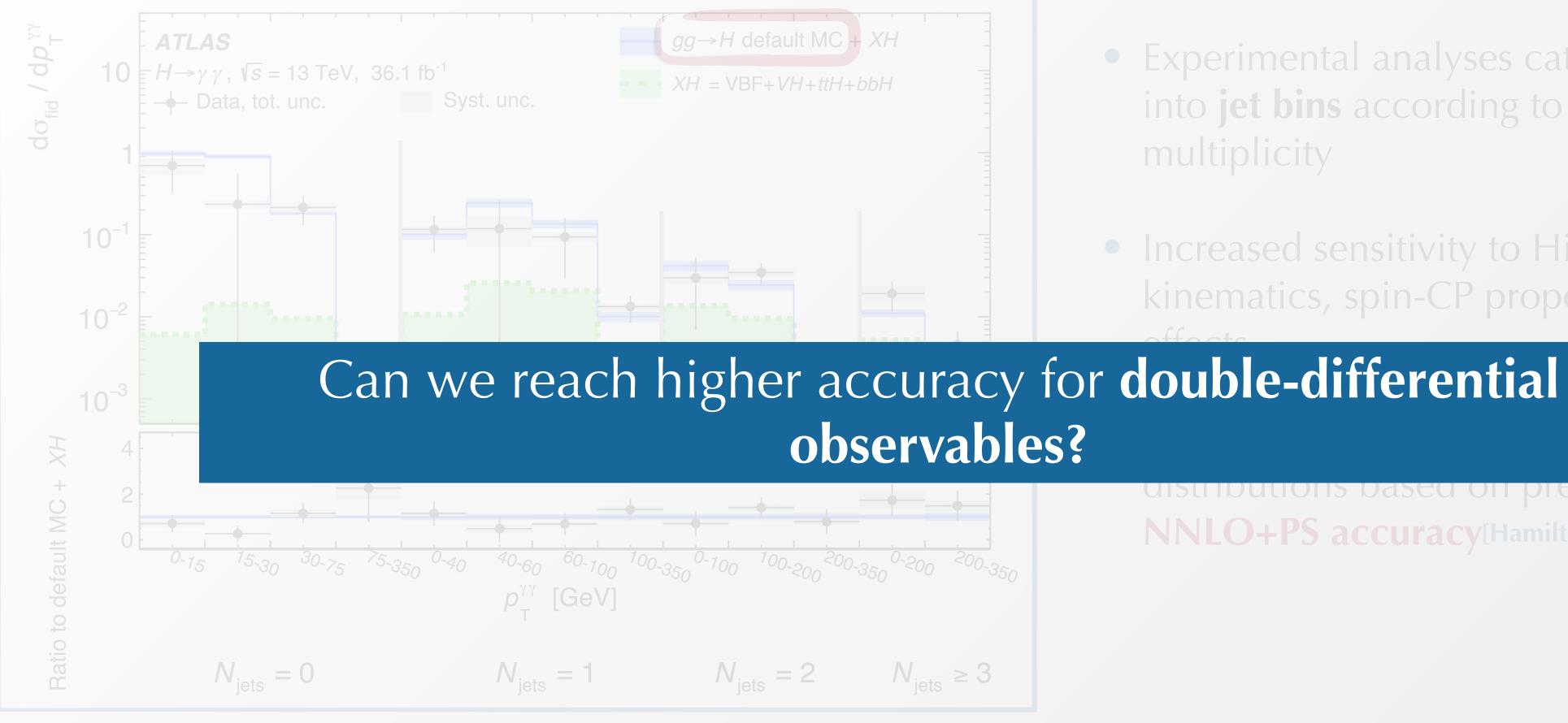




- Experimental analyses categorize events into jet bins according to the jet multiplicity
- Increased sensitivity to Higgs boson kinematics, spin-CP properties, BSM effects...



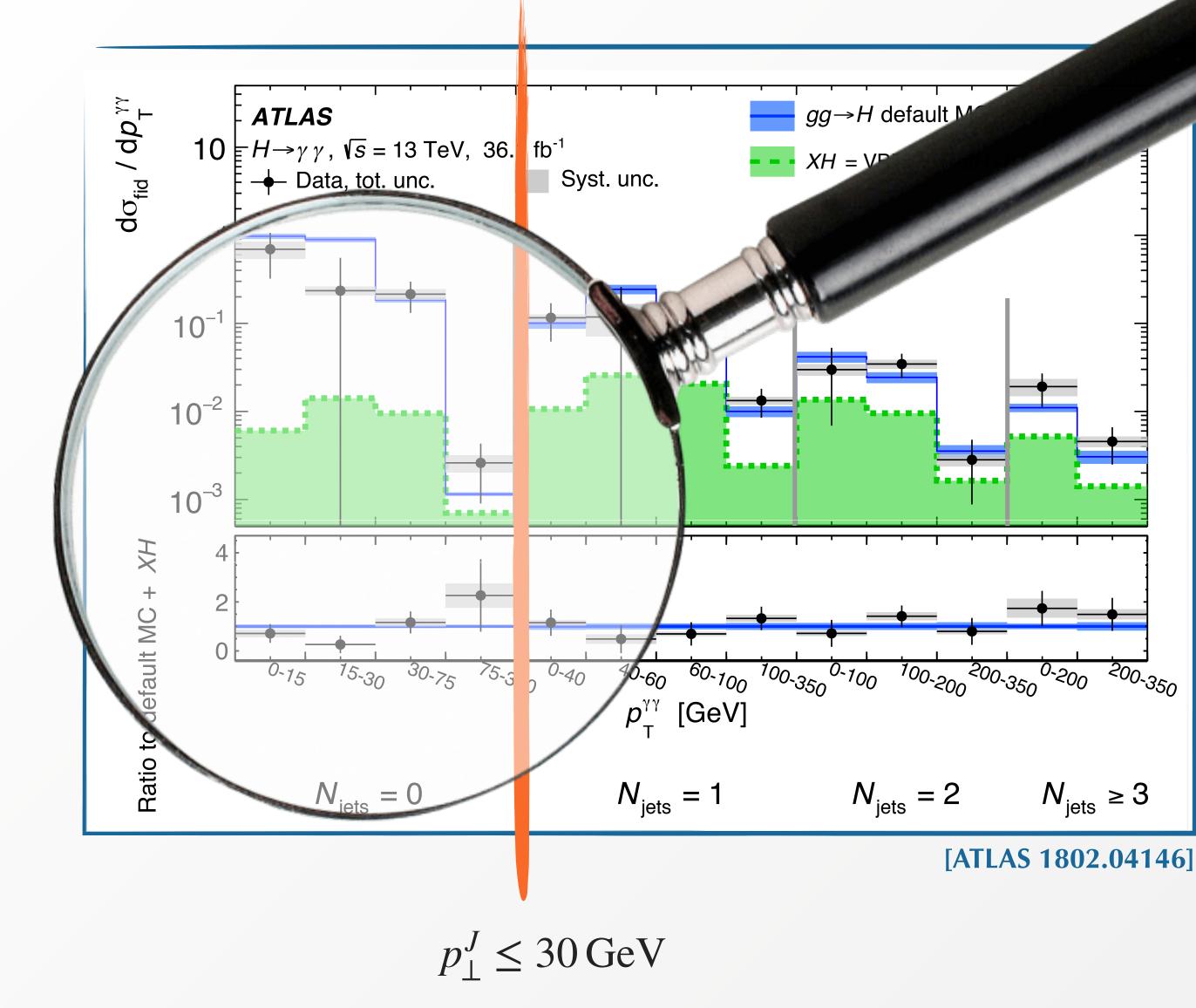
- Experimental analyses categorize events into jet bins according to the jet multiplicity
- Increased sensitivity to Higgs boson kinematics, spin-CP properties, BSM effects...
- Current description of double-differential distributions based on predictions with **NNLO+PS accuracy** [Hamilton et al. 1309.0017]



Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

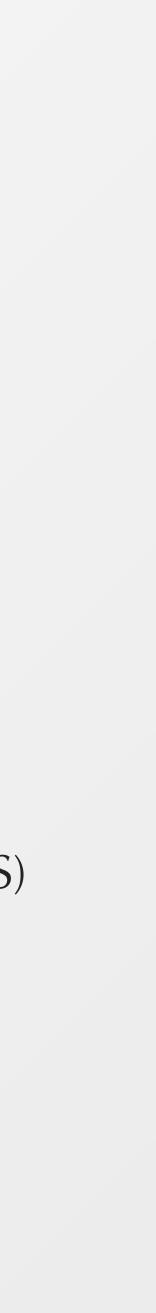
- into jet bins according to the jet

distributions based on predictions with

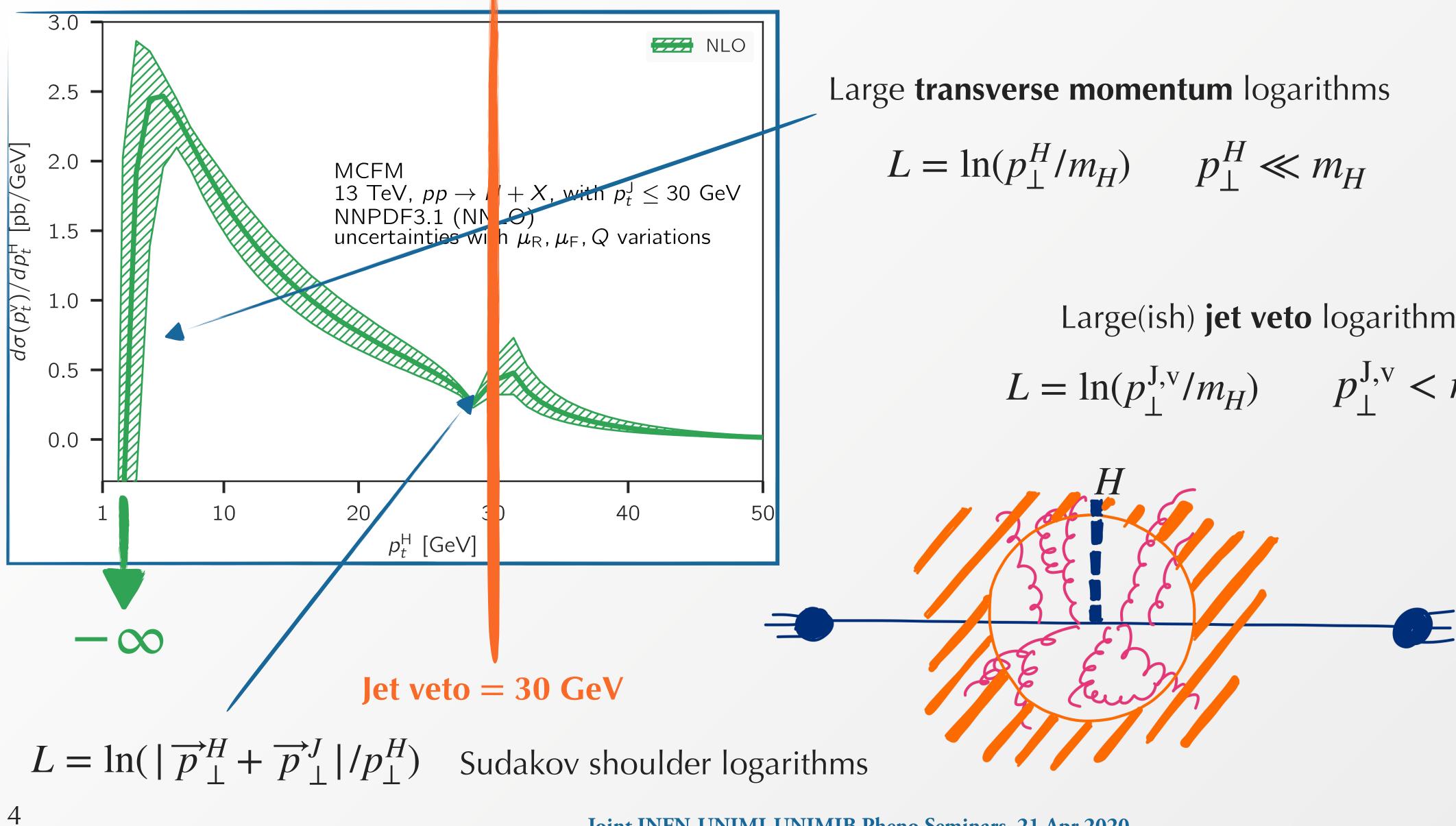


• Jet veto enforced to enhance the Higgs signal with respect to its backgrounds (e.g. W+W- event selection) or study of different production channels (e.g. STXS)

200-350



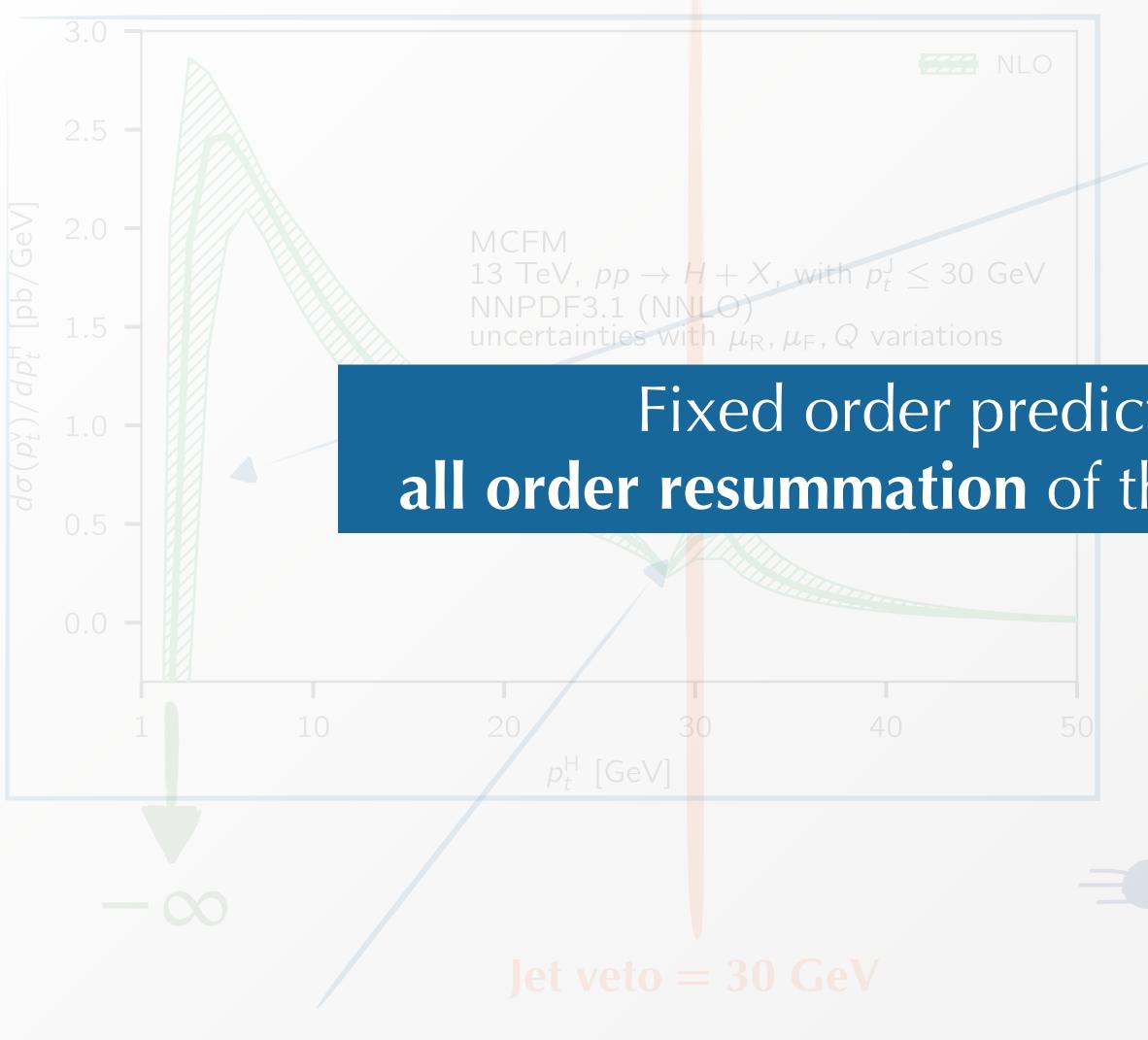
The appearance of large logarithms



Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

Large(ish) jet veto logarithms $L = \ln(p_{\perp}^{J,v}/m_{H}) \qquad p_{\perp}^{J,v} < m_{H}$

The appearance of large logarithms



Fixed order predictions no longer reliable: all order resummation of the perturbative series mandatory

It's not a bug, it's a feature

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC safe observables

Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase space, **restrictive cuts**)

$$\tilde{\sigma}_{1}(p_{\perp}) \sim \int \frac{d\theta}{\theta} \frac{dE}{E} \Theta \left(p_{\perp} - E\theta \right) - \frac{1}{2} \frac{\partial \theta}{\partial \theta} \frac{dE}{\partial \theta} \Theta \left(p_{\perp} - E\theta \right) - \frac{1}{2} \frac{\partial \theta}{\partial \theta} \frac{\partial \theta}{\partial \theta} \Phi$$

$$\sim -\int \frac{dE}{E} \frac{d\theta}{\theta} \Theta(E\theta - p_{\perp})$$

 $d\theta dE$ θE 0920

It's not a bug, it's a feature

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC safe observables

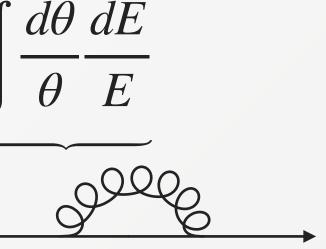
Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase space, **restrictive cuts**)

$$\tilde{\sigma}_{1}(p_{\perp}) \sim \int \frac{d\theta}{\theta} \frac{dE}{E} \Theta \left(p_{\perp} - E\theta \right) - \int \frac{d\theta}{\theta} \frac{dE}{E} \Theta \left(p_{\perp} - E\theta \right) - \int \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{dE}{\theta} \left(p_{\perp} - E\theta \right) - \int \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \left(p_{\perp} - E\theta \right) - \int \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \left(p_{\perp} - E\theta \right) - \int \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \left(p_{\perp} - E\theta \right) - \int \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \left(p_{\perp} - E\theta \right) - \int \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \frac{d\theta}{\theta} \left(p_{\perp} - E\theta \right) - \int \frac{d\theta}{\theta} - \int \frac{d\theta}{\theta} \frac{d$$

$$\sim -\int \frac{dE}{E} \frac{d\theta}{\theta} \Theta(E\theta - p_{\perp}) \sim -\frac{1}{2} \ln^2 p_{\perp}$$

Double logarithms **leftovers** of the real-virtual cancellation of IRC divergences

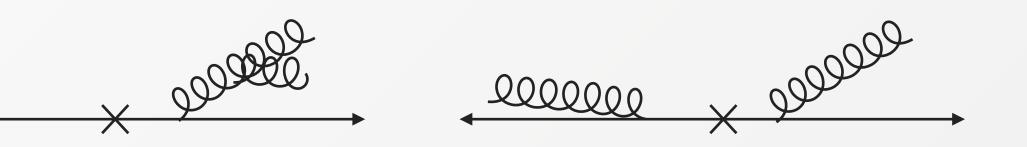
Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020



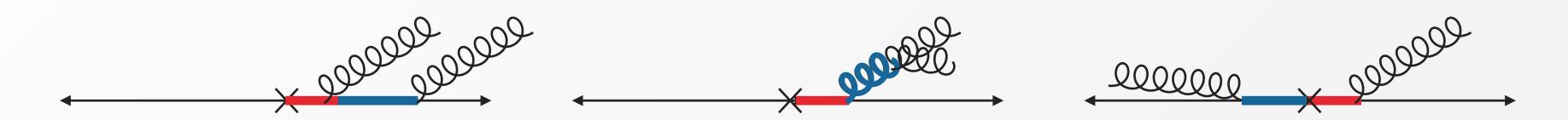
 $p_{\perp} \rightarrow 0$: observable can become negative even in the perturbative regime

Soft-collinear emission of two gluons

2000000 X

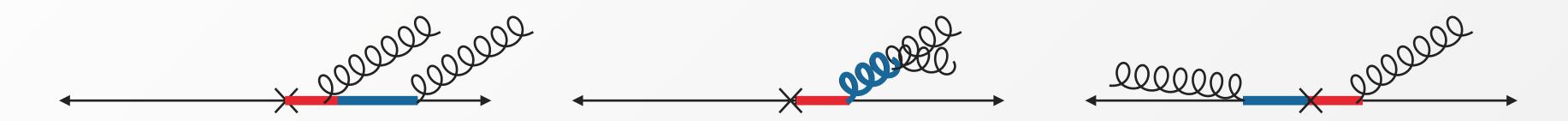


Soft-collinear emission of two gluons



Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_s^2 \ln^4 p_{\perp}/m_H$

Soft-collinear emission of two gluons

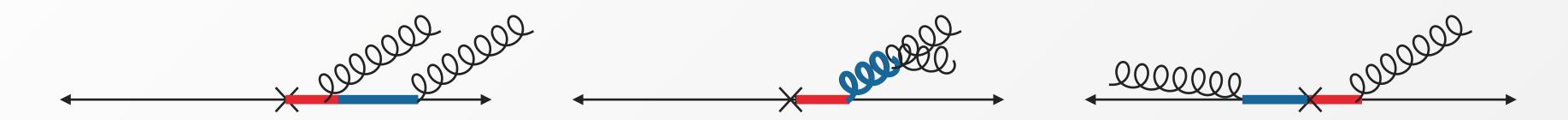


Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_s^2 \ln^4 p_{\perp}/m_H$ All order structure

$$\tilde{\sigma}(v) = \sum_{n=0}^{\infty} \alpha_s^n \sum_{m=1}^{2n} c_{nm} L^m$$

 $L = \ln(p_{\perp}/m_{H})$

Soft-collinear emission of two gluons



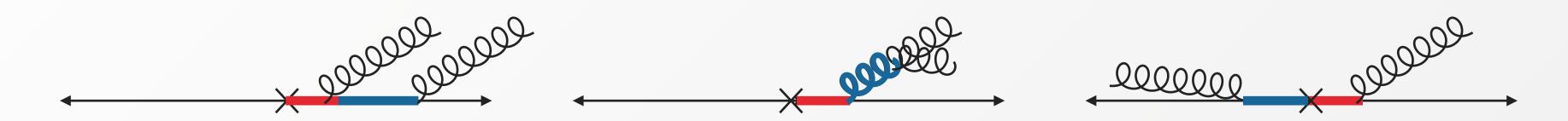
Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_s^2 \ln^4 p_{\perp}/m_H$ All order structure

$$\tilde{\sigma}(v) = \sum_{n=0}^{\infty} \alpha_s^n \sum_{m=1}^{2n} c_{nm} L^m + \dots$$
 $L = \ln(p_{\perp}/m_H)$

Origin of the logs is simple. Resum them to all orders by **reorganizing** the series

$$\tilde{\sigma}(v) = f_1(\alpha_s L^2) + \frac{1}{L} f_2(\alpha_s L^2) + \dots$$

Soft-collinear emission of two gluons



Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_s^2 \ln^4 p_{\perp}/m_H$ All order structure

$$\tilde{\sigma}(v) = \sum_{n=0}^{\infty} \alpha_s^n \sum_{m=1}^{2n} c_{nm} L^m + \dots$$
 $L = \ln(p_{\perp}/m_H)$

Origin of the logs is simple. Resum them to all orders by **reorganizing** the series

$$\tilde{\sigma}(v) = f_1(\alpha_s L^2) + \frac{1}{L} f_2(\alpha_s L^2) + \dots$$

Poor man's leading logarithmic (LL) resummation of the perturbative series

Accurate for $L \sim 1/\sqrt{\alpha_s}$

All-order resummation: exponentiation

Independent emissions $k_1, \ldots k_n$ (plus corresponding virtual contributions) in the soft and collinear limit with strong angular ordering

 $d\Phi_n \mid \mathcal{M}(k_1, \dots, k_n)$

$$(f_n)|^2 \to \frac{1}{n!} \alpha_s^n \prod_{i=1}^n \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i}$$

All-order resummation: exponentiation

angular ordering

 $d\Phi_n | \mathcal{M}(k_1, \dots, k_n)$

Calculate observable with arbitrary number of emissions: exponentiation

$$\tilde{\sigma} \simeq \sum_{n=0}^{\infty} \frac{1}{n!} \alpha_s^n \prod_{i=1}^n \int \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i} [\Theta(p_\perp - E_i \theta_i) - 1] \simeq e^{-\alpha_s L^2}$$

Exponentiated form allows for a more powerful reorganization

$$\tilde{\sigma} = \exp\left[\sum_{n} \left(\mathcal{O}(\alpha_{s}^{n}L^{n+1}) + \mathcal{O}(\alpha_{s}^{n}L^{n}) + \mathcal{O}(\alpha_{s}^{n}L^{n-1}) + \dots \right) \right]$$
NLL NLL NLL NLL NLL

Region of applicability now valid up to $L \sim 1/\alpha_{s'}$ successive terms suppressed by $\mathcal{O}(\alpha_s)$

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

Independent emissions $k_1, \ldots k_n$ (plus corresponding virtual contributions) in the soft and collinear limit with strong

$$(n)|^2 \rightarrow \frac{1}{n!} \alpha_s^n \prod_{i=1}^n \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i}$$

Sudakov suppression [Sudakov '54] Price for constraining real radiation

All-order resummation: exponentiation

Independent emissions $k_1, \ldots k_n$ (plus corresponding virtual contributions) in the soft and collinear limit with strong

Exponentiated form allows for a more $\int_{i}^{n} \frac{E_i}{i} \theta_i$ $\tilde{\sigma}(v) \sim \int_{i}^{n} \frac{[dk_i]}{M(k_1, \dots, k_n)} |^2 \Theta_{PS}(v - V(k_1, \dots, k_n))$

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

Calculate

$\frac{1}{1} \frac{1}{1} \frac{1}$ Exponentiation in direct space generally not possible. Phase-space constraints typically do not factorize in direct space

All-order resummation: (re)-factorization

Solution 1: move to **conjugate space** where phase space factorization is manifest

Exponentiation in conjugate space; **inverse transform** to move back to direct space

Extremely successful approach

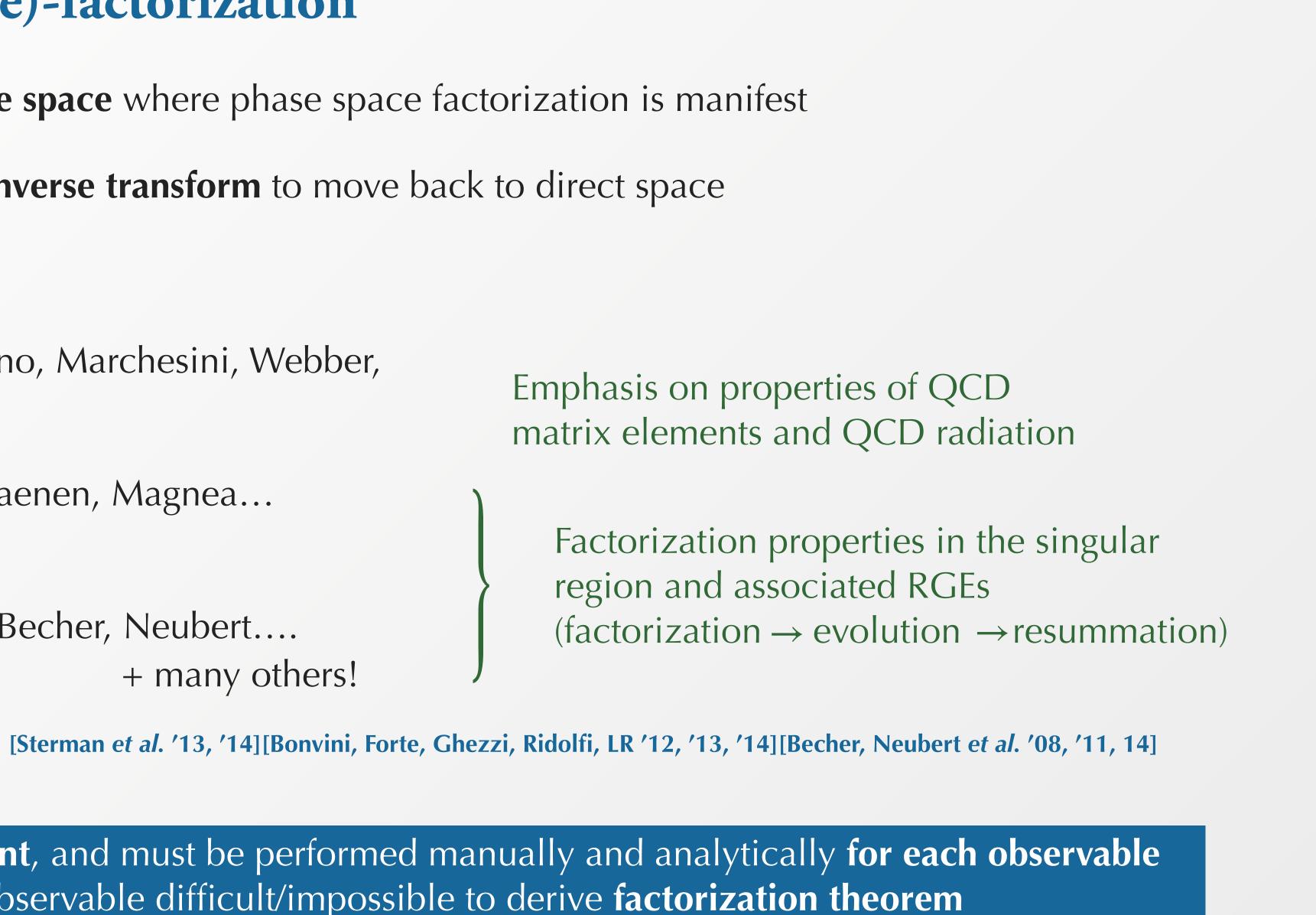
- Catani, Trentadue, Mangano, Marchesini, Webber, Nason, Dokshitzer...
- Collins, Soper, Sterman, Laenen, Magnea...
- Manohar, Bauer, Stewart, Becher, Neubert.... + many others!

SCET vs. dQCD not an issue

Limitation: it is process-dependent, and must be performed manually and analytically for each observable for some complex observable difficult/impossible to derive factorization theorem

"direct QCD"

SCET



All-order resummation: CAESAR/ARES approach

Solution 2:

Translate the resummability into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety [Banfi, Salam, Zanderighi '01, '03, '04] [Banfi, McAslan, Monni, Zanderighi, El-Menoufi '14, '18]

Simple observable easy to calculate

$$\tilde{\sigma} \sim \int \frac{dv_1}{v_1} \sum_{s} (v_1) \mathcal{F}(v, v_1)$$

Transfer function relates the resummation of the full observable to the one of the simple observable.

All-order resummation: CAESAR/ARES approach

Solution 2:

Translate the resummability of the observable into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety [Banfi, Salam, Zanderighi '01, '03, '04]

Simple observable easy to calculate

$$\tilde{\sigma} \sim \int \frac{dv_1}{v_1} \sum_{s} (v_1) \mathcal{F}(v, v_1)$$

Separation obtained by introducing a **resolution scale** $q_0 = \epsilon k_{t,1}$

$$\tilde{\sigma} \sim \int [dk_1] e^{-R(q_0)} \qquad \begin{array}{l} \text{Unresolved emission can be treated as totally u} \\ \rightarrow \text{exponentiation} \end{array}$$

$$\times |\mathcal{M}(k_1)|^2 \left(\sum_{m=0}^{\infty} \frac{1}{m!} \int_{i=2}^{m+1} [dk_i] |\mathcal{M}(k_i)|^2 \Theta(V(k_i) - q_0) \Theta\left(v - V(k_1, \dots, k_{m+1})\right) \right)$$

Approach recently formulated within SCET language [Bauer, Monni '18, '19 + ongoing work]

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

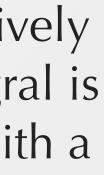
Transfer function relates the resummation of the full observable to the one of the simple observable.

i.e. conditional probability

unconstrained

Resolved emission treated exclusively with Monte Carlo methods. Integral is finite, can be integrated in d=4 with a computer

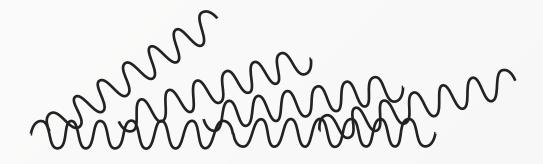
Method entirely formulated in **direct space**



An example : resummation of the transverse momentum spectrum

Resummation of transverse momentum is particularly delicate because p_{\perp} is a vectorial quantity

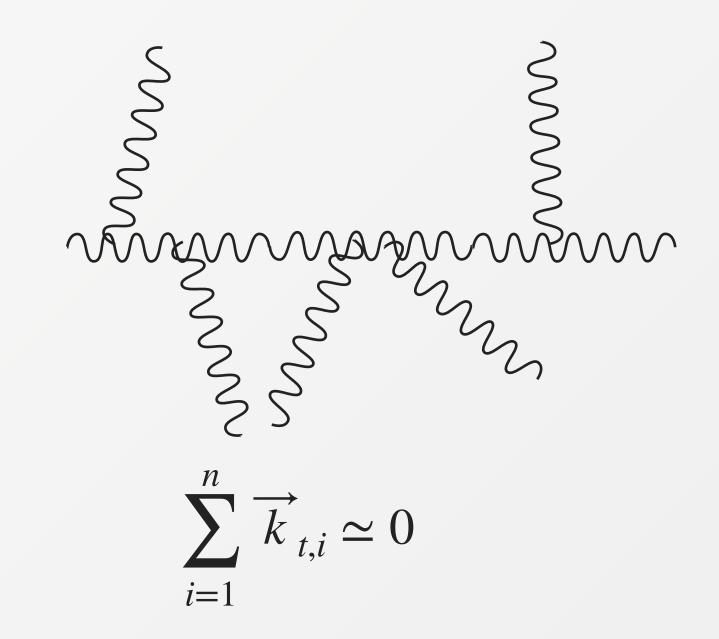
Two concurring mechanisms leading to a system with small p_{\perp}



 $p_{\perp}^2 \sim k_{t,i}^2 \ll m_H^2$

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression



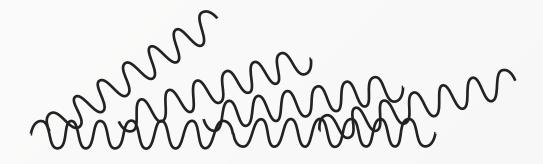
Large kinematic cancellations $p_{\perp} \sim 0$ far from the Sudakov limit

Power suppression

An example : resummation of the transverse momentum spectrum

Resummation of transverse momentum is particularly delicate because p_{\perp} is a vectorial quantity

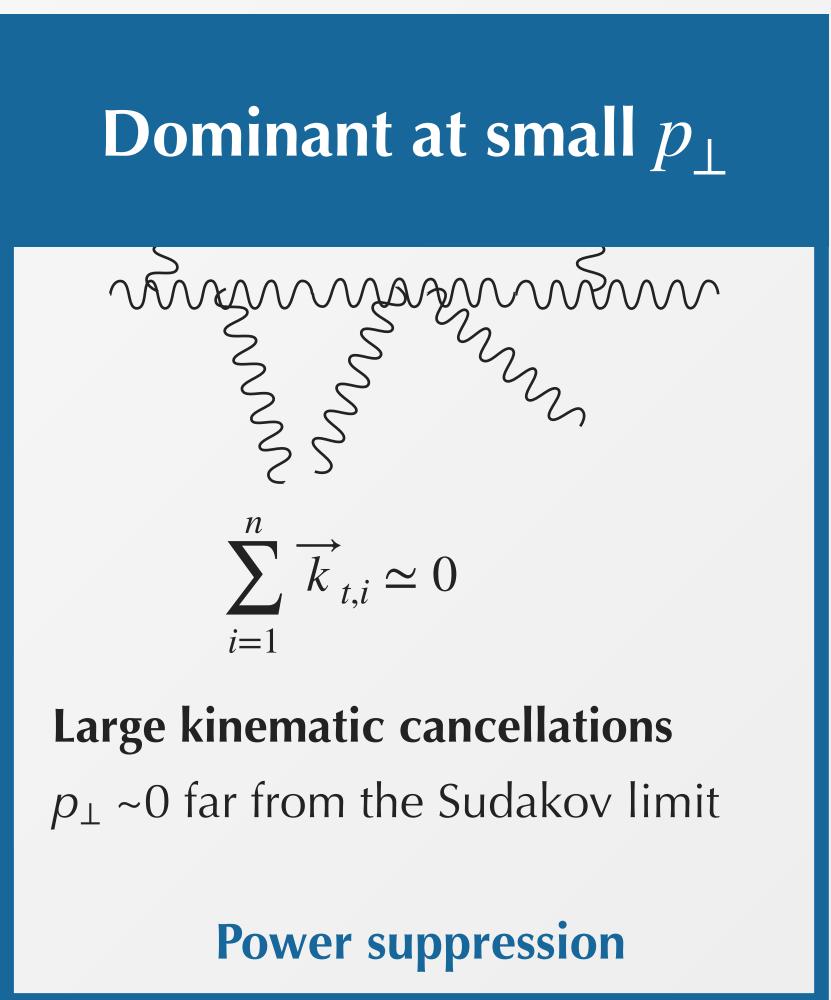
Two concurring mechanisms leading to a system with small p_{\perp}



 $p_{\perp}^2 \sim k_{t,i}^2 \ll m_H^2$

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression



Solution 1:

move to **conjugate space** where phase space factorization is manifest

p_{\perp} resummation $\delta^{(2)}\left(\overrightarrow{p}_{t} - \frac{p_{\perp}}{p_{\perp}}\right)$ [Parisi, Petronzio '79; Collins, Soper, Sterman '85]

$$-\sum_{i=1}^{n} \overrightarrow{k}_{t,i} = \int d^{2}b \frac{1}{4\pi^{2}} e^{i\overrightarrow{b}\cdot\overrightarrow{p}_{t}} \prod_{i=1}^{n} e^{-i\overrightarrow{b}\cdot\overrightarrow{k}_{t,i}}$$

two-dimensional momentum conservation

Solution 1:

move to **conjugate space** where phase space factorization is manifest

 p_{\perp} resummation $\delta^{(2)}\left(\overrightarrow{p}_{t}-\frac{1}{p}\right)$ [Parisi, Petronzio '79; Collins, Soper, Sterman '85]

Exponentiation in conjugate space

$$\sigma = \sigma_0 \int d^2 \overrightarrow{p}_{\perp}^H \int \frac{d^2 \overrightarrow{b}}{4\pi^2} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^H} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^n \int [dk_i] |M(k_i)|^2 \left(e^{i \overrightarrow{b} \cdot \overrightarrow{k}_{i,i}} - 1 \right) = \sigma_0 \int d^2 \overrightarrow{p}_{\perp}^H \int \frac{d^2 \overrightarrow{b}}{4\pi^2} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^H} e^{-R_N}$$

 $R_{\rm NLL}(L) = -Lg_1(\alpha_s L) - g_2(\alpha_s L)$ $L = \ln(m_H b/b_0)$

Logarithmic accuracy defined in terms of $\ln(m_H b/b_0)$

11

$$-\sum_{i=1}^{n} \overrightarrow{k}_{t,i} = \int d^{2}b \frac{1}{4\pi^{2}} e^{i\overrightarrow{b}\cdot\overrightarrow{p}_{t}} \prod_{i=1}^{n} e^{-i\overrightarrow{b}\cdot\overrightarrow{k}_{t,i}}$$

two-dimensional momentum conservation

virtual corrections

NLL formula with scale-independent PDFs

Solution 2:

Translate the resummability into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety

Resummation in direct space is a highly non-trivial problem: a naive resummation of logarithmic terms at small p_{\perp} is not sensible, as one loses the correct power-suppressed scaling if only logarithms are retained.

It is not possible to reproduce a power-like behaviour with logs of p_{\perp}/m_{H}

Solution to the problem recently formulated by extending the CAESAR/ARES approach to deal with observables with azimuthal cancellations: RadISH approach [Monni, Re, Torrielli '16][Bizon, Monni, Re, LR, Torrielli '17]

Problem recently addressed also within SCET [Ebert, Tackmann '17]

[Frixione, Nason, Ridolfi '98]

Result at NLL accuracy can be written as

$$\begin{aligned} \sigma(p_{\perp}) &= \sigma_0 \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(\epsilon v_1)} & v_i = k_{t,i}/m_H, \quad \zeta_i \\ &\times R'(v_1) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(\zeta_i v_1) \Theta\left(p_{\perp} - |\vec{k}_{t,i} + \cdots + \vec{k}_{t,n+1}|)\right) \end{aligned}$$

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

Result at NLL accuracy can be written as

Simple observable

$$\sigma(p_{\perp}) = \sigma_0 \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(\epsilon v_1)} \qquad v_i = k_{t,i}/m_H, \quad \zeta_i = k_{t,i}/m_H, \quad \zeta_i$$

$$\tilde{\sigma} \sim \int \frac{dv_1}{v_1} \Sigma_s(v_1) \mathcal{F}(v, v_1)$$

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

Transfer function

Result at NLL accuracy can be written as

Simple observable

$$\sigma(p_{\perp}) = \sigma_0 \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(\epsilon v_1)} \qquad v_i = k_{t,i}/m_H, \quad \zeta_i = k_{t,i}/m_H, \quad \zeta_i$$

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes (as $\mathcal{O}(\epsilon)$) and result is finite in four dimensions

Subleading effects retained: no divergence at small p_{\perp} , power-like behaviour respected

Logarithmic accuracy defined in terms of $\ln(m_H/k_{t1})$ Result formally equivalent to the *b*-space formulation [Bizon, Monni, Re, LR, Torrielli '17]

$$\tilde{\sigma} \sim \int \frac{dv_1}{v_1} \Sigma_s(v_1) \mathcal{F}(v, v_1)$$

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

ransier iuncuon

Direct space formulation

- 1. the formal accuracy
- observables in an unique framework
- 3. formulation

Similar in spirit to a semi-inclusive parton shower, but with higher-order logarithms, and full control on

2. Thanks to its versatility, the approach can be exploited to formulate the resummation for entire classes of

More differential description of the QCD radiation than that usually possible in a conjugate-space

Direct space formulation

Price to pay: less compact formulation

$$\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi}{k_{t1}} + \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi}{2\pi} e^{-F} + \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi}{2\pi} e^{-F} \times \left(R''(k_{t1}) \ln \frac{1}{\zeta_s} + \frac{\alpha_s^2(k_{t1})}{\pi^2} \hat{P}^{(0)} \otimes \right) + \frac{1}{2} \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi}{2\pi} e^{F} \times \left\{ \mathcal{L}_{\text{NLL}}(k_{t1}) \left(R + \frac{\alpha_s^2(k_{t1})}{\pi^2} \hat{P}^{(0)} \otimes \right) \right\}$$

$$+ \frac{1}{2} \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t1})} \int d\mathcal{Z}[\{R', k_{i}\}] \int_{0}^{1} \frac{d\zeta_{s1}}{\zeta_{s1}} \frac{d\phi_{s1}}{2\pi} \int_{0}^{1} \frac{d\zeta_{s2}}{\zeta_{s2}} \frac{d\phi_{s2}}{2\pi} R'(k_{t1}) \times \left\{ \mathcal{L}_{\text{NLL}}(k_{t1}) \left(R''(k_{t1})\right)^{2} \ln \frac{1}{\zeta_{s1}} \ln \frac{1}{\zeta_{s2}} - \partial_{L} \mathcal{L}_{\text{NLL}}(k_{t1}) R''(k_{t1}) \left(\ln \frac{1}{\zeta_{s1}} + \ln \frac{1}{\zeta_{s2}}\right) + \frac{\alpha_{s}^{2}(k_{t1})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \right\} \times \left\{ \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}, k_{s1}, k_{s2})\right) - \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}, k_{s1})\right) - \\ \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}, k_{s2})\right) + \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right) \right\} + \mathcal{O} \left(\alpha_{s}^{n} \ln^{2n-6} \frac{1}{v}\right), \qquad (3.18)$$

$$\frac{d\phi_1}{2\pi}\partial_L\left(-e^{-R(k_{t1})}\mathcal{L}_{N^3LL}(k_{t1})\right)\int d\mathcal{Z}[\{R',k_i\}]\Theta\left(v-V(\{\tilde{p}\},k_1,\ldots,k_{n+1})\right)$$

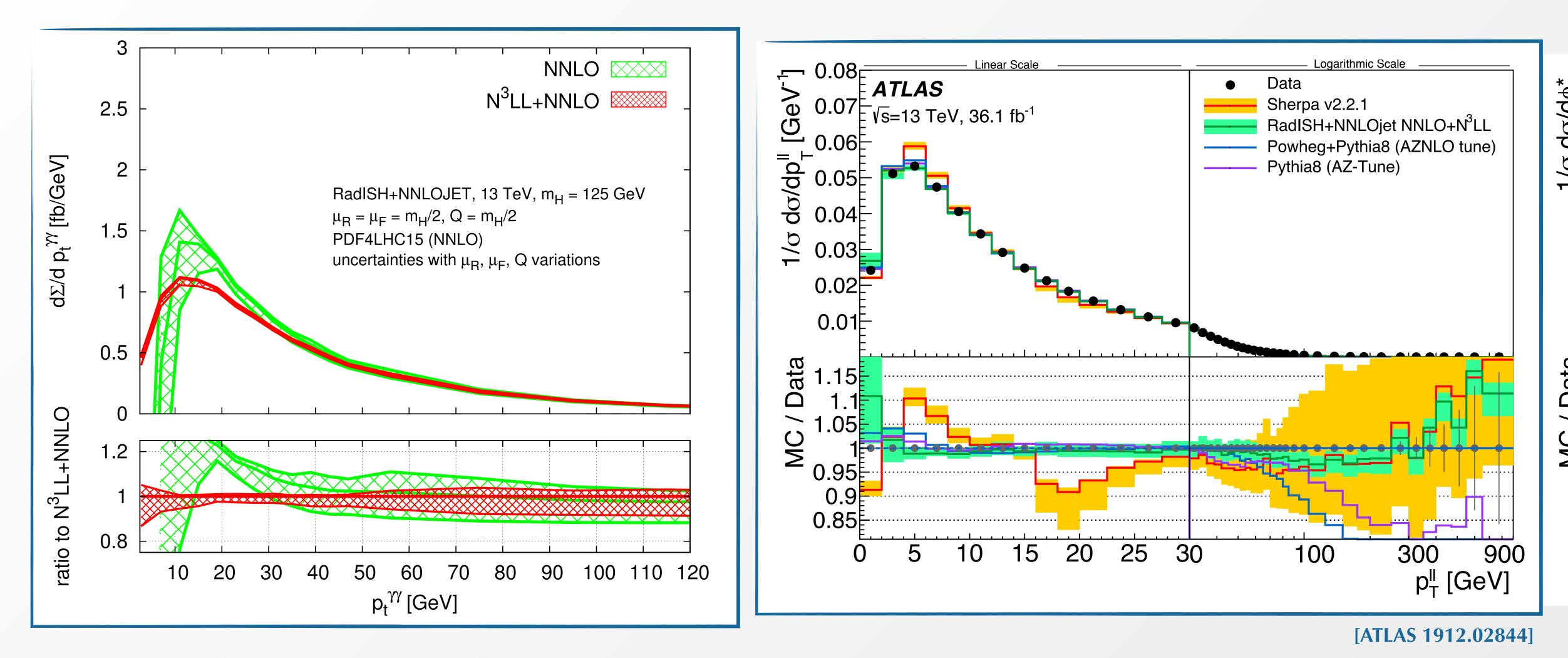
$$\begin{aligned} &R^{(k_{t1})} \int d\mathcal{Z}[\{R',k_i\}] \int_0^1 \frac{d\zeta_s}{\zeta_s} \frac{d\phi_s}{2\pi} \left\{ \left(R'(k_{t1})\mathcal{L}_{\text{NNLL}}(k_{t1}) - \partial_L \mathcal{L}_{\text{NNLL}}(k_{t1}) \right) \\ &+ \frac{1}{2} R'''(k_{t1}) \ln^2 \frac{1}{\zeta_s} \right) - R'(k_{t1}) \left(\partial_L \mathcal{L}_{\text{NNLL}}(k_{t1}) - 2 \frac{\beta_0}{\pi} \alpha_s^2(k_{t1}) \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \ln \frac{1}{\zeta_s} \right) \\ &\hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \right\} \left\{ \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}, k_s) \right) - \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}) \right) \right\} \end{aligned}$$

logarithms, and full control on the formal accuracy

1. Similar in spirit to a semi-inclusive parton shower, but with higher-order

Resummation of the transverse momentum spectrum at N³LL+NNLO

N³LL result matched to NNLO H+j, Z+j, W[±]+j [Bizon, LR et al. '17, '18, '19]



H+j at same accuracy also in SCET [Chen et al. '18]

2. Thanks to its versatility, the approach can be exploited to formulate the resummation for entire classes of observables in an unique framework

Direct space formulation: generality

NLL result for p_{\perp}^{J}

 $\sigma(p_{\perp}^{\mathsf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$

NLL result for p_{\perp}^{H} $\sigma(p_{\perp}^{H}) = \sigma_{0} \left[d^{2} \overrightarrow{p}_{\perp}^{H} \right] \left[\frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\rm NLL}(L)} \right]$

Direct space formulation: generality

NLL result for p_{\perp}^{J}

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$$

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$\sigma(v) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'(k_{t,1}) d\mathcal{Z} \Theta(v - V(k_1, \dots, k_{n+1}))$$

$$d\mathscr{Z} = \epsilon^{R'(k_{t,1})} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_i}{\zeta_i} \int_{0}^{2\pi} \frac{d\phi_i}{2\pi} R'\left(\zeta_i k_{t,1}\right)$$

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

17

NLL result for
$$p_{\perp}^{H}$$

$$\sigma(p_{\perp}^{H}) = \sigma_{0} \int d^{2} \overrightarrow{p}_{\perp}^{H} \int \frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\text{NLL}}(L)}$$

Direct space formulation: generality

NLL result for p_{\perp}^{J}

$$\sigma(p_{\perp}^{\mathrm{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$$

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'(k_{t,1}) d\mathcal{Z} \Theta\left(p_T^{\mathbf{J}} - \max\{k_{t,1}, \dots, k_{t,n+1}\}\right)$$

$$d\mathscr{Z} = \epsilon^{R'(k_{t,1})} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\varepsilon}^{1} \frac{d\zeta_i}{\zeta_i} \int_{0}^{2\pi} \frac{d\phi_i}{2\pi} R'\left(\zeta_i k_{t,1}\right)$$

NLL result for
$$p_{\perp}^{H}$$

$$\sigma(p_{\perp}^{H}) = \sigma_{0} \int d^{2} \overrightarrow{p}_{\perp}^{H} \int \frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\text{NLL}}(L)}$$

Direct space formulation: generality

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$$

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$\sigma(p_{\perp}^{H}) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'\left(k_{t,1}\right) d\mathcal{Z} \Theta\left(p_T^{H} - |\vec{k}_{t,1} + \cdots \vec{k}_{t,n+1}|\right)$$

$$d\mathscr{Z} = \epsilon^{R'(k_{t,1})} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_i}{\zeta_i} \int_{0}^{2\pi} \frac{d\phi_i}{2\pi} R'\left(\zeta_i k_{t,1}\right)$$

17

NLL result for
$$p_{\perp}^{H}$$

$$\sigma(p_{\perp}^{H}) = \sigma_{0} \int d^{2} \overrightarrow{p}_{\perp}^{H} \int \frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\text{NLL}}(L)}$$

Direct space formulation: generality

NLL result for p_{\perp}^{J}

$$\sigma(p_{\perp}^{\mathbf{J}}) = \sigma_0 e^{Lg_1(\alpha_s\beta_0 L) + g_2(\alpha_s\beta_0 L)}$$

differential control in momentum space provides guidance to double-differential resummation

$$\sigma(v) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_t)}$$

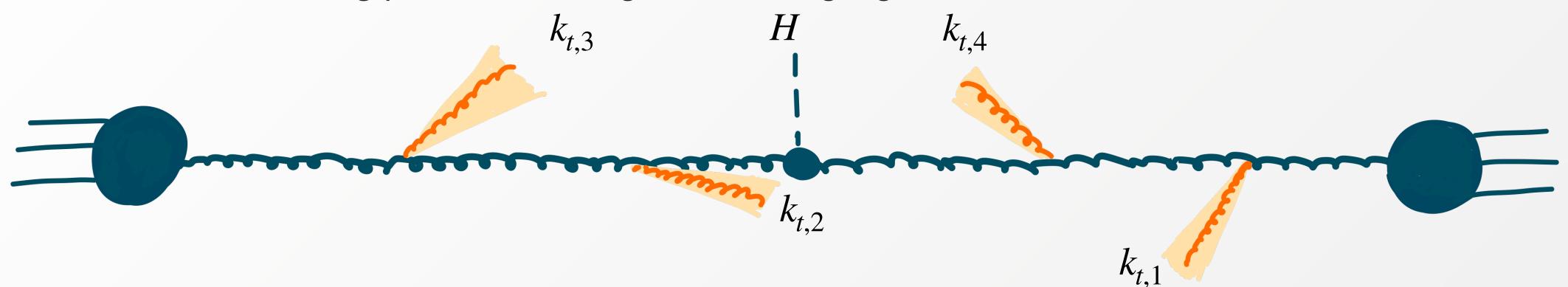
 $d\mathcal{Z} = \epsilon^{R'(k_{t,1})} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_i}{\zeta_i} \int_{0}^{2\pi} \frac{d\phi_i}{2\pi} R'(\zeta_i k_{t,1})$

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

17

NLL result for p_{\perp}^{H} $\sigma(p_{\perp}^{H}) = \sigma_{0} \int d^{2} \overrightarrow{p}_{\perp}^{H} \int \frac{d^{2} \overrightarrow{b}}{4\pi^{2}} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^{H}} e^{-R_{\text{NLL}}(L)}$

At NLL, emissions are strongly ordered in angle. Clustering algorithms will associate each emission to a different jet

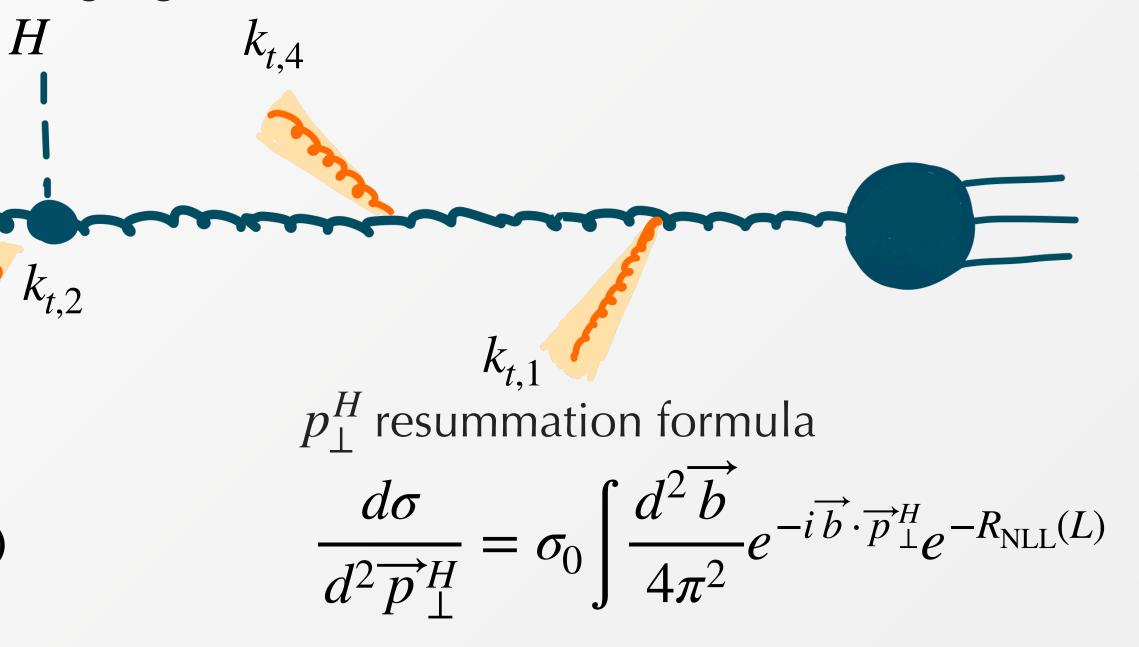


 $k_{t,3}$

At NLL, emissions are strongly ordered in angle. Clustering algorithms will associate each emission to a different jet

Additional constraint on real radiation

$$\Theta(p_{\perp}^{\mathbf{J},\mathbf{v}}-\max\{k_{t,1},\ldots,k_{t,n}\}) = \prod_{i=1}^{n} \Theta(p_{\perp}^{\mathbf{J},\mathbf{v}}-k_{t,i})$$



 $k_{t,3}$

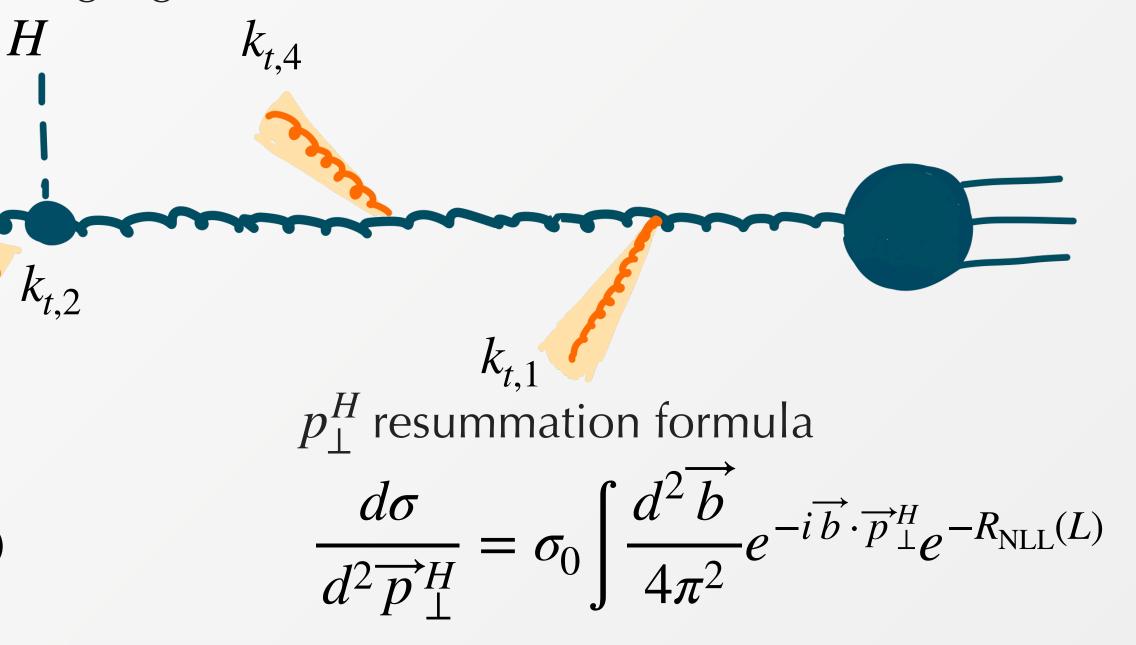
At NLL, emissions are strongly ordered in angle. Clustering algorithms will associate each emission to a different jet

Additional constraint on real radiation

$$\Theta(p_{\perp}^{\mathbf{J},\mathbf{v}}-\max\{k_{t,1},\ldots,k_{t,n}\}) = \prod_{i=1}^{n} \Theta(p_{\perp}^{\mathbf{J},\mathbf{v}}-k_{t,i})$$

$$\frac{d\sigma(p_{\perp}^{\mathbf{J},\mathbf{v}})}{d^{2}\overrightarrow{p}_{\perp}^{H}} = \sigma_{0} \int \frac{d^{2}\overrightarrow{b}}{4\pi^{2}} e^{-i\overrightarrow{b}\cdot\overrightarrow{p}_{\perp}^{H}} e^{-S_{\mathrm{NLL}}(L)}$$

$$S_{\rm NLL}(L) = -Lg_1(\alpha_s L) - g_2(\alpha_s L) + \int_0^{m_H} \frac{dk_t}{k_t} R_{\rm NLL}'(k_t) J_0(bk_t)$$



Joint p_{\perp}^{H} , $p_{\perp}^{J,v}$ resummation formula

CMW scheme [Catani, Marchesini, Webber '91]

 $P(k_t - p_{\perp}^{J.v}) \qquad R'_{NLL}(k_t) = 4\left(\frac{\alpha_s^{CMW}(k_t)}{\pi}C_A \ln \frac{m_H}{k_t} - \alpha_s(k_t)\beta_0\right)$

Crucial observation: in b space the phase space constraints entirely factorize

The jet veto constraint can be included by implementing the jet veto resummation at the *b*-space integrand level directly in impact-parameter space

Inclusive contribution: phase space constraint of the form

 $\Theta(p_1^{\mathbf{J},\mathbf{v}} - \max\{k_{t,1},\ldots,k_{t,1},\ldots,k_{t,n}\}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n$

Promote radiator at NNLL

 $S_{\text{NNLL}} = -Lg_1(\alpha_s L) - g_2(\alpha_s L) - \alpha_s g_3(\alpha_s L$

 $e^{i \overrightarrow{b} \cdot \overrightarrow{k}}_{t,i}$

$$\boldsymbol{k_{t,n}}\}) = \prod_{i=1}^{n} \Theta(p_{\perp}^{\mathrm{J,v}} - \boldsymbol{k_{t,i}})$$

$$\alpha_s L) + \int_0^{m_H} \frac{dk_t}{k_t} R'_{\text{NNLL}}(k_t) J_0(bk_t) \Theta(k_t - p_{\perp}^{\text{J,v}})$$

Crucial observation: in b space the phase space constraints entirely factorize

The jet veto constraint can be included by implementing the jet veto resummation at the *b*-space integrand level directly in impact-parameter space

Inclusive contribution: phase space constraint of the form

 $\Theta(p_{\perp}^{\mathbf{J},\mathbf{v}} - \max\{k_{t,1},\ldots,$

Promote radiator at NNLL

$$S_{\text{NNLL}} = -Lg_1(\alpha_s L) - g_2(\alpha_s L) - \alpha_s g_3(\alpha_s L) + \int_0^{m_H} \frac{dk_t}{k_t} R'_{\text{NNLL}}(k_t) J_0(bk_t) \Theta(k_t - p_{\perp}^{\text{J,v}})$$

Resummation formula must be amended at NNLL [Banfi et al. '12][Becher et al. '13][Stewart et al. '14]

- clustering correction: jet algorithm can cluster two independent emissions into the same jet

 $e^{i \overrightarrow{b} \cdot \overrightarrow{k}}_{t,i}$

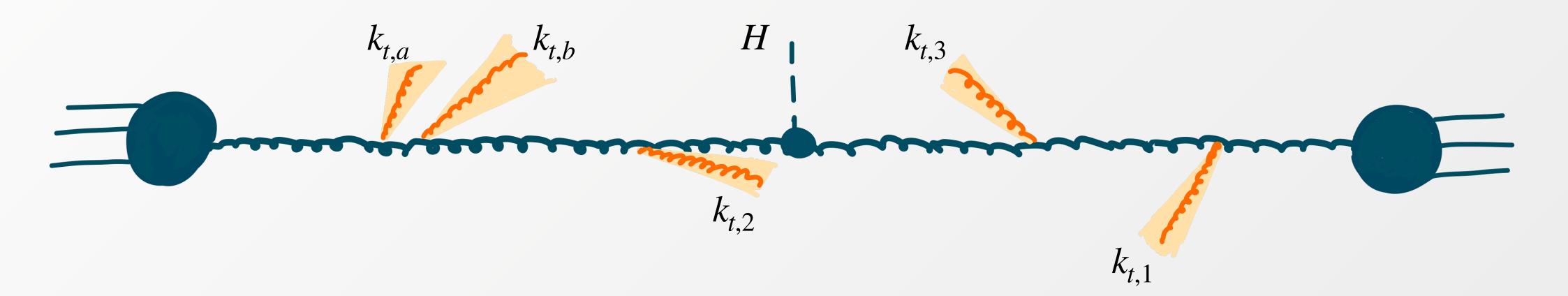
$$\boldsymbol{k_{t,n}}\}) = \prod_{i=1}^{n} \Theta(p_{\perp}^{\mathrm{J,v}} - \boldsymbol{k_{t,i}})$$

• correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission accounting for configurations where the two correlated emissions (non abelian) are not clustered in the same jet

clustering correction: jet algorithm can cluster two emissions into the same jet

$$\mathscr{F}_{\text{clust}} = \frac{1}{2!} \int [dk_a] [dk_b] M^2(k_a) M^2(k_b) J_{ab}(R) e^{i \overrightarrow{b} \cdot \overrightarrow{k}_{t,ab}} \left[\Theta(p_{\perp}^{\text{J},\text{v}} - k_{t,ab}) - \Theta(p_{\perp}^{\text{J},\text{v}} - \max\{k_{t,a}, k_{t,b}\}) \right]$$

 $J_{ab}(R) = \Theta$

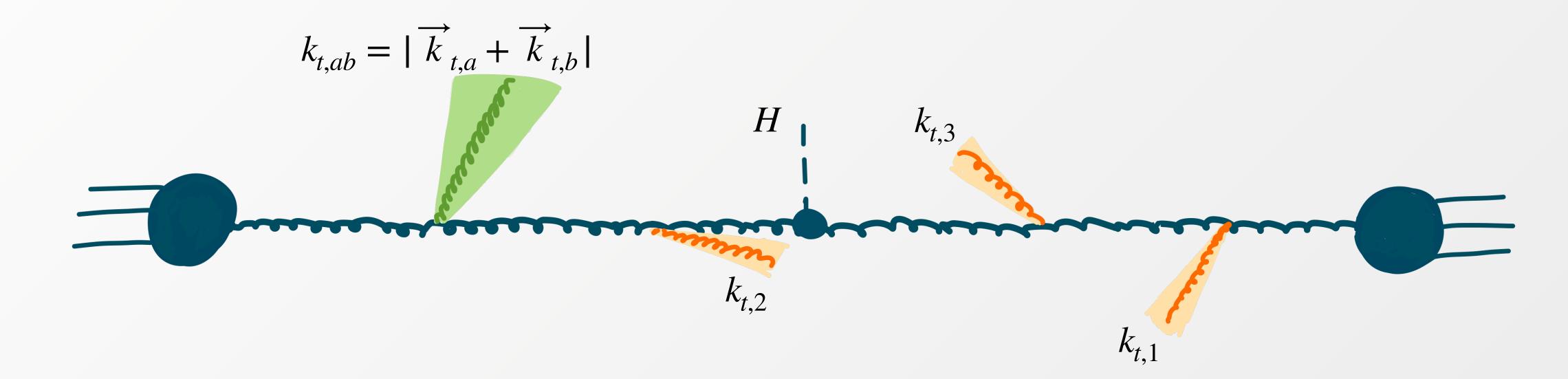


$$\left(R^2 - \Delta\eta_{ab}^2 - \Delta\phi_{ab}^2\right)$$

clustering correction: jet algorithm can cluster two emissions into the same jet

$$\mathscr{F}_{\text{clust}} = \frac{1}{2!} \int [dk_a] [dk_b] M^2(k_a) M^2(k_b) J_{ab}(\mathbf{R}) e^{i \overrightarrow{b} \cdot \overrightarrow{k}_{t,ab}} \left[\Theta(p_{\perp}^{\text{J},\text{v}} - k_{t,ab}) - \Theta(p_{\perp}^{\text{J},\text{v}} - \max\{k_{t,a}, k_{t,b}\}) \right]$$

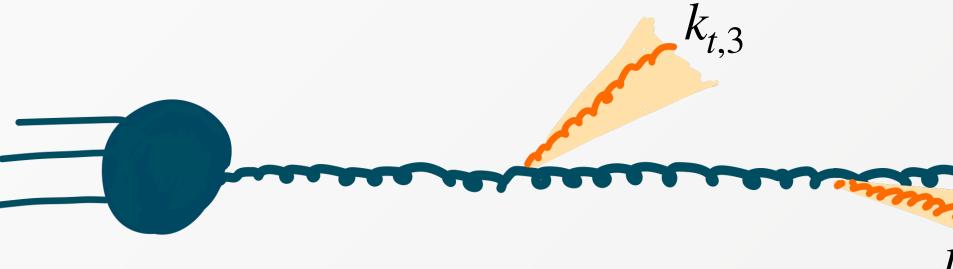
 $J_{ab}(R) = \Theta$



$$\left(R^2 - \Delta\eta_{ab}^2 - \Delta\phi_{ab}^2\right)$$

correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission accounting for configurations where the two correlated emissions are not clustered in the same jet

$$\mathcal{F}_{correl} = \frac{1}{2!} \int [dk_a] [dk_b] \tilde{M}^2(k_a, k_b) (1 - J_{ab}(R)) e^{i\vec{b} \cdot \vec{k}_{1,ab}} \times \left[\Theta(p_{\perp}^{J,v} - \max\{k_{t,a}, k_{t,b}\}) - \Theta(p_{\perp}^{J,v} - k_{t,ab})\right]$$



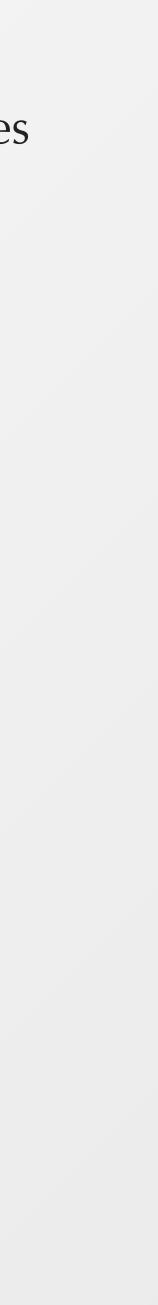
correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission accounting for configurations where the two correlated emissions are not clustered in the same jet

$$\mathcal{F}_{\text{correl}} = \frac{1}{2!} \int [dk_a] [dk_b] \tilde{M}^2(k_a, k_b) (1 - J_{ab}(R)) e^{i\vec{b} \cdot \vec{k}_{i,ab}} \times \left[\Theta(p_{\perp}^{\text{I}, \text{v}} - \max\{k_{t,a}, k_{t,b}\}) - \Theta(p_{\perp}^{\text{I}, \text{v}} - k_{t,ab})\right]$$

At NNLL, all remaining emissions can be considered to be far in angle from the pair k_a , k_b

NNLL prediction finally requires the consistent treatment of non-soft collinear emissions off the initial state particles

Soft and non-soft emission cannot be clustered by a k_t -type jet algorithm. Non-soft collinear radiation can be handled by taking a Mellin transform of the resummed cross section, giving rise to scale evolution of PDFs and of the $\mathcal{O}(\alpha_s)$ collinear coefficient functions



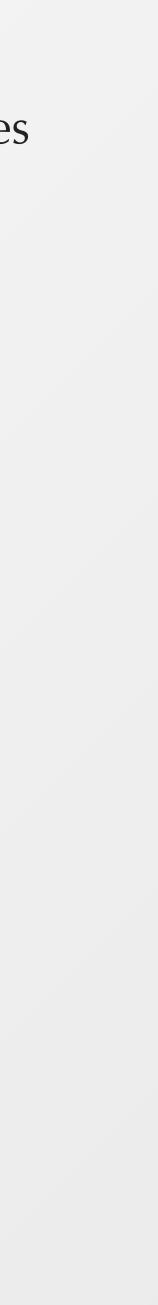
NNLL prediction finally requires the consistent treatment of non-soft collinear emissions off the initial state particles

Soft and non-soft emission cannot be clustered by a k_t -type jet algorithm. Non-soft collinear radiation can be the $\mathcal{O}(\alpha_{c})$ collinear coefficient functions

Final result at NNLL, including hard-virtual corrections at $\mathcal{O}(\alpha_{\rm s})$

$$\frac{d\sigma(p_{\perp}^{1,v})}{dy_{H}d^{2}\vec{p}_{\perp}^{H}} = M_{gg \to H}^{2} \mathscr{H}(\alpha_{s}(m_{H})) \int_{\mathscr{C}_{1}} \frac{d\nu_{1}}{2\pi i} \int_{\mathscr{C}_{2}} \frac{d\nu_{2}}{2\pi i} x_{1}^{-\nu_{1}} x_{2}^{-\nu_{2}} \int \frac{d^{2}\vec{b}}{4\pi^{2}} e^{-i\vec{b}\cdot\vec{p}_{\perp}^{H}} e^{-S_{NNLL}} \left(1 + \mathscr{F}_{clust} + \mathscr{F}_{correl}\right) \times f_{\nu_{1},a_{1}}(b_{0}/b) f_{\nu_{2},a_{2}}(b_{0}/b) \left[\mathscr{P}e^{-\int_{\mu_{\perp}^{H}}^{m_{H}} \frac{d\mu}{\mu}} \Gamma_{\nu_{1}}(\alpha_{s}(\mu))J_{0}(b\mu)\right]_{C_{1}a_{1}} \left[\mathscr{P}e^{-\int_{\mu_{\perp}^{H}}^{m_{H}} \frac{d\mu}{\mu}} \Gamma_{\nu_{2}}(\alpha_{s}(\mu))J_{0}(b\mu)\right]_{C_{1}b_{1}} \left[\mathscr{P}e^{-\int_{\mu_{\perp}^{H}}^{m_{H}} \frac{d\mu}{\mu}} \Gamma_{\nu_{2}}^{(C)}(\alpha_{s}(\mu))J_{0}(b\mu)\right]_{C_{1}b_{1}} \left[\mathscr{P}e^{-\int_{\mu_{\perp}^{H}}^{m_{H}} \frac{d\mu}{\mu}} \Gamma_{\nu_{2}}^{(C)}(\alpha_{s}(\mu))J_{0}(b\mu)\right]_{C_{2}b_{2}} Mellin moments$$

handled by taking a Mellin transform of the resummed cross section, giving rise to scale evolution of PDFs and of



? Just need to **combine measurement functions**!

At NLL

$$\sigma(\boldsymbol{p}_{\perp}^{\boldsymbol{H}}) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'(k_{t,1}) d\mathcal{Z}\boldsymbol{\Theta}$$

 $\Theta\left(p_{\perp}^{H} - |\overrightarrow{k}_{t,1} + \cdots \overrightarrow{k}_{t,n+1}|\right)$

? Just need to **combine measurement functions**!

At NLL

$$\sigma(\mathbf{p}_{\perp}^{\mathbf{J},\mathbf{v}}) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'(k_{t,1}) d\mathcal{Z} \mathbf{E}$$

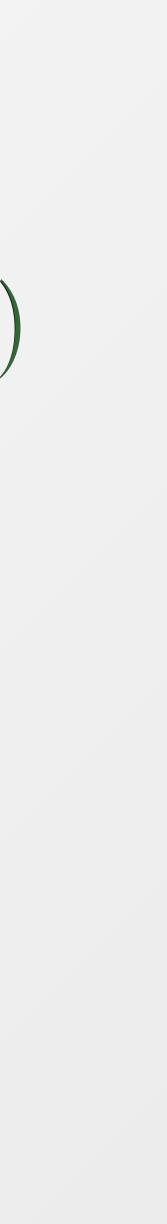
 $\Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}}-\max\left\{k_{t,1},\ldots,k_{t,n+1}\right\}\right)$

[?] Just need to combine measurement functions!

At NLL

$$\sigma(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}},\boldsymbol{p}_{\perp}^{\mathbf{H}}) = \sigma_0 \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} R'(k_{t,1}) d\mathcal{Z} \boldsymbol{\varepsilon}$$

$\Theta\left(p_{\perp}^{J,v} - \max\left\{k_{t,1}, \dots, k_{t,n+1}\right\}\right) \Theta\left(p_{\perp}^{H} - |\overrightarrow{k}_{t,1} + \dots, \overrightarrow{k}_{t,n+1}|\right)$



? Just need to **combine measurement functions**!

At NLL

$$\sigma(p_{\perp}^{\mathbf{J},\mathbf{v}},p_{\perp}^{H}) = \sigma_{0} \int \frac{dk_{t,1}}{k_{t,1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t,1})} R'\left(k_{t,1}\right) d\mathcal{Z}\Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - \max\left\{k_{t,1}, \dots, k_{t,n+1}\right\}\right) \Theta\left(p_{\perp}^{H} - |\overrightarrow{k}_{t,1} + \dots, \overrightarrow{k}_{t,n+1}|\right)$$

Same philosophy at NNLL

$$\sigma^{\text{NNLL}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}}) = \sigma_{\text{incl}}^{\text{NNLL}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}}) + \sigma_{\text{clust}}^{\text{NNLL}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}}) + \sigma_{\text{corr}}^{\text{NNLL}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}})$$

$$\int_{0}^{\infty} \frac{dk_{t,1}}{k_{t,1}} \frac{d\phi_{1}}{2\pi} \int d\mathcal{Z} \, e^{-R(k_{t,1})} \, 8 \, C_{A}^{2} \frac{\alpha_{s}^{2}(k_{t,1})}{\pi^{2}} \, \Theta\left(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}} - \max_{i>1}\{k_{t,i}\}\right)$$

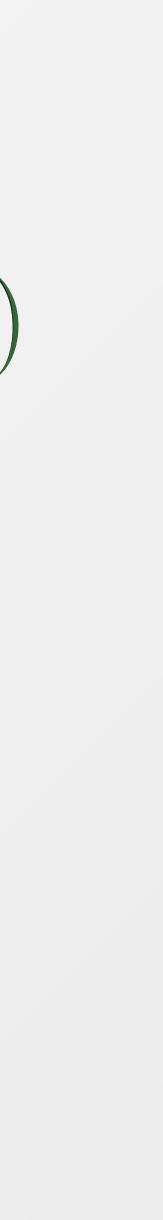
$$\int_{0}^{k_{t,1}} \frac{dk_{t,s_{1}}}{k_{t,s_{1}}} \frac{d\phi_{s_{1}}}{2\pi} \int_{0}^{\infty} d\Delta \eta_{1s_{1}} J_{1s_{1}}(R) \left[\Theta\left(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}} - \left\|\vec{k}_{t,1} + \vec{k}_{t,s_{1}}\right\|\right) - \Theta\left(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}} - k_{t,s_{1}}\right)\right]$$

where e.g.

$$\sigma^{\text{NNLL}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}}) = \sigma^{\text{NNLL}}_{\text{incl}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}}) + \sigma^{\text{NNLL}}_{\text{clust}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}}) + \sigma^{\text{NNLL}}_{\text{corr}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}})$$

$$\sigma^{\text{NNLL}}_{\text{clust}}(\boldsymbol{p}_{\perp}^{\mathbf{J},\mathbf{v}}) \simeq \int_{0}^{\infty} \frac{dk_{t,1}}{k_{t,1}} \frac{d\phi_{1}}{2\pi} \int d\mathcal{Z} \, e^{-R(k_{t,1})} \, 8 \, C_{A}^{2} \frac{\alpha_{s}^{2}(k_{t,1})}{\pi^{2}} \, \Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - \max_{i>1}\{k_{t,i}\}\right)$$

$$\times \int_{0}^{k_{t,1}} \frac{dk_{t,s_{1}}}{k_{t,s_{1}}} \frac{d\phi_{s_{1}}}{2\pi} \int_{-\infty}^{\infty} d\Delta \eta_{1s_{1}} J_{1s_{1}}(R) \left[\Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - |\vec{k}_{t,1} + \vec{k}_{t,s_{1}}|\right) - \Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - k_{t}\right)\right]$$



? Just need to **combine measurement functions**!

At NLL

$$\sigma(p_{\perp}^{\mathbf{J},\mathbf{v}},p_{\perp}^{H}) = \sigma_{0} \int \frac{dk_{t,1}}{k_{t,1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t,1})} R'\left(k_{t,1}\right) d\mathcal{Z}\Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - \max\left\{k_{t,1},\ldots,k_{t,n+1}\right\}\right) \Theta\left(p_{\perp}^{H} - |\overrightarrow{k}_{t,1} + \cdots,\overrightarrow{k}_{t,n+1}|\right)$$

Same philosophy at NNLL

$$\sigma^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}}) = \sigma_{\text{incl}}^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}}) + \sigma_{\text{clust}}^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}}) + \sigma_{\text{corr}}^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}})$$

$$\int_{0}^{\infty} \frac{dk_{t,1}}{k_{t,1}} \frac{d\phi_{1}}{2\pi} \int d\mathcal{Z} \, e^{-R(k_{t,1})} \, 8 \, C_{A}^{2} \frac{\alpha_{s}^{2}(k_{t,1})}{\pi^{2}} \, \Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - \max_{i>1}\{k_{t,i}\}\right)$$

$$\int_{0}^{k_{t,1}} \frac{dk_{t,s_{1}}}{k_{t,s_{1}}} \frac{d\phi_{s_{1}}}{2\pi} \int_{-\infty}^{\infty} d\Delta \eta_{1s_{1}} J_{1s_{1}}(R) \left[\Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - |\vec{k}_{t,1} + \vec{k}_{t,s_{1}}|\right) - \Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - k_{t,1}\right)\right]$$

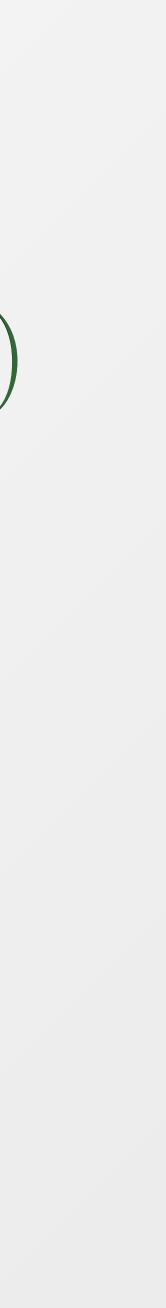
$$\Theta\left(p_{\perp}^{H} - |\vec{k}_{t,1} + \dots + \vec{k}_{t,n+1} + \vec{k}_{t,s_{1}}|\right)$$

$$\sigma^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}}) = \sigma_{\text{incl}}^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}}) + \sigma_{\text{clust}}^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}}) + \sigma_{\text{corr}}^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}})$$
where e.g
$$\sigma_{\text{clust}}^{\text{NNLL}}(p_{\perp}^{\mathbf{J},\mathbf{v}}, p_{\perp}^{H}) \simeq \int_{0}^{\infty} \frac{dk_{t,1}}{k_{t,1}} \frac{d\phi_{1}}{2\pi} \int d\mathcal{Z} \, e^{-R(k_{t,1})} \, 8 \, C_{A}^{2} \frac{\alpha_{s}^{2}(k_{t,1})}{\pi^{2}} \, \Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - \max_{i>1}\{k_{t,i}\}\right)$$

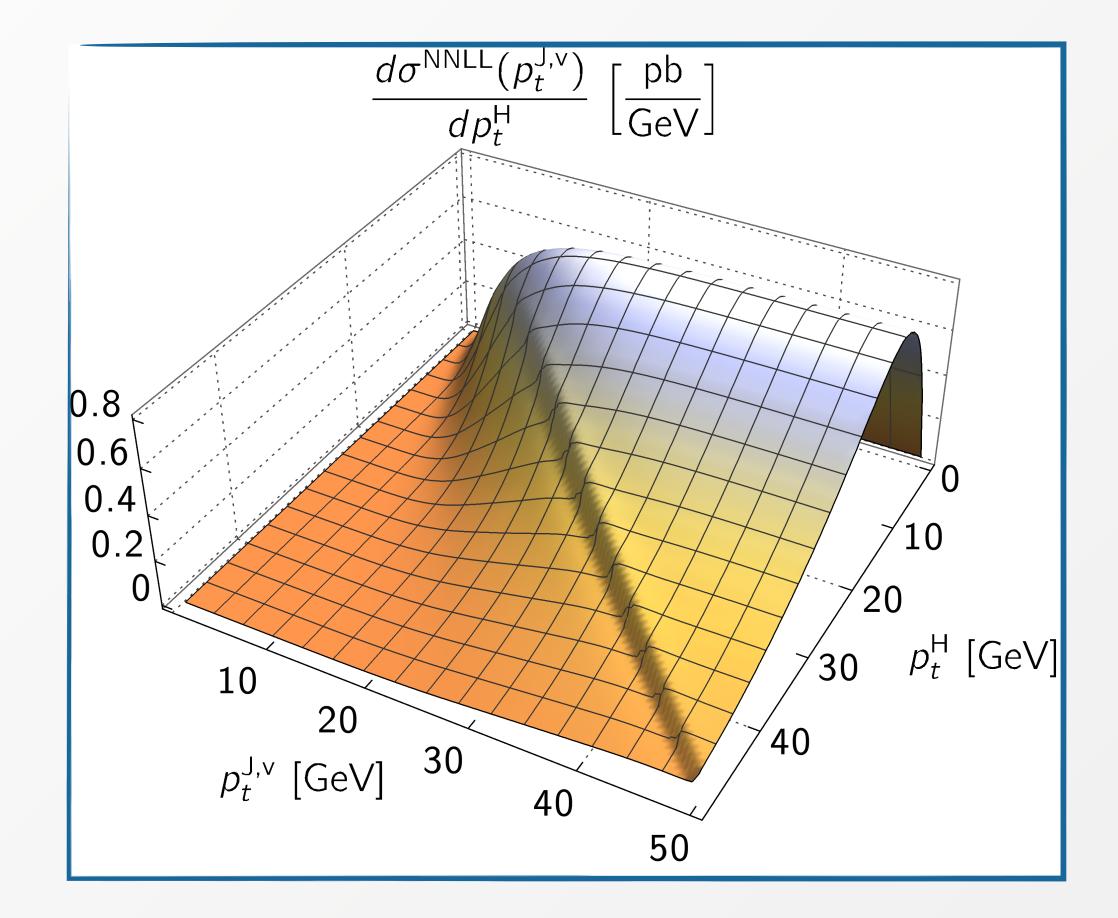
$$\times \int_{0}^{k_{t,1}} \frac{dk_{t,s_{1}}}{k_{t,s_{1}}} \frac{d\phi_{s_{1}}}{2\pi} \int_{-\infty}^{\infty} d\Delta \eta_{1s_{1}} J_{1s_{1}}(R) \left[\Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - |\vec{k}_{t,1} + \vec{k}_{t,s_{1}}|\right) - \Theta\left(p_{\perp}^{\mathbf{J},\mathbf{v}} - k_{t,1}\right)\right]$$

$$\times \Theta\left(p_{\perp}^{H} - |\vec{k}_{t,1} + \dots + \vec{k}_{t,n+1} + \vec{k}_{t,s_{1}}|\right)$$

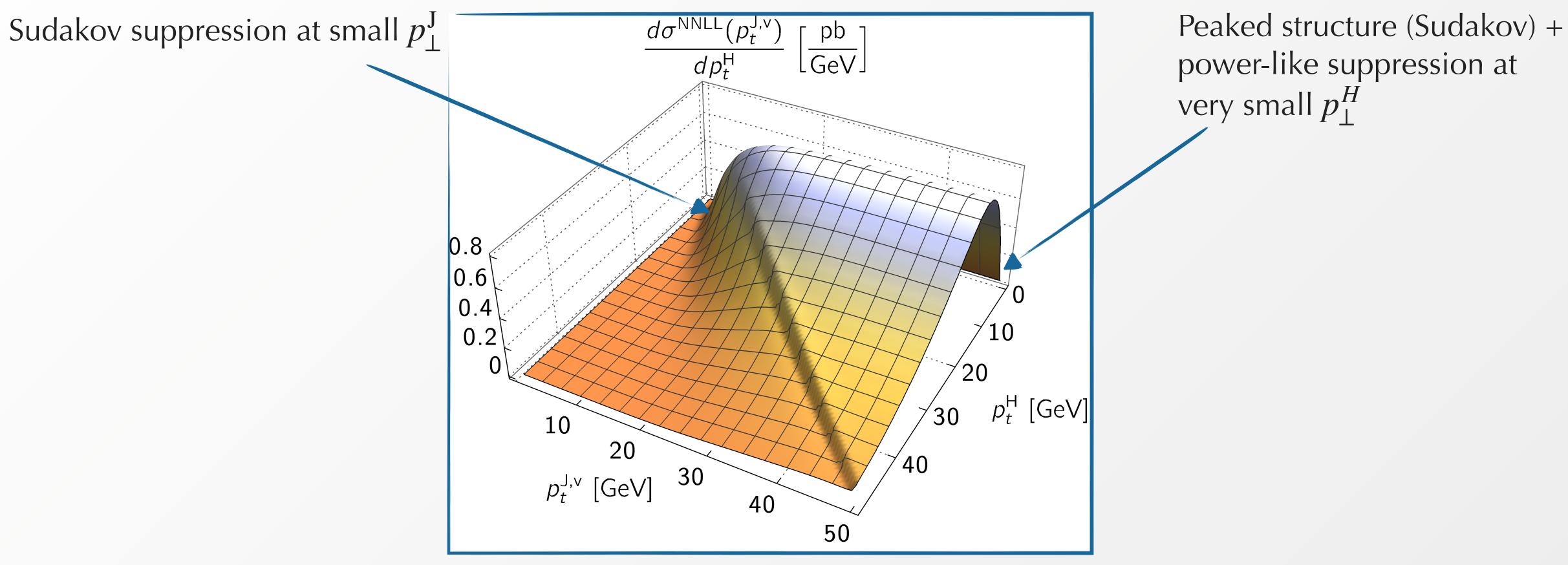
And analogously for other contributions

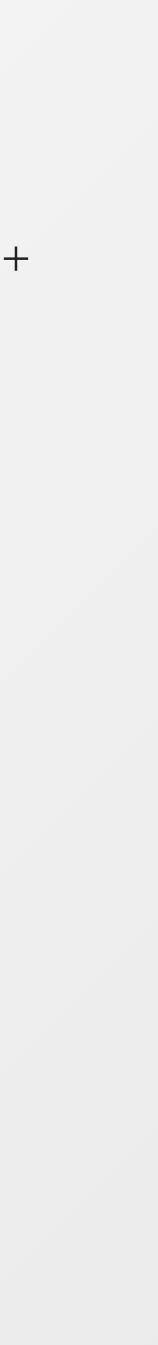


NNLL cross section differential in p_{\perp}^{H} , **cumulative in** $p_{\perp}^{J} \leq p_{\perp}^{J,v}$

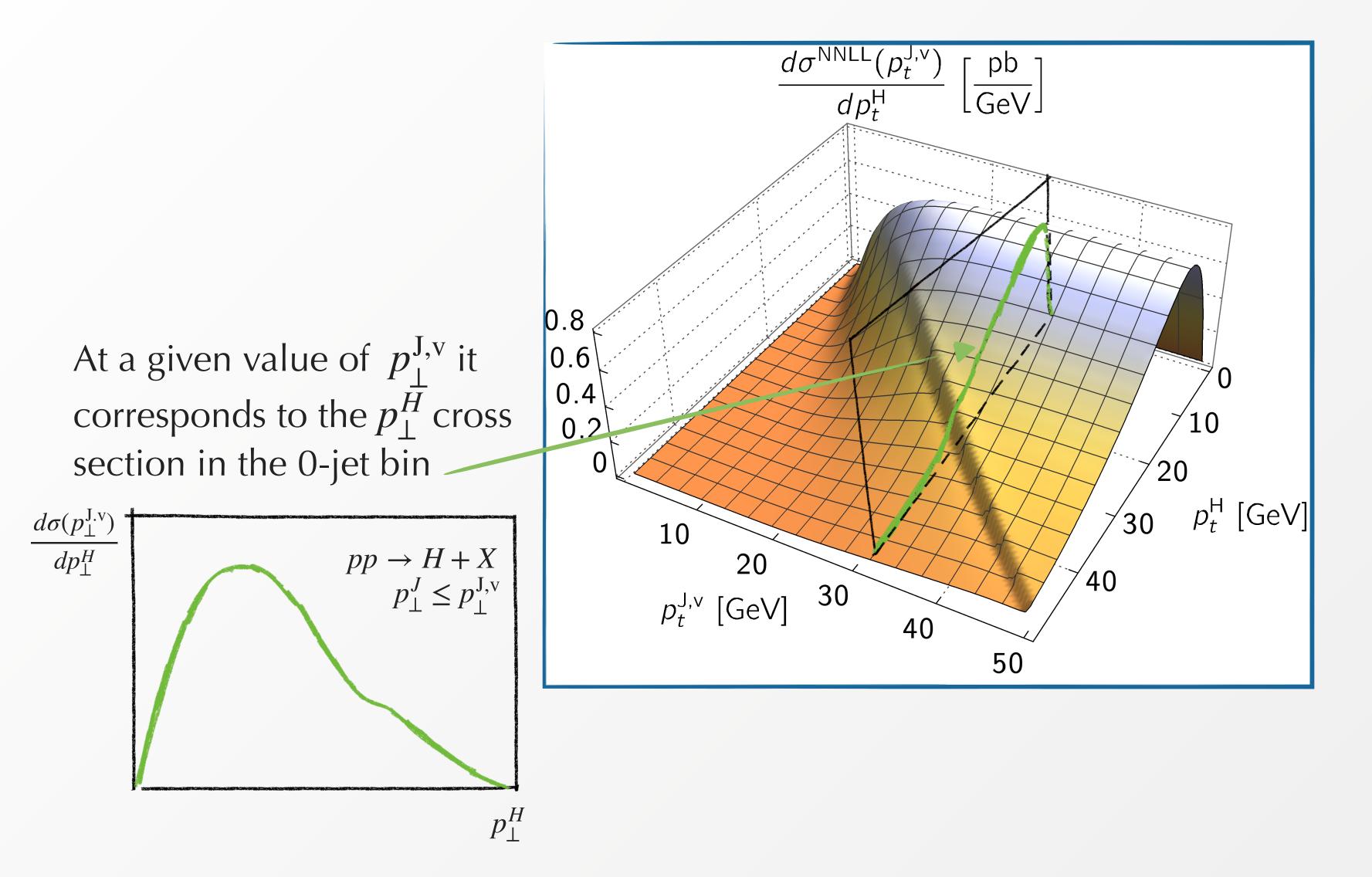


NNLL cross section differential in p_{\perp}^{H} , **cumulative in** $p_{\perp}^{J} \leq p_{\perp}^{J,v}$

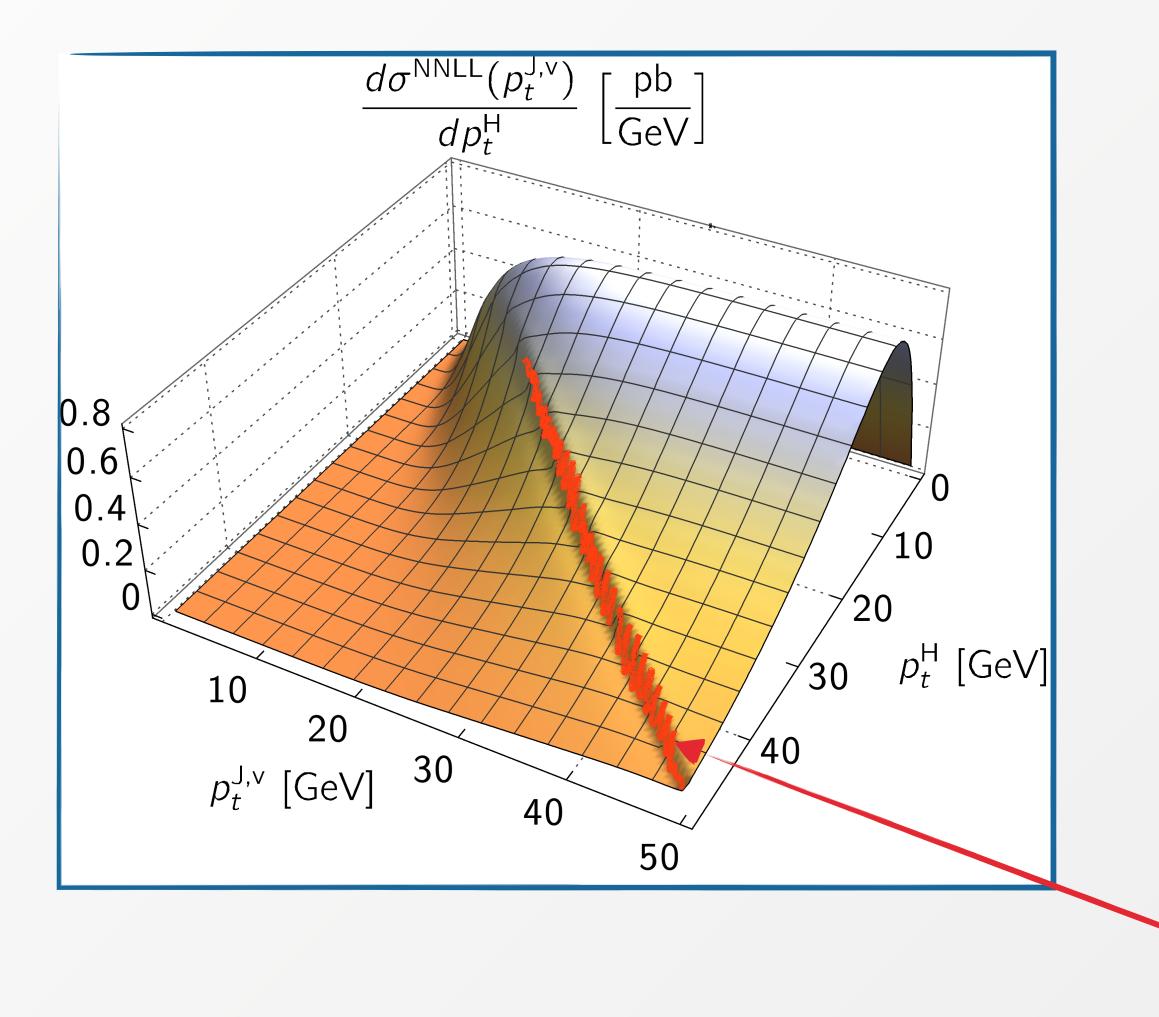




NNLL cross section differential in p_{\perp}^H , cumulative in $p_{\perp}^{J} \leq p_{\perp}^{J,v}$



NNLL cross section differential in p_{\perp}^H , cumulative in $p_{\perp}^J \leq p_{\perp}^{J,v}$



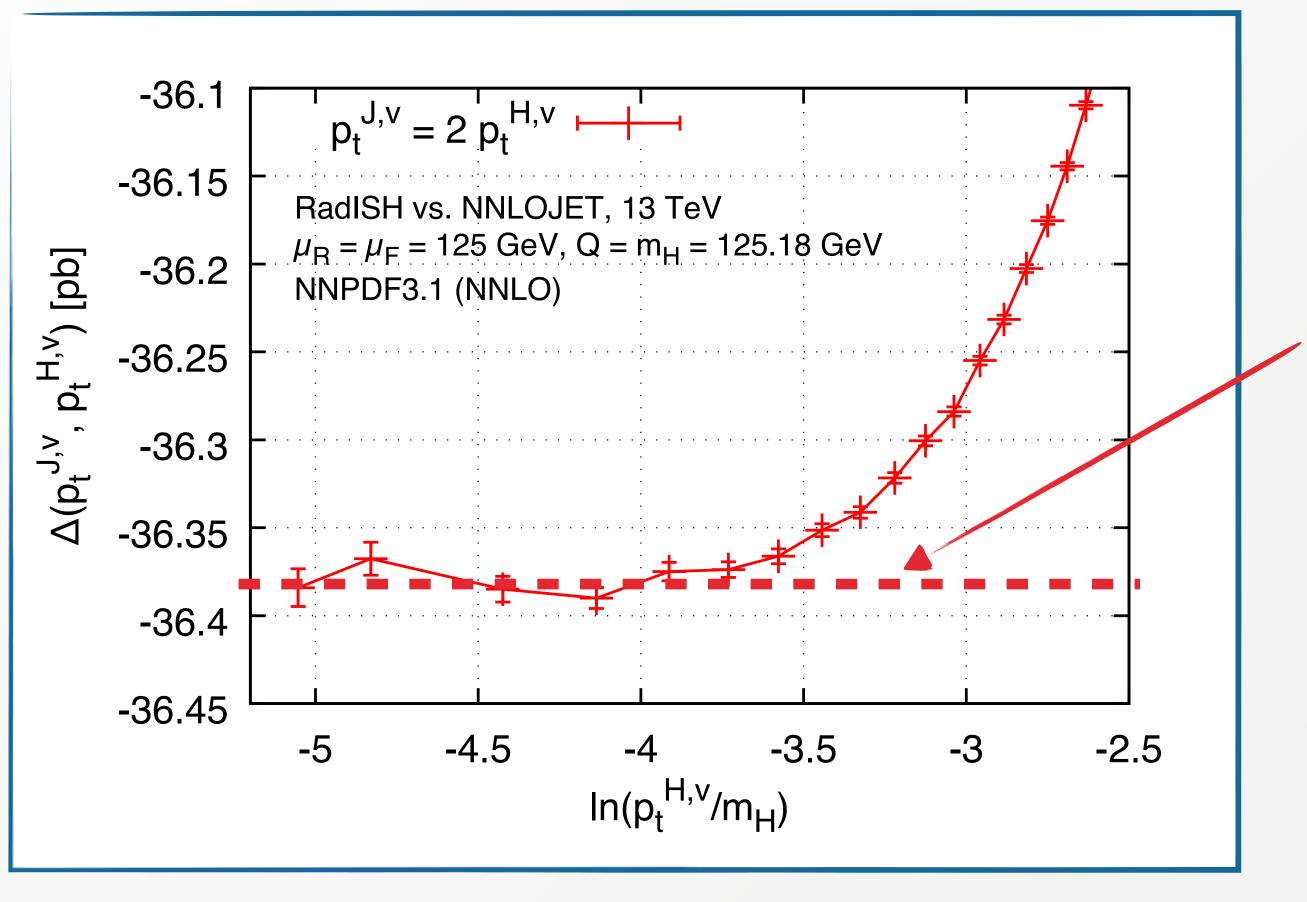
Logarithms associated to the Shoulder are resummed in the limit $p_{\perp}^{H} \sim p_{\perp}^{J,v} \ll m_{H}$

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

[Catani, Webber '97]

Sudakov shoulder: integrable singularity beyond LO at $p_{\perp}^{H} \simeq p_{\perp}^{\mathrm{J,v}}$

Accuracy check at $\mathcal{O}(\alpha_s^2)$



$$\Delta(p_{\perp}^{J,v}, p_{\perp}^{H,v}) = \sigma^{\text{NNLO}}(p_{\perp}^{J,v}, p_{\perp}^{H,v}) - \sigma_{\text{exp.}}^{\text{NNLL}}(p_{\perp}^{J,v}, p_{\perp}^{H,v}) - \sigma_{\text{exp.}}^{\text{NNLL}}(p_{\perp}^{J,v}, p_{\perp}^{H,v}, p_{\perp}^{J,v}) = \sigma^{\text{NNLO}} - \int \Theta(p_{\perp}^{H} > p_{\perp}^{H,v}) \vee \Theta(p_{\perp}^{H,v}, p_{\perp}^{H,v}) = \sigma^{\text{NNLO}} - \int \Theta(p_{\perp}^{H,v}, p_{\perp}^{H,v}) \vee \Theta(p_{\perp}^{H,v}, p_{\perp}^{H,v}) + \sigma_{\text{exp.}}^{H,v} + \sigma_{\text{exp.}}^{H,v}) = \sigma^{\text{NNLO}} + \sigma_{\text{exp.}}^{H,v} + \sigma_{\text{exp.}}^{H,$$

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

 $\sigma^{\rm NNLO}$

 $(v, p_{\perp}^{H,v})$

 $(p_{\perp}^{\mathrm{J}} > p_{\perp}^{\mathrm{J,v}}) d\sigma_{H+\mathrm{J}}^{\mathrm{NLO}}$

Comparison of the expansion of the resummed result with the fixed order at $\mathcal{O}(\alpha_s^2)$ in the limit $p_{\perp}^H \sim p_{\perp}^{J,v} \ll m_H$

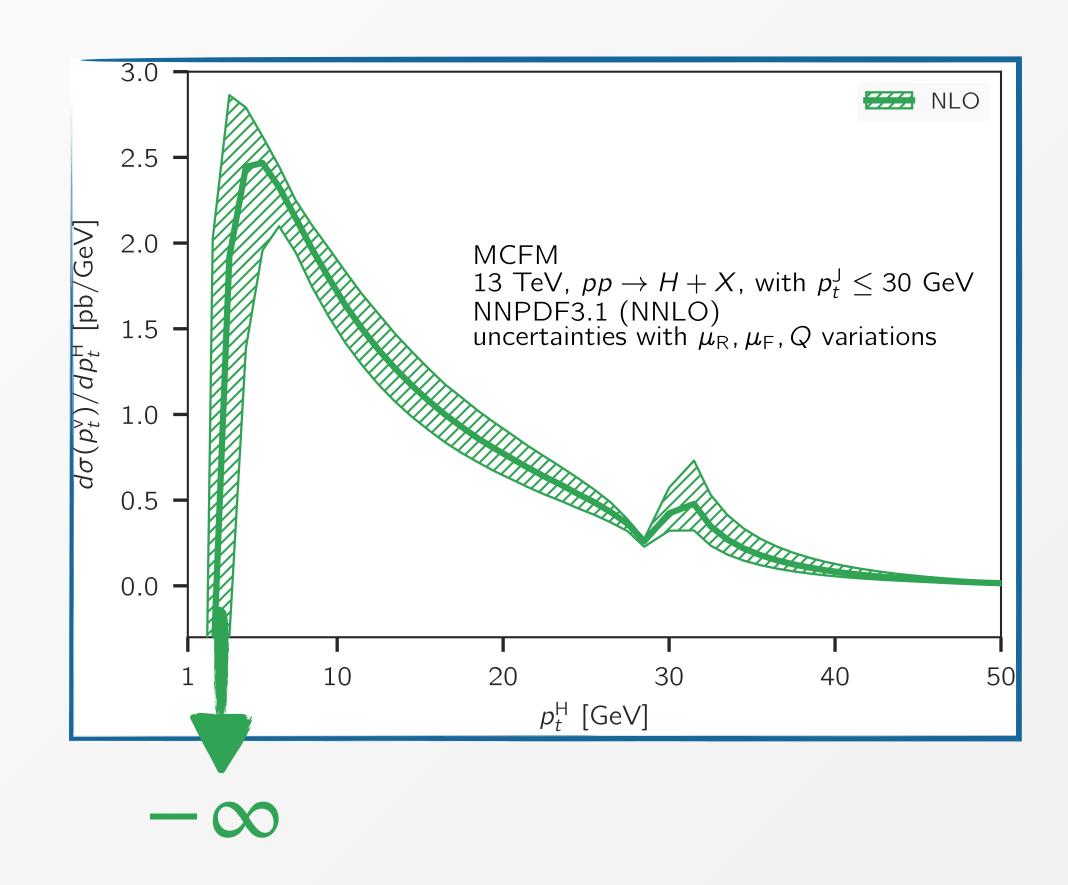
Difference at the double-cumulative level goes to a **constant** (all logarithmic terms correctly predicted)

Very strong check: **NNLL resummation** of the logarithms associated to the shoulder

Analogous checks performed in the limits $p_{\perp}^{H} \ll p_{\perp}^{J,v} < m_{H}$ and $p_{\perp}^{J,v} \ll p_{\perp}^{H} < m_{H}$

LHC results: Higgs transverse momentum with a jet veto

Multiplicative matching to fixed order (NLO H+j from MCFM, NNLO H from ggHiggs)

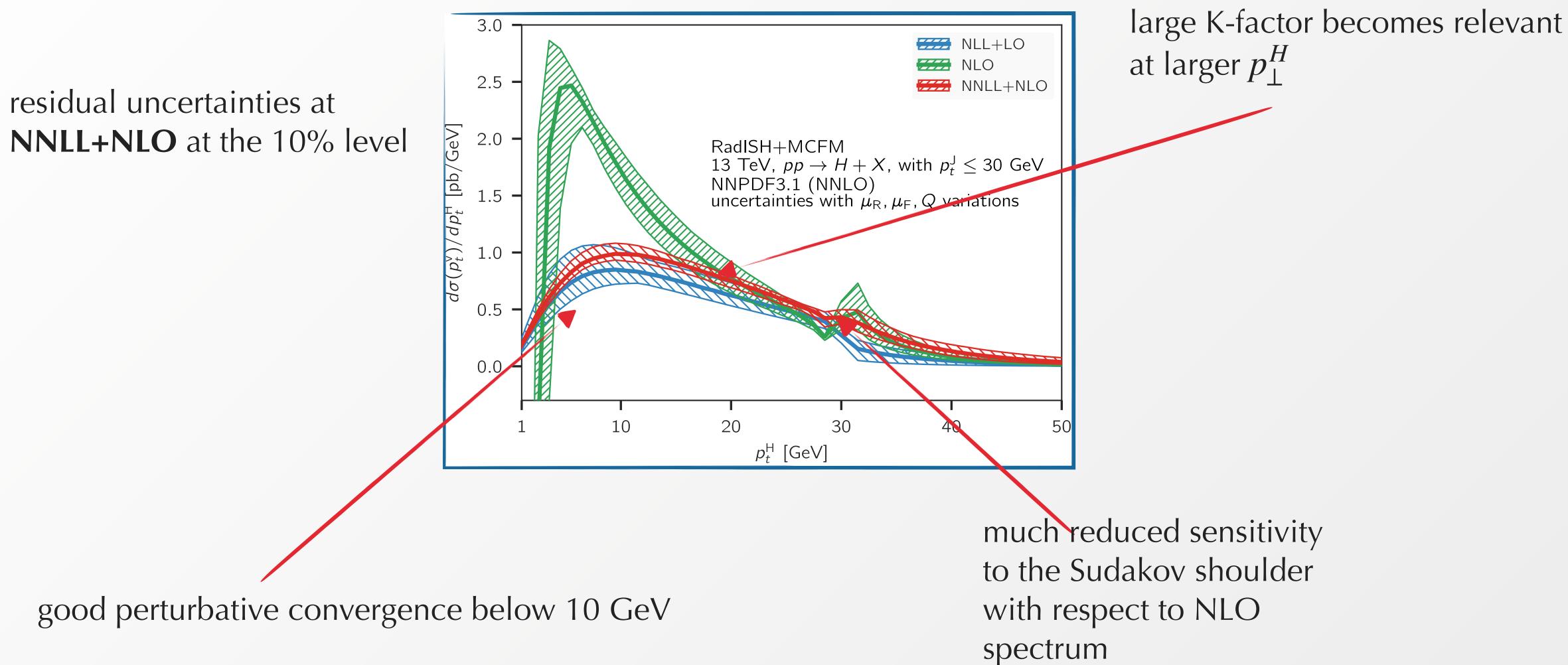


Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

[Campbell, Ellis, Giele,'15] [Bonvini et al '13]

LHC results: Higgs transverse momentum with a jet veto

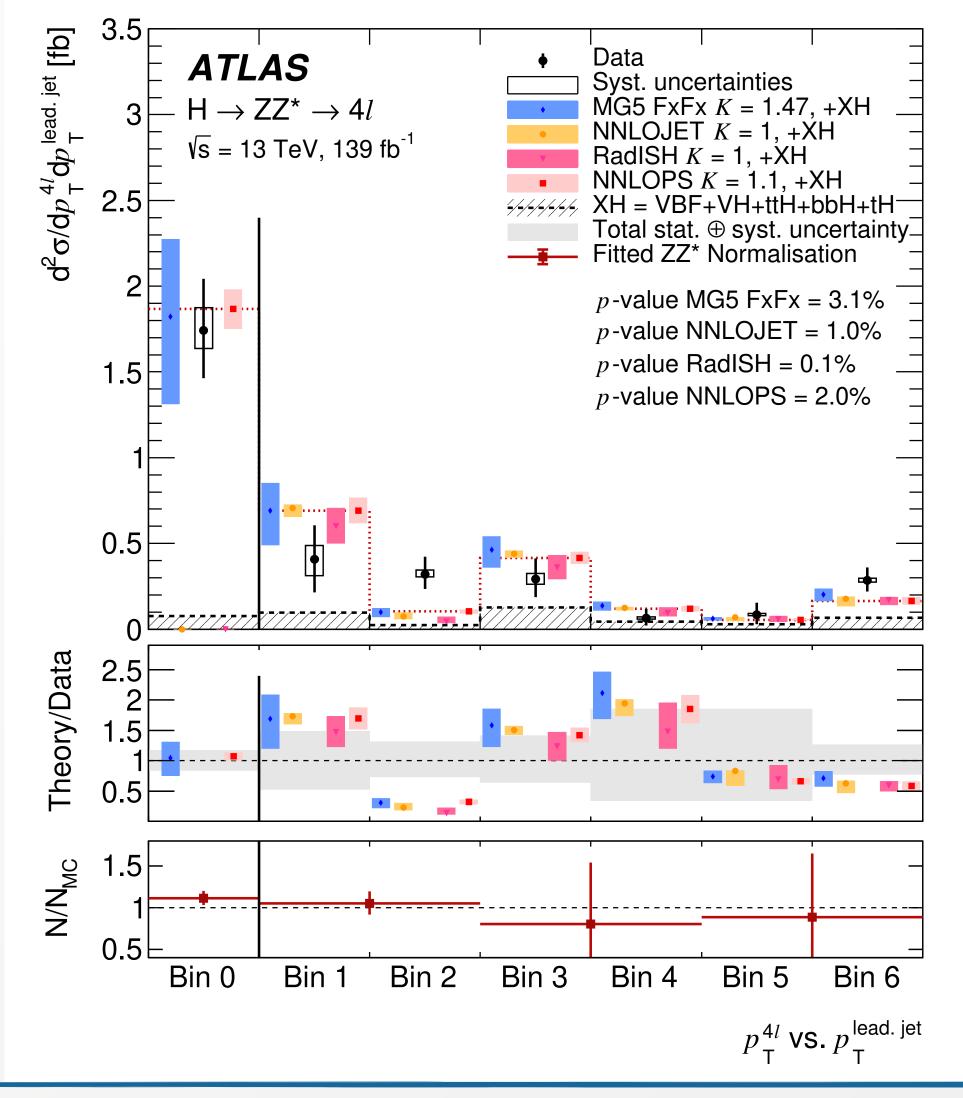
Multiplicative matching to fixed order (NLO H+j from MCFM, NNLO H from ggHiggs)



Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

[Bonvini et al '13] [Campbell, Ellis, Giele,'15]

LHC results: Higgs transverse momentum with a jet veto



[ATLAS 2004.03969]

LHC applications: W+W- production

Jet vetoed analyses commonly enforced in LHC searches

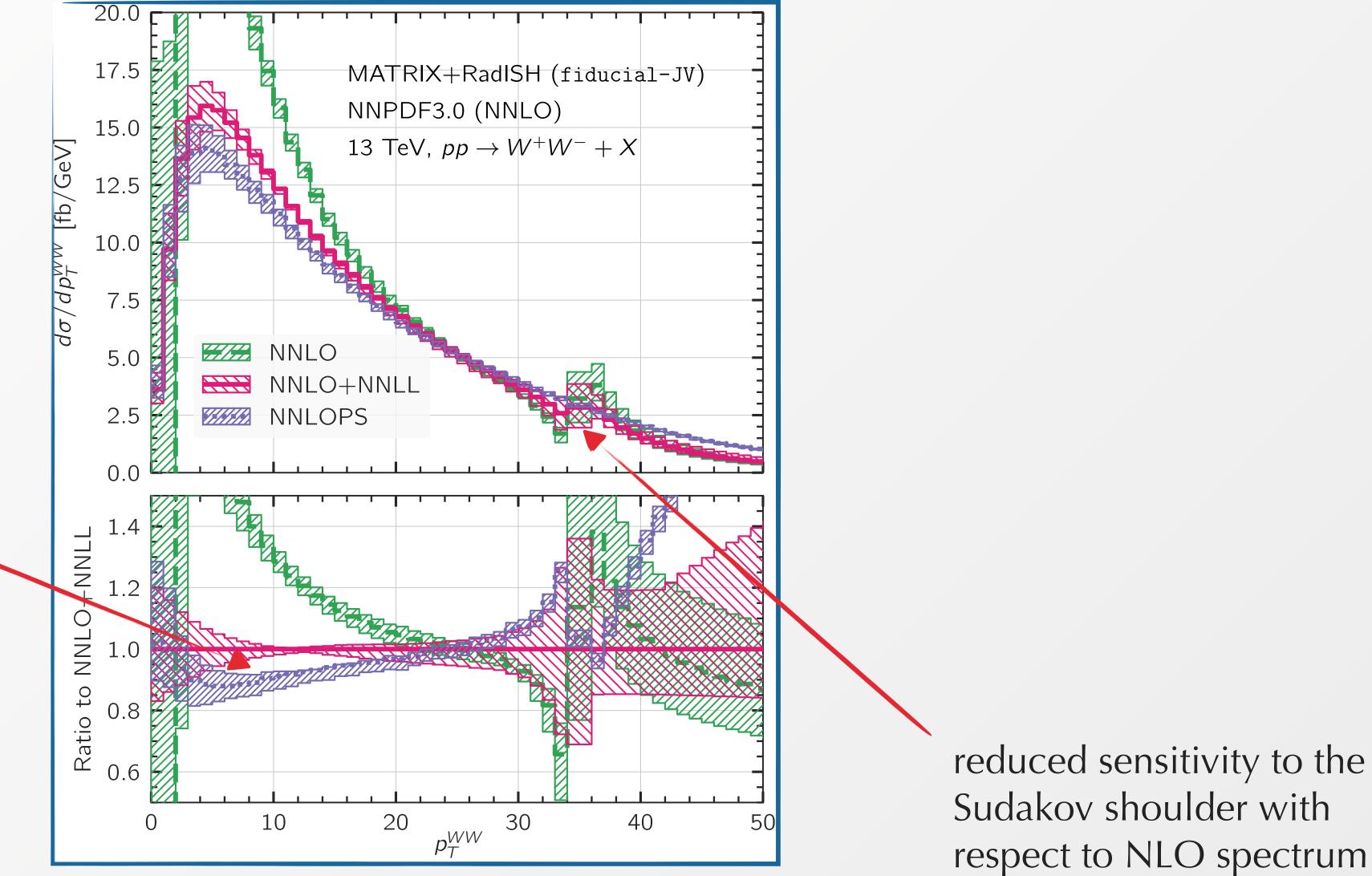
For instance, W+W- channel, which is relevant for BSM searches into leptons missing energy and/or jets and Higgs measurements, suffers from a signal contamination due to large top-quark background

Fiducial region defined by a rather stringent jet veto

W+W- transverse momentum with a jet veto

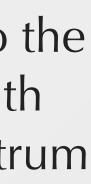
NNLL+NLO spectrum obtained by interfacing RadISH with MATRIX [Grazzini, Kallweit, Rathlev, Wiesemann '15, '17]

[Wiesemann, Re, Zanderighi '18] Comparison with NNLOPS result (much lower log accuracy) shows differences at the $\mathcal{O}(10\%)$ level



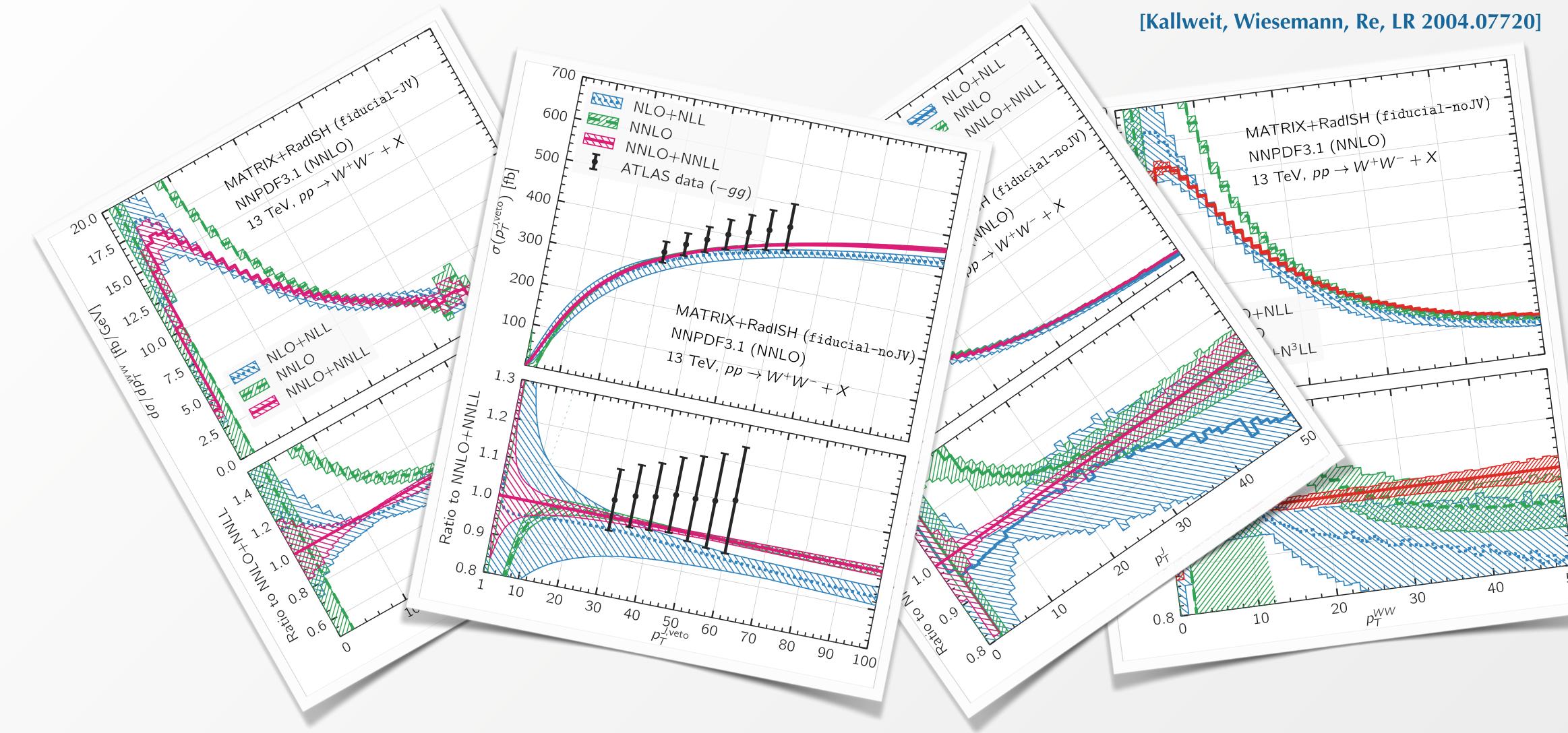
Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

[Kallweit, Wiesemann, Re, LR 2004.07720]



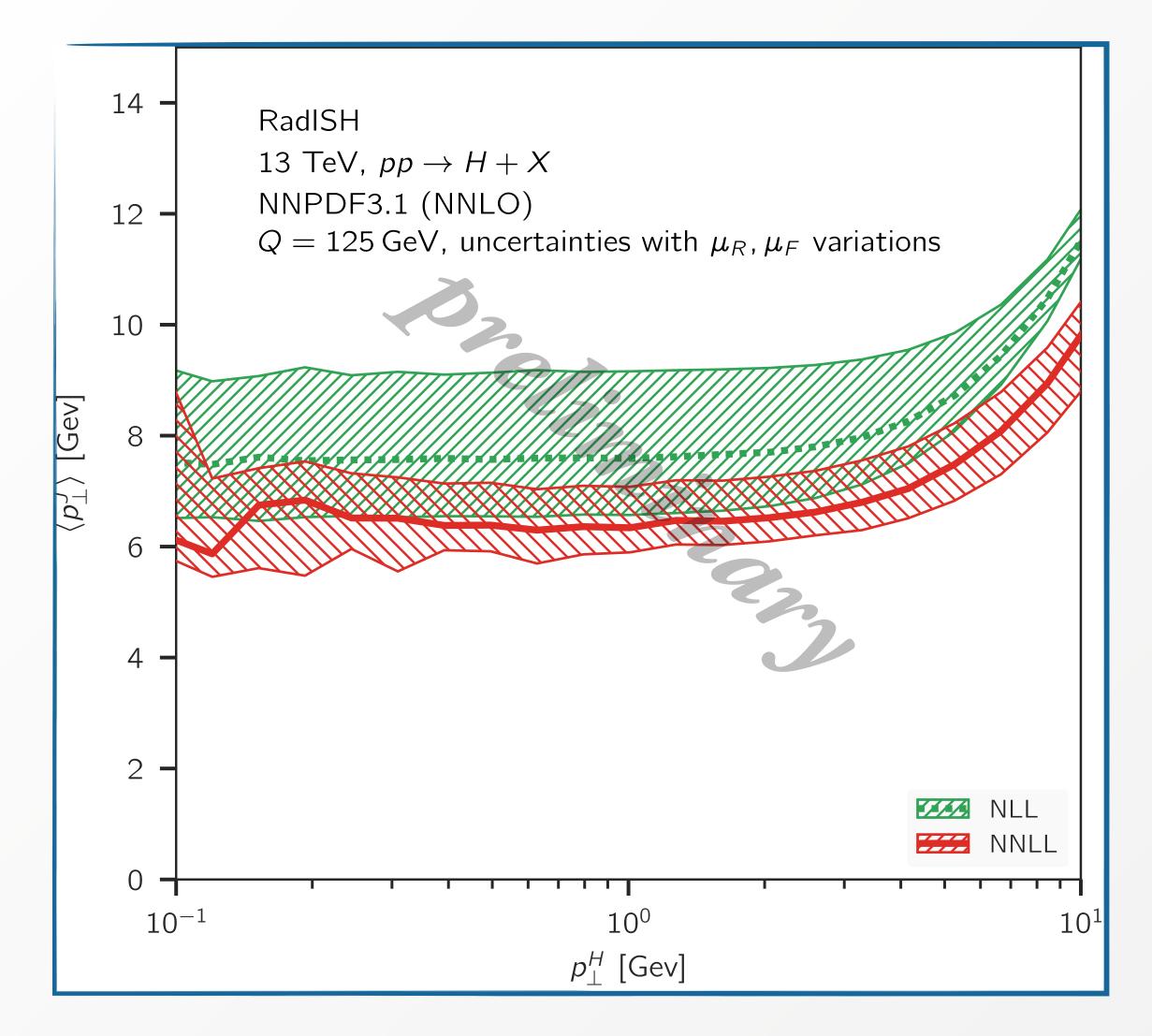
LHC results

Upcoming RadISH+MATRIX fully automated framework for generic $2 \rightarrow 1$ and $2 \rightarrow 2$ colour singlet processes

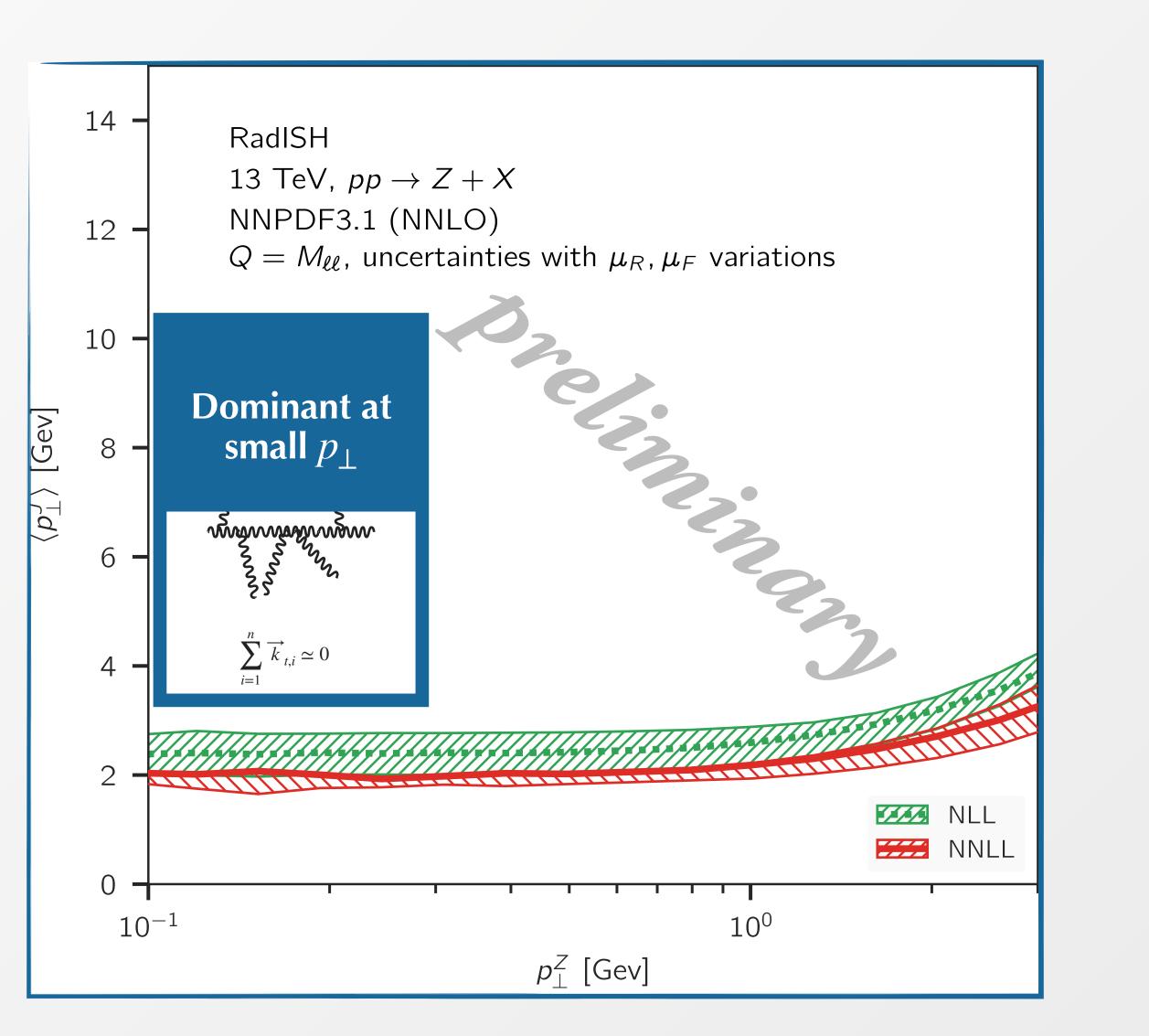


3. More differential description of the QCD radiation than that usually possible in a conjugate-space formulation

Direct space: access to differential information and underlying dynamics



Possible access to subleading jets and higher moments



Summary

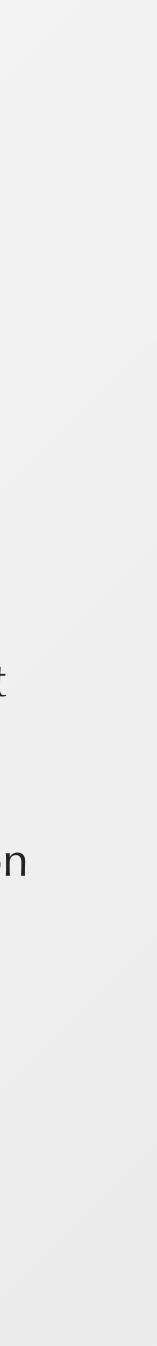
- LHC potential
- collisions
- NNLL accuracy and offers access to underlying dynamics
- available via upcoming MATRIX+RadISH framework

• Precision of the data demands an increasing theoretical accuracy at the **multi-differential level** to fully exploit

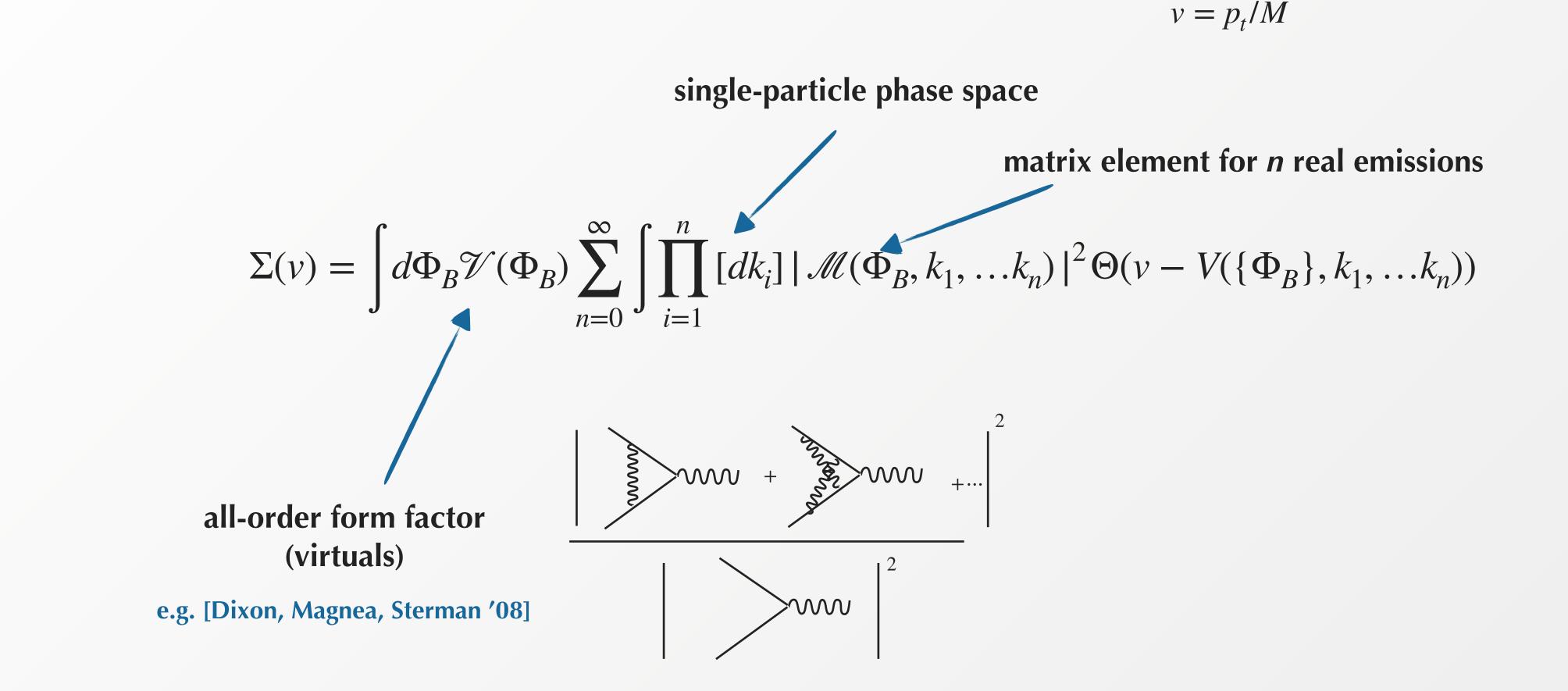
• First joint resummation for a double-differential kinematic observable involving a jet algorithm in hadronic

• Direct space formulation (RadISH) provides guidance to obtain elegant and compact formulation in *b*-space at

• Formalism can be readily extended to more complex final states; $2 \rightarrow 1$ and $2 \rightarrow 2$ colour singlet processes soon



All-order structure of the matrix element



Transverse observable resummation with RadISH

Establish a **logarithmic counting** for the squared matrix element $|\mathcal{M}(\Phi_B, k_1, ..., k_n)|^2$

Decompose the squared amplitude in terms of *n*-particle correlated blocks, denoted by $|\tilde{\mathcal{M}}(k_1, ..., k_n)|^2$ $\left(\left|\tilde{\mathcal{M}}(k_1)\right|^2 = \left|\mathcal{M}(k_1)\right|^2\right)$

$$\begin{split} \sum_{n=0}^{\infty} |\mathcal{M}(\Phi_{B}, k_{1}, \dots, k_{n})|^{2} &= |\mathcal{M}_{B}(\Phi_{B})^{2} \\ &\times \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|\mathcal{M}(k_{i})|^{2} + \int [dk_{a}][dk_{b}] |\mathcal{M}(k_{a}, k_{b})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{ab} - Y_{i}) \\ &+ \int [dk_{a}][dk_{b}][dk_{c}] |\mathcal{M}(k_{a}, k_{b}, k_{c})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} + \vec{k}_{tc} - \vec{k}_{ti}) \delta(Y_{abc} - Y_{i}) + \dots \right) \right\} \\ \tilde{M}(k_{1})|^{2} &= \frac{|\mathcal{M}(k_{1})|^{2}}{|\mathcal{M}_{B}|^{2}} = |\mathcal{M}(k_{1})|^{2} \\ \tilde{M}(k_{1}, k_{2})|^{2} &= \frac{|\mathcal{M}(k_{1}, k_{2})|^{2}}{|\mathcal{M}_{B}|^{2}} - \frac{1}{2!} |\mathcal{M}(k_{1})|^{2} \mathcal{M}|(k_{2})|^{2} \end{split}$$

Upon integration over the phase space, the expansion can be put in a **one to one correspondence** with the logarithmic structure

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

*expression valid for inclusive observables

 $\equiv |\mathcal{M}_B(\Phi_B)|^2 \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^n |\mathcal{M}(k_i)|_{\text{inc}}^2$

Systematic recipe to include terms up to the desired logarithmic accuracy

Resummation in direct space: the p_t case

2. the exponentiated divergences of virtual origin

neglected in the computation of the observable

$$\Sigma(v) = \int d\Phi_B |\mathscr{M}_B(\Phi_B)|^2 \mathscr{V}(\Phi_B)$$
$$\times \int [dk_1] |\mathscr{M}(k_1)|_{\text{inc}}^2 \left(\sum_{l=0}^{\infty} \frac{1}{l!} \int \prod_{i=2}^{l+1} [dk_i] |\mathscr{M}(k_i)|_{i=2}^2 \Theta(V(k_i)) \right)$$

Unresolved emission doesn't contribute to the evaluation of the observable: it can be exponentiated directly and employed to cancel the virtual divergences, giving rise to a Sudakov radiator

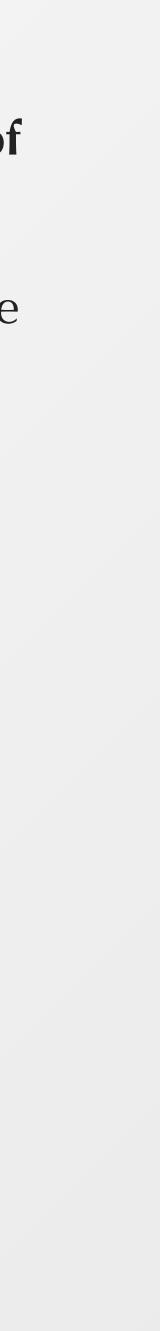
$$\mathcal{V}(\Phi_B) \exp\left\{ \int [dk] \left| \mathcal{M}(k) \right|_{\text{inc}}^2 \Theta(\epsilon V(k_1) - V(k)) \right\} \simeq e^{-R(\epsilon V(k_1))}$$

Exploit rIRC safety to single out the IRC singularities of the real matrix element and achieve the cancellation of

Introduce a slicing parameter $\epsilon \ll 1$ such that all inclusive blocks with $k_{t,i} < \epsilon k_{t,1}$, with $k_{t,1}$ hardest emission, can be

unresolved emissions $\mathcal{M}(k_j)\big|_{\mathrm{inc}}^2 \Theta(\epsilon V(k_1) - V(k_j))$ $(k_i) - \epsilon V(k_1))\Theta \left(v - V(\Phi_B, k_1, \dots, k_{m+1})\right)$

resolved emissions



Resummation in direct space: the p_t case

Result at NLL accuracy can be written as

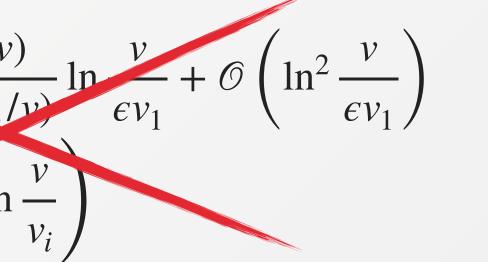
$$\Sigma(v) = \sigma^{(0)} \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(\epsilon v_1)} R'(v_1) \qquad v_i = V(k_i), \quad \zeta_i = v_i / v_1$$
$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(\zeta_i v_1) \Theta\left(v - V(\Phi_B, k_1, \dots, k_{n+1})\right)$$

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes exactly and result is finite in four dimensions

It contains subleading effect which in the original CAESAR approach are disposed of by expanding R and R' around v

$$R(\epsilon v_1) = R(v) + \frac{dR(v)}{d\ln(1/v)}$$
$$R'(v_i) = R'(v) + \mathcal{O}\left(\ln\frac{1}{v_i}\right)$$

Not possible! valid only if the ratio v_i/v remains of order one in the whole emission phase space, but for observables which feature kinematic cancellations there are configurations with $v_i \gg v$. Subleading effects necessary



Resummation in direct space: the p_t case

Result at NLL accuracy can be written as

$$\Sigma(v) = \sigma^{(0)} \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(\epsilon v_1)} R'(v_1) \qquad v_i = V(k_i), \quad \zeta_i = v_i / v_1$$
$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(\zeta_i v_1) \Theta\left(v - V(\Phi_B, k_1, \dots, k_{n+1})\right)$$

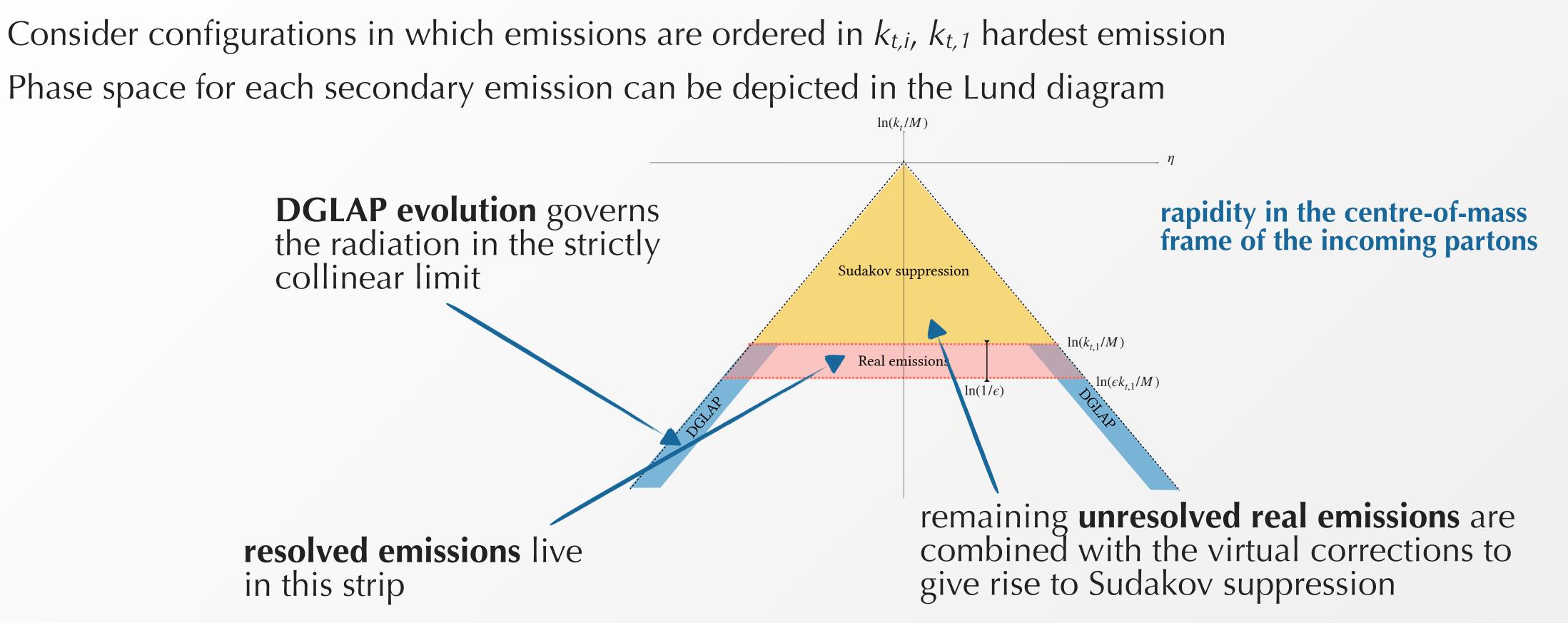
Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes exactly and result is finite in four dimensions

Convenient to perform an expansion around k_{t1} (more efficient and simpler implementation)

$$R(\epsilon k_{t1}) = R(k_{t1}) + \frac{dR(k_{t1})}{d\ln(1/k_{t1})} \ln\frac{1}{\epsilon} + \mathcal{O}\left(\ln^2\frac{1}{\epsilon}\right)$$
$$R'(k_{ti}) = R'(k_{t1}) + \mathcal{O}\left(\ln\frac{k_{t1}}{k_{ti}}\right)$$

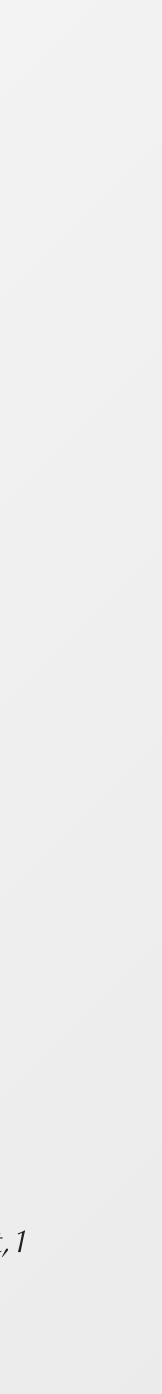
Subleading effects retained: no divergence at small v, power-like behaviour respected **Logarithmic accuracy** defined in terms of $\ln(M/k_{t1})$ Result formally equivalent to the *b*-space formulation

Parton luminosities



- DGLAP evolution can be performed **inclusively** up to $\epsilon k_{t,1}$ thanks to rIRC safety
- In the overlapping region hard-collinear emissions modify the observable's value: the evolution should be performed exclusively (unintegrated in *k*_t)
- (i.e. one can evaluate $\mu_{\rm F} = k_{t,1}$)

• At NLL the real radiation can be approximated with its soft limit: DGLAP can be performed inclusively up to $k_{t,1}$



Beyond NLL

Extension to NNLL and beyond requires the systematic inclusion of the correlated blocks necessary to achieve the desired logarithmic accuracy

Moreover, one needs to relax a series of assumptions which give rise to subleading corrections neglected at NLL (for instance, exact rapidity bounds). These corrections can be included systematically by including additional terms in the expansion

 $R(\epsilon v_1) = R(v_1) + \frac{dR(d_1)}{d\ln(d_1)}$

Finally, one needs to specify a complete treatment for hard-collinear radiation. Starting at NNLL one or more real emissions can be hard and collinear to the emitting leg, and the available phase space for subsequent real emissions changes

Two classes of contributions:

• one soft by construction and which is analogous to the R' contribution

 $R'(v_i) =$

another hard and collinear (exclusive DGLAP step): last step of DGLAP evolution must be performed unintegrated in k_t

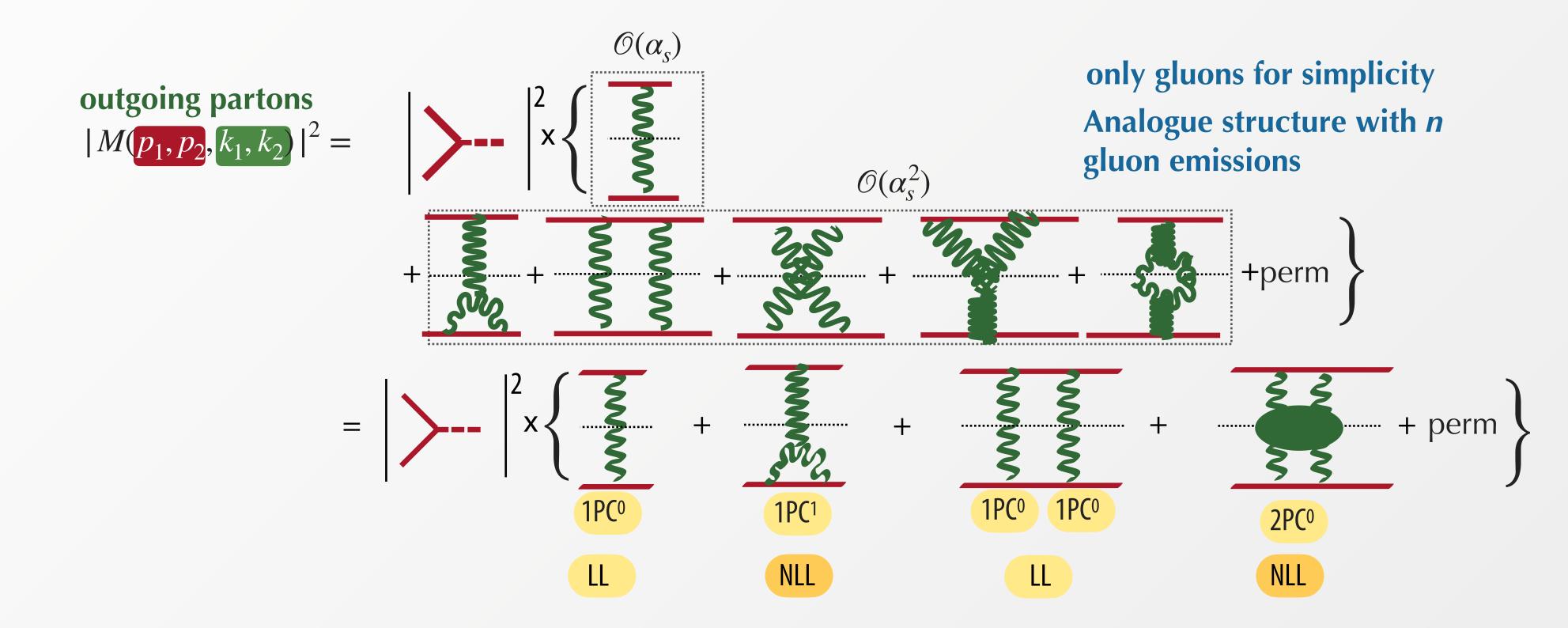
$$\frac{1}{(1/v_1)} \ln \frac{1}{\epsilon} + \mathcal{O}\left(\ln^2 \frac{1}{\epsilon}\right)$$

$$R'(v_1) + \mathcal{O}\left(\ln\frac{v_1}{v_i}\right)$$

Logarithmic counting

Necessary to establish a **well defined logarithmic counting**: possibile to do that by decomposing the squared amplitude in terms of n-particle correlated blocks (**nPC**)

e.g. $pp \rightarrow H + \text{emission of up to 2 (soft) gluons } O(\alpha_s^2)$

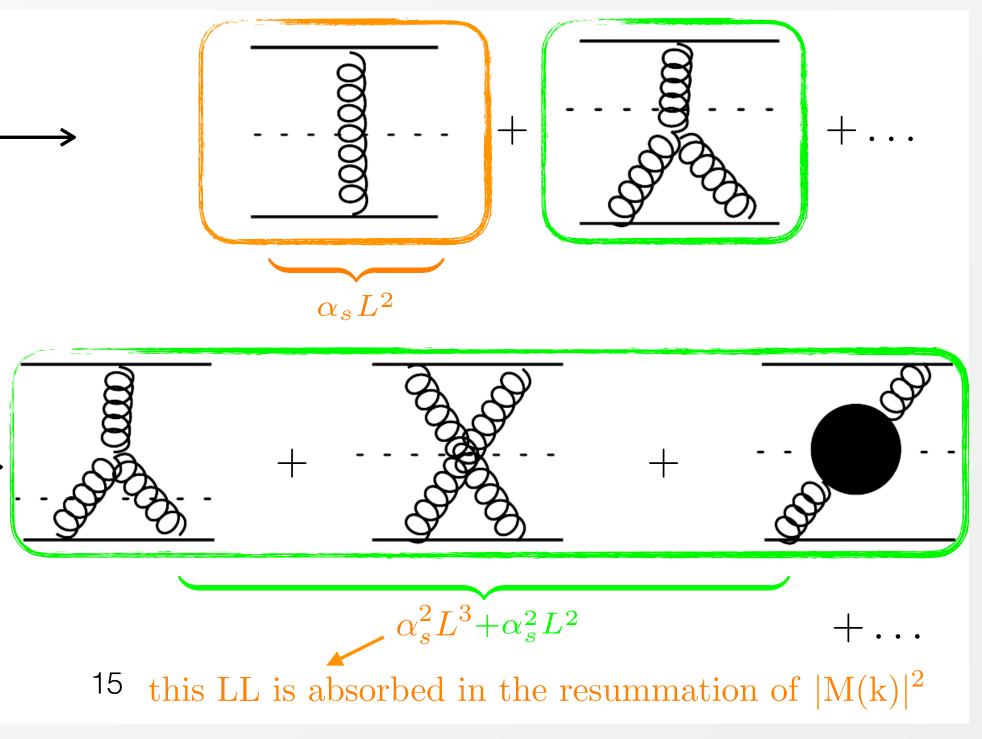


Logarithmic counting defined in terms of **nPC blocks** (owing to rIRC safety of the observable)

Logarithmic counting: correlated blocks

$$\tilde{M}(k_a)|^2 = \frac{|M(\tilde{p}_1, \tilde{p}_2, k_a)|^2}{|M_B(\tilde{p}_1, \tilde{p}_2)|^2} = |M(k_a)|^2$$

$$\tilde{M}(k_a, k_b)|^2 = \frac{|M(\tilde{p}_1, \tilde{p}_2, k_a, k_b)|^2}{|M_B(\tilde{p}_1, \tilde{p}_2)|^2} - \frac{1}{2!} |M(k_a)|^2 |M(k_b)|^2 \longrightarrow \alpha_s^2 L^4$$



Thanks to P. Monni

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

Resummation at NLL accuracy

Final result at NLL

$$\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t,1}}{k_{t,1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(k_{t,1})} e^{R'(k_{t,1})} \mathscr{L}_{\text{NLL}}(k_{t,1}) R'(k_{t,1}) \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(\zeta_i k_{t,1}) \Theta(v - V(\Phi_B, k_1, \dots, k_{n+1}))$$

This formula can be evaluated by means of fast Monte Carlo methods RadISH (Radiation off Initial State Hadrons)

Parton luminosity at NLL reads

$$\mathscr{L}_{\text{NLL}}(k_{t,1}) = \sum_{c} \frac{d |M_B|_{c\bar{c}}^2}{d\Phi_B} f_c(x_1, k_{t,1}^2) f_{\bar{c}}(x_2, k_{t,1}^2)$$

At higher logarithmic accuracy, it includes coefficient functions and hard-virtual corrections

Result at N³LL accuracy

$$\begin{split} \frac{d\Sigma(v)}{d\Phi_{B}} &= \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} \partial_{L} \left(-e^{-R(k_{t1})} \mathcal{L}_{\mathrm{N}^{3}\mathrm{LL}}(k_{t1}) \right) \int d\mathcal{Z}[\{R',k_{i}\}] \Theta \left(v - V(\{\bar{p}\},k_{1},\ldots,k_{n+1}) \right) \\ &+ \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t1})} \int d\mathcal{Z}[\{R',k_{i}\}] \int_{0}^{1} \frac{d\zeta_{s}}{\zeta_{s}} \frac{d\phi_{s}}{2\pi} \left\{ \left(R'(k_{t1}) \mathcal{L}_{\mathrm{NNLL}}(k_{t1}) - \partial_{L} \mathcal{L}_{\mathrm{NNLL}}(k_{t1}) \right) \right. \\ &\times \left(R''(k_{t1}) \ln \frac{1}{\zeta_{s}} + \frac{1}{2} R'''(k_{t1}) \ln^{2} \frac{1}{\zeta_{s}} \right) - R'(k_{t1}) \left(\partial_{L} \mathcal{L}_{\mathrm{NNLL}}(k_{t1}) - 2\frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{t1}) \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}(k_{t1}) \ln \frac{1}{\zeta_{s}} \right) \\ &+ \frac{\alpha_{s}^{2}(k_{t1})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}(k_{t1}) \right\} \left\{ \Theta \left(v - V(\{\bar{p}\},k_{1},\ldots,k_{n+1},k_{s}) \right) - \Theta \left(v - V(\{\bar{p}\},k_{1},\ldots,k_{n+1}) \right) \right\} \\ &+ \frac{1}{2} \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t1})} \int d\mathcal{Z}[\{R',k_{i}\}] \int_{0}^{1} \frac{d\zeta_{s1}}{\varsigma_{s1}} \frac{d\phi_{s1}}{2\pi} \int_{0}^{1} \frac{d\zeta_{s2}}{\zeta_{s2}} \frac{d\phi_{s2}}{2\pi} R'(k_{t1}) \\ &\times \left\{ \mathcal{L}_{\mathrm{NLL}}(k_{t1}) \left(R''(k_{t1}) \right)^{2} \ln \frac{1}{\zeta_{s1}} \ln \frac{1}{\zeta_{s2}} - \partial_{L} \mathcal{L}_{\mathrm{NLL}}(k_{t1}) R''(k_{t1}) \left(\ln \frac{1}{\zeta_{s1}} + \ln \frac{1}{\zeta_{s2}} \right) \\ &+ \frac{\alpha_{s}^{2}(k_{t1})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}(k_{t1}) \right\} \\ &\times \left\{ \Theta \left(v - V(\{\bar{p}\},k_{1},\ldots,k_{n+1},k_{s1},k_{s2}) \right) - \Theta \left(v - V(\{\bar{p}\},k_{1},\ldots,k_{n+1},k_{s1}) \right) - \\ \left. \Theta \left(v - V(\{\bar{p}\},k_{1},\ldots,k_{n+1},k_{s2}) \right) + \Theta \left(v - V(\{\bar{p}\},k_{1},\ldots,k_{n+1},k_{s1}) \right) \right\} + \mathcal{O} \left(\alpha_{s}^{n} \ln^{2n-6} \frac{1}{v} \right), \quad (3.18)$$

All ingredients to perform resummation at N³LL accuracy are now available [Catani et al. '11, '12][Gehrmann et al. '14][Li, Zhu '16, Vladimirov '16][Moch et al. '18, Lee et al. '19]

Fixed-order predictions now available at NNLO

[Bizon, Monni, Re, LR, Torrielli '17]

[A. Gehrmann-De Ridder et al. '15, 16, '17][Boughezal et al. '15, 16] Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

Matching with fixed order

Multiplicative matching performed at the **double-cumulant level**

double-cumulative result at NNLL

asymptotic limit of the NNLL result

 $\sigma_{\text{match}}(p_{\perp}^{H} < p_{\perp}^{H,v}, p_{\perp}^{J} < p_{\perp}^{J,v}) = \frac{\sigma_{\text{NNLL}}(p_{\perp}^{H} < p_{\perp}^{H,v}, p_{\perp}^{J} < p_{\perp}^{J,v})}{\sigma_{\text{NNLL}}(\{p_{\perp}^{J,v}, p_{\perp}^{H,v}\} \to \infty)}$

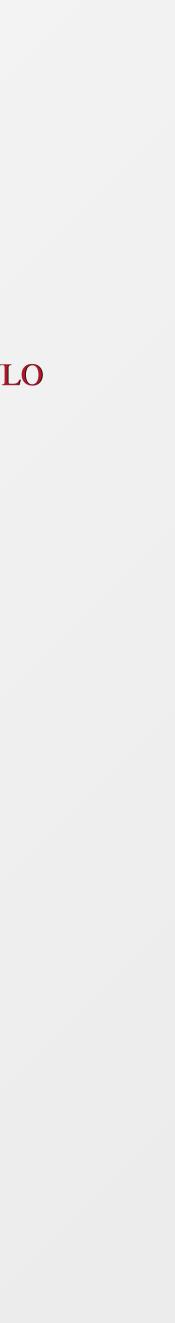
• NNLL+NNLO result for $p_{\perp}^{\mathrm{J,v}}$ recovered for $p_{\perp}^{\mathrm{H,v}} \rightarrow q_{\perp}^{\mathrm{H,v}}$

• NNLO constant included through multiplicative matching (NNLL' accuracy)

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

fixed-order double-cumulative result at NNLO

$$\sigma_{\text{NNLO}}(p_{\perp}^{H} < p_{\perp}^{H,v}, p_{\perp}^{J} < p_{\perp}^{J,v}) = \sigma_{\text{NNLO}} - \int \Theta(p_{\perp}^{H} > p_{\perp}^{H,v}) \vee \Theta(p_{\perp}^{J} > p_{\perp}^{J,v}) d\sigma_{H+J,\text{NNLO}} + \frac{1}{2} \langle p_{\perp}^{J,v} \rangle = \sigma_{\text{NNLO}} - \int \Theta(p_{\perp}^{H} > p_{\perp}^{H,v}) \vee \Theta(p_{\perp}^{J} > p_{\perp}^{J,v}) d\sigma_{H+J,\text{NNLO}} + \frac{1}{2} \langle p_{\perp}^{J,v} \rangle = \sigma_{\text{NNLO}} + \frac{1}{2} \langle p_$$



Matching to fixed order: multiplicative matching

Cumulative cross section should reduce to the fixed order at large v

$$\Sigma_{\text{matched}}^{\text{mult}}(v) \sim \Sigma_{\text{res}}(v) \left[\frac{\Sigma_{\text{f.o.}}(v)}{\Sigma_{\text{res}}(v)} \right]_{\text{expanded}}$$

$$\Sigma_{\text{f.o}}(v) = \sigma_{f.o.} - \int_{v}^{\infty} \frac{d\sigma}{dv} dv$$

To ensure that resummation does not affect the hard region of the spectrum when the matching is performed we introduce **modified logarithms**

This corresponds to restrict the rapidity phase space at la

$$\ln(Q/k_{t1}) \to \frac{1}{p} \ln\left(1 + \left(\frac{Q}{k_{t1}}\right)^p\right)$$

Q : perturbative resummation scale used to probe the size of subleading logarithmic corrections

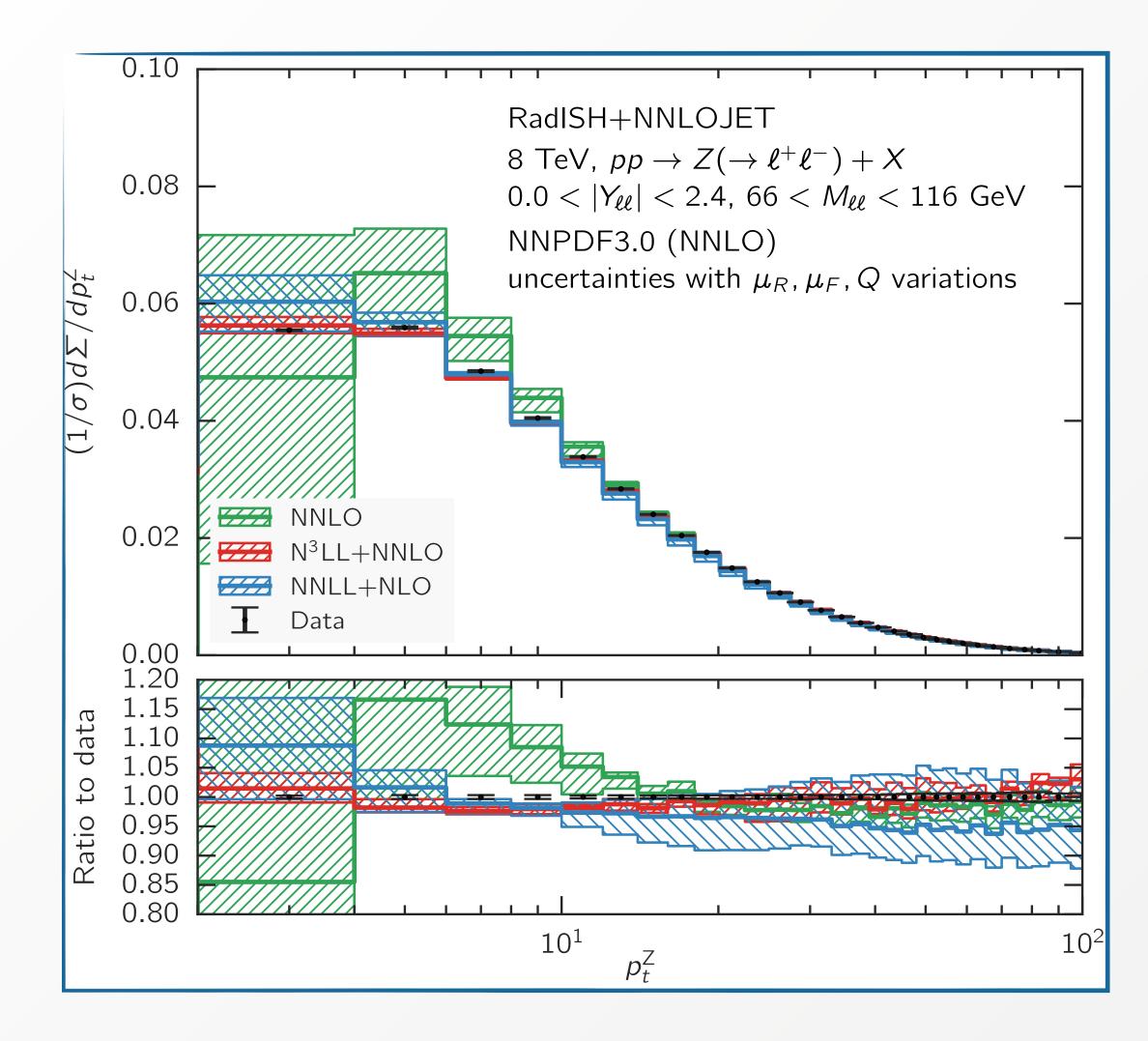
- allows to include constant terms from NNLO (if N³LO total xs available)
- physical suppression at small v cures potential instabilities

arge
$$k_t$$

$$\int_{-\ln Q/k_{t,i}}^{\ln Q/k_{t,i}} d\eta \to \int_{-\ln Q/k_{t,1}}^{\ln Q/k_{t,1}} d\eta \to \int_{-\epsilon}^{\epsilon} d\eta \to 0$$

p : arbitrary matching parameter

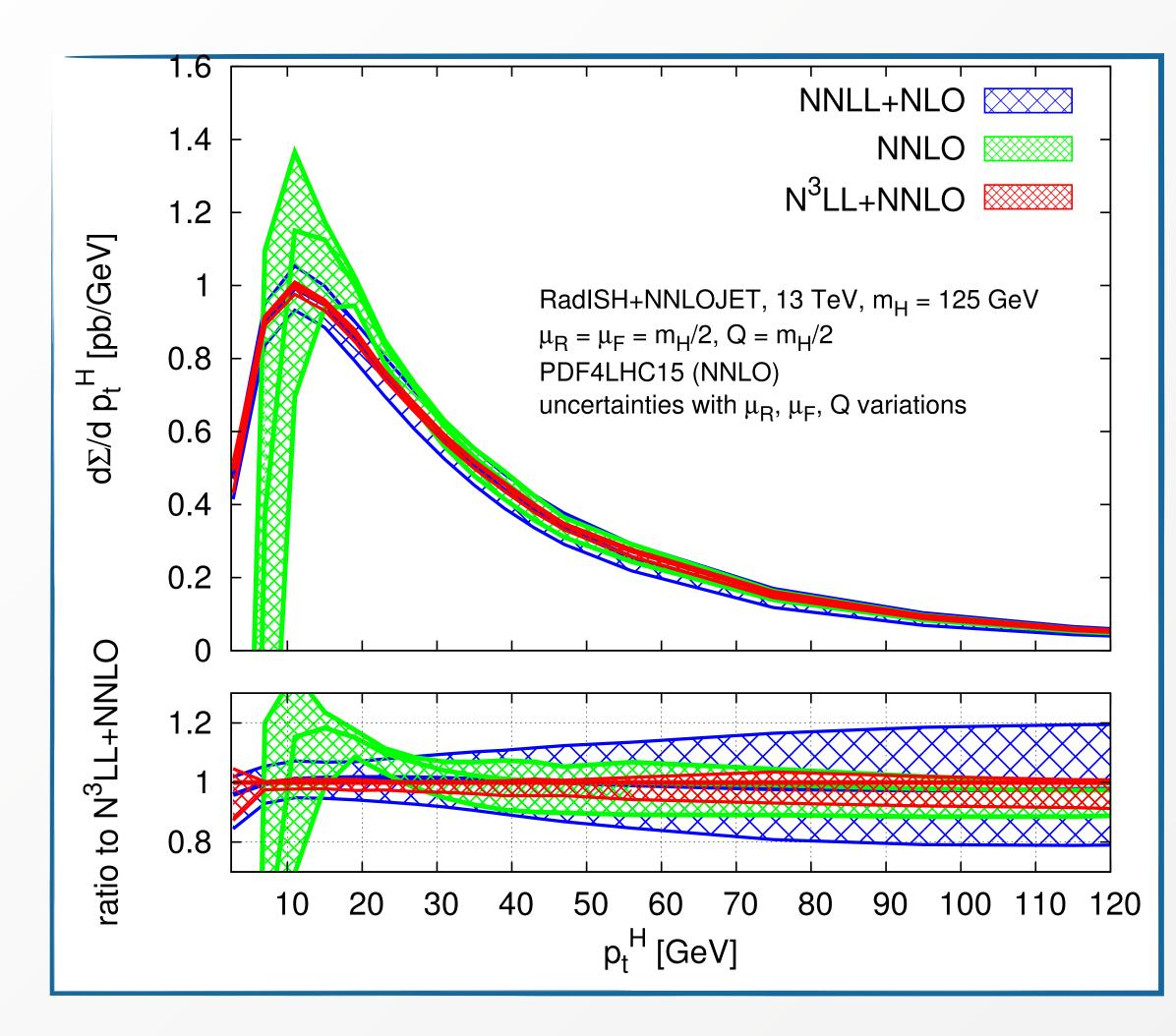
Predictions for the Z spectrum at 8 TeV

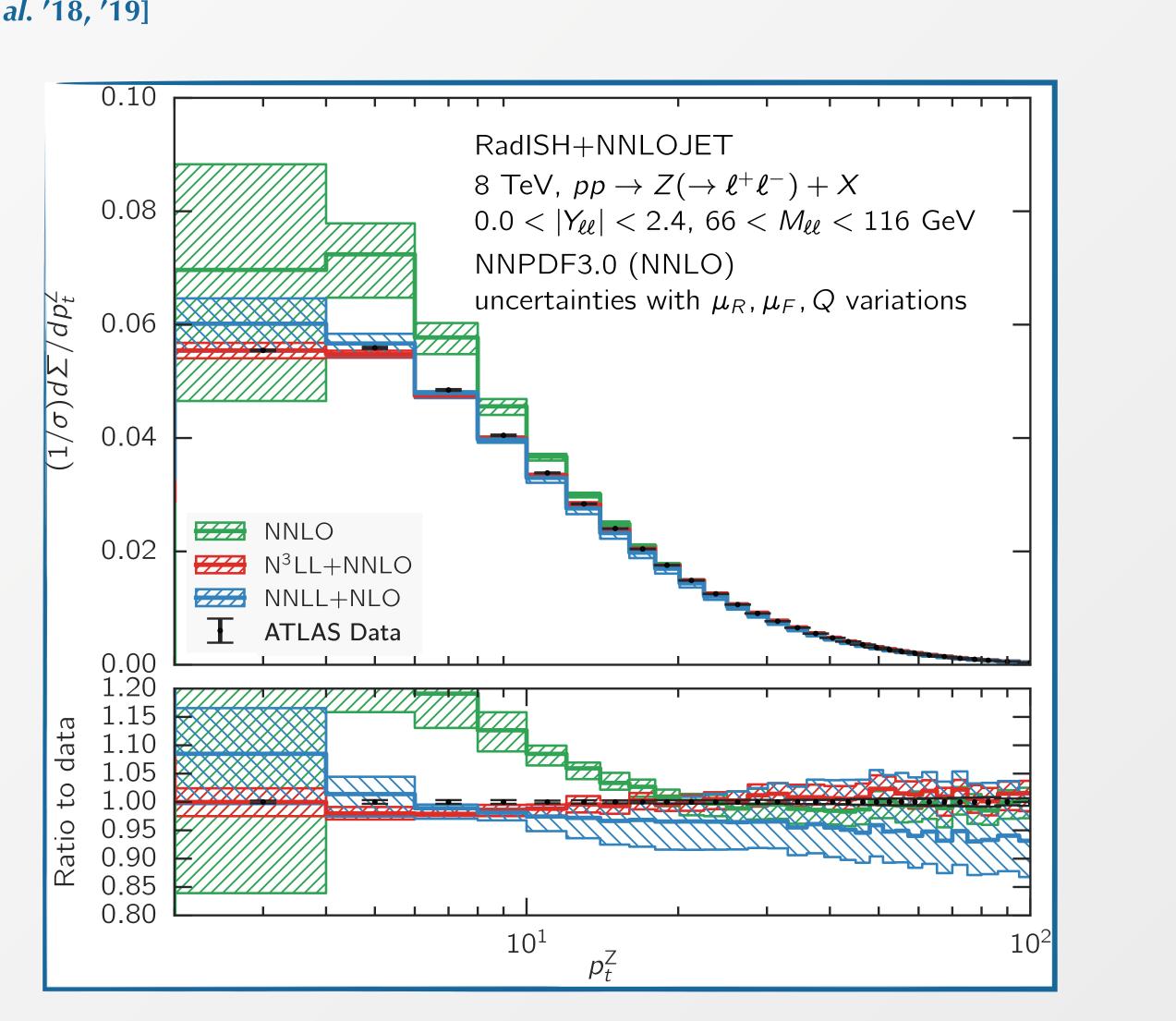


- Good description of the data in all fiducial regions
- Perturbative uncertainty at the few percent level, still does not match the precision of the ATLAS data

Resummation of the transverse momentum spectrum at N³LL+NNLO

N³LL result matched to NNLO H+j, Z+j, W[±]+j [Bizon, LR et al. '18, '19]





Theoretical predictions for Z and W observables at 13 TeV

Results obtained using the following fiducial cuts (agreed with ATLAS) $p_t^{\ell^{\pm}} > 25 \,\text{GeV}, \quad |\eta^{\ell^{\pm}}| < 2.5, \quad 66 \,\text{GeV} < M_{\ell\ell} < 116 \,\text{GeV}$ $p_t^{\ell} > 25 \,\text{GeV}, |\eta^{\ell}| < 2.5, E_T^{\nu_{\ell}} > 25 \,\text{GeV}, m_T > 50 \,\text{GeV}$

using NNPDF3.1 with $\alpha_s(M_Z)=0.118$ and setting the central scales to

$$\mu_R = \mu_F = M_T = \sqrt{M_{\ell\ell'}^2 + p_T^2}, \quad Q = \frac{M_{\ell\ell'}}{2}$$

5 flavour (massless) scheme: no HQ effects, LHAPDF PDF thresholds

Scale uncertainties estimated by varying renormalization and factorization scale by a factor of two around their central value (7 point variation) and varying the resummation scale by a factor of 2 around its central value for factorization and renormalization scales set to their central value: 9 point envelope

Matching parameter *p* set to 4 as a default

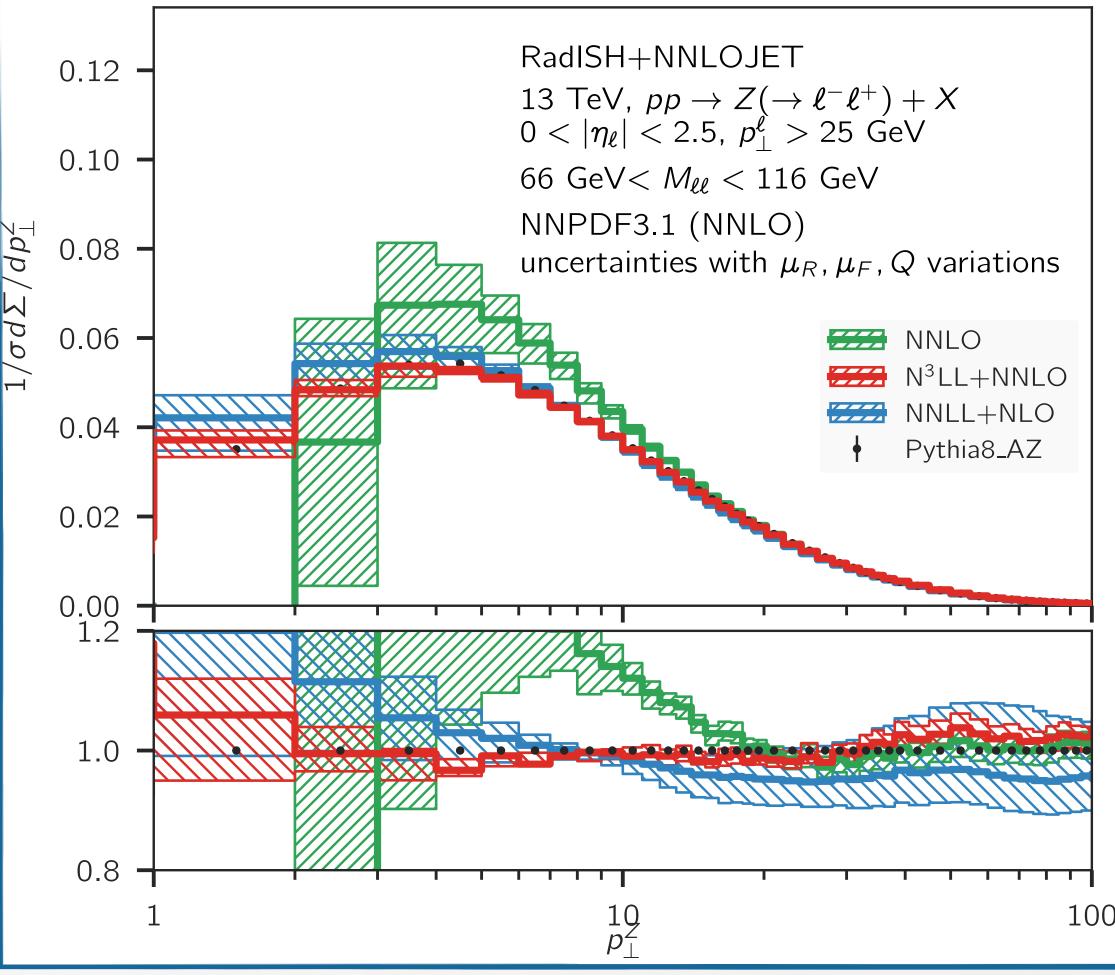
No non perturbative parameters included in the following

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

Bizon, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Monni, Re, LR, Walker, 19

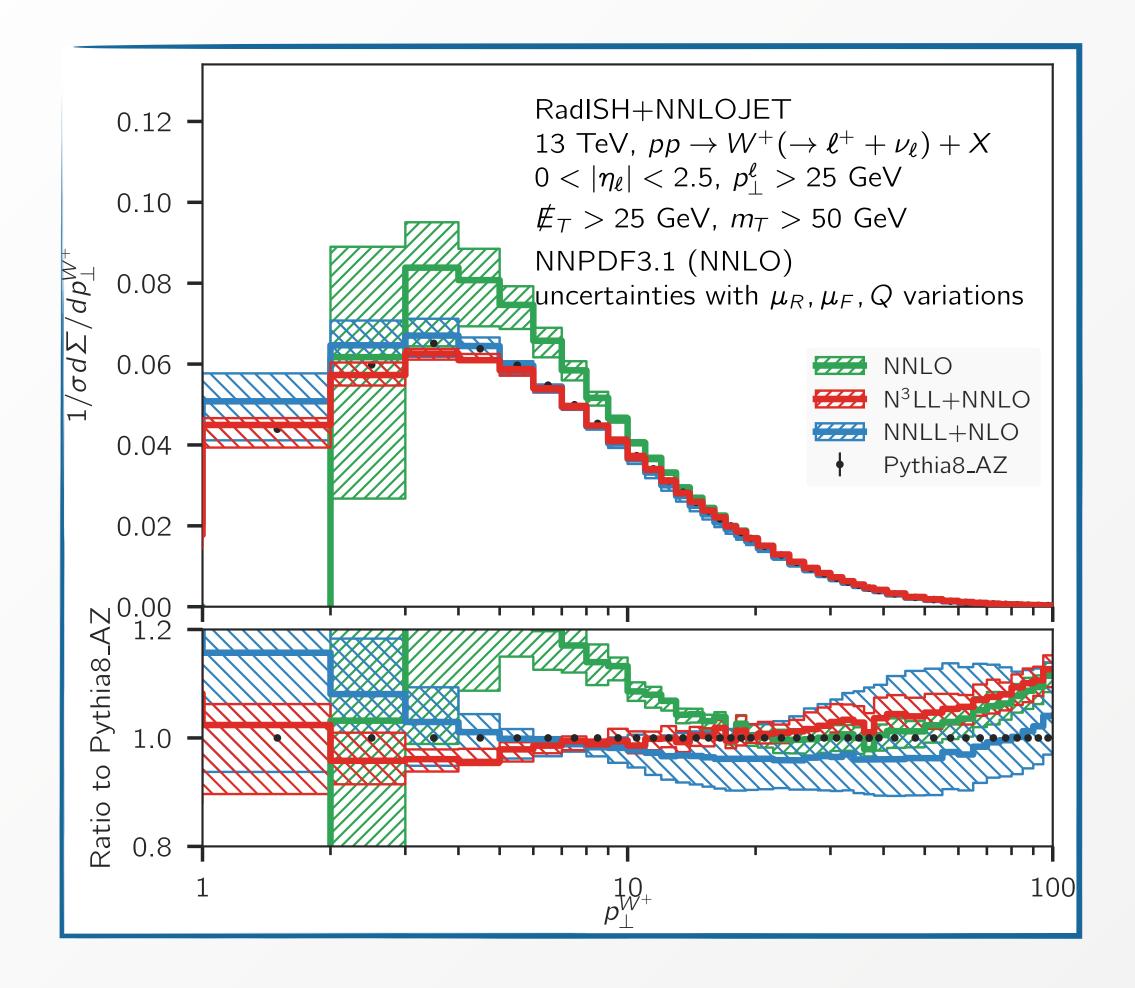
9	Ox.	.xx	XX

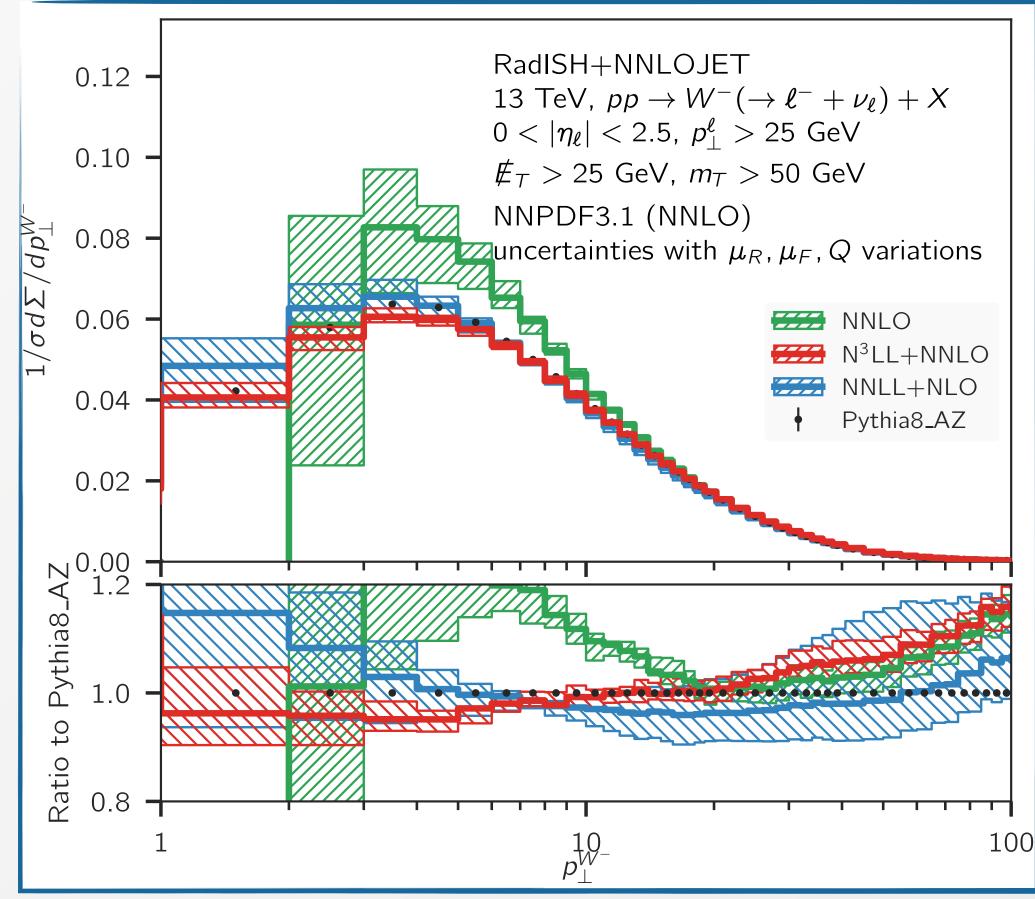
Predictions for the Z spectrum



Thanks to Jan Kretzschmar for providing the PYTHIA8 AZ tune results

Predictions for the W⁺ and W⁻ spectra





Ratio of differential distributions

Z and W production share a similar pattern of QCD radiative corrections

Crucial to understand correlation between Z and W spectra to exploit data-driven predictions

$$\frac{1}{\sigma^{W}} \frac{d\sigma^{W}}{p_{\perp}^{W}} \sim \frac{1}{\sigma_{\text{data}}^{Z}} \frac{\frac{1}{\sigma_{\text{theory}}^{W}}}{\frac{1}{\sigma_{\text{theory}}^{W}}} \frac{p_{\perp}^{W}}{p_{\perp}^{W}}$$

Several choices are possible:

• Correlate resummation and renormalisation scale variations, keep factorisation scale uncorrelated, while keeping

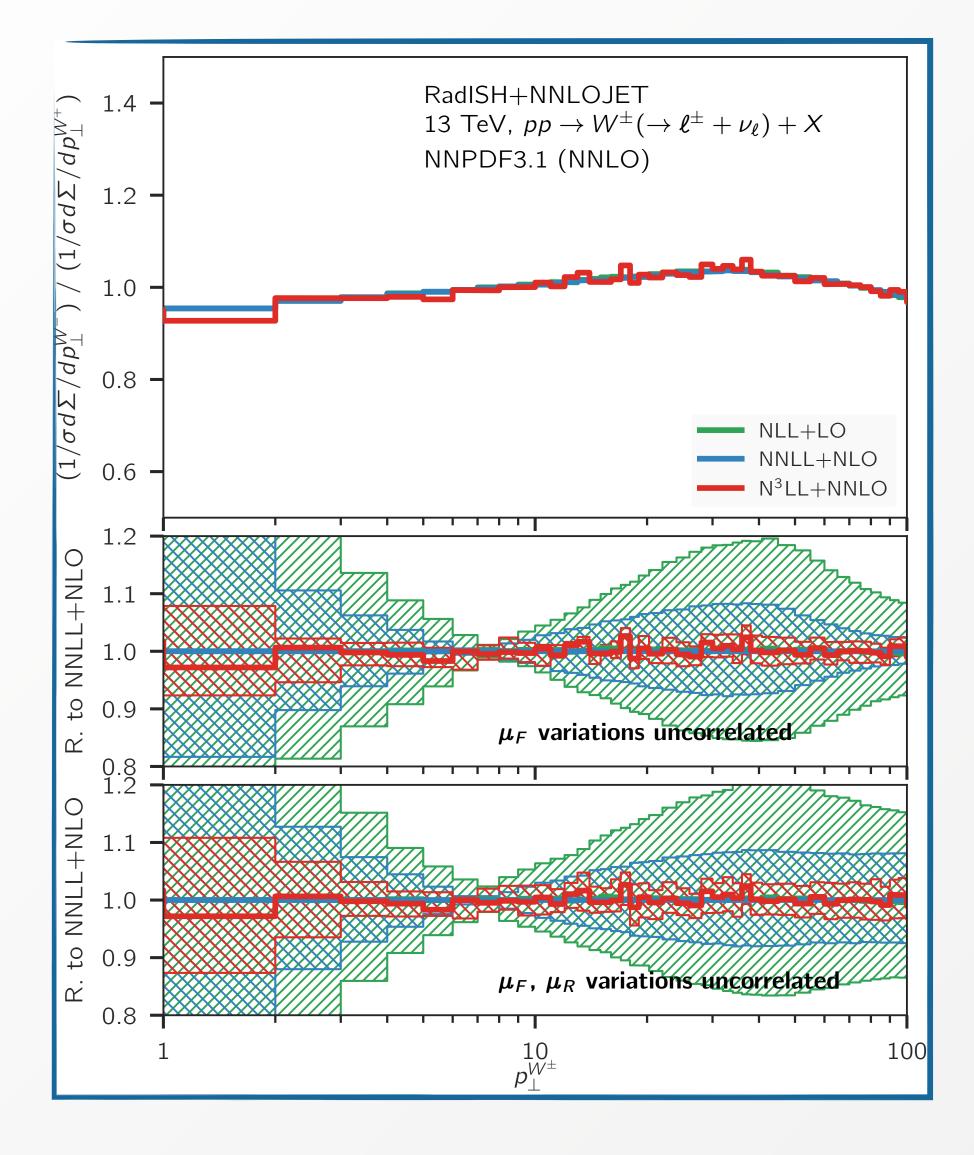
$$\frac{1}{2} \le \frac{\mu^{\text{num}}}{\mu^{\text{den}}} \le 2$$

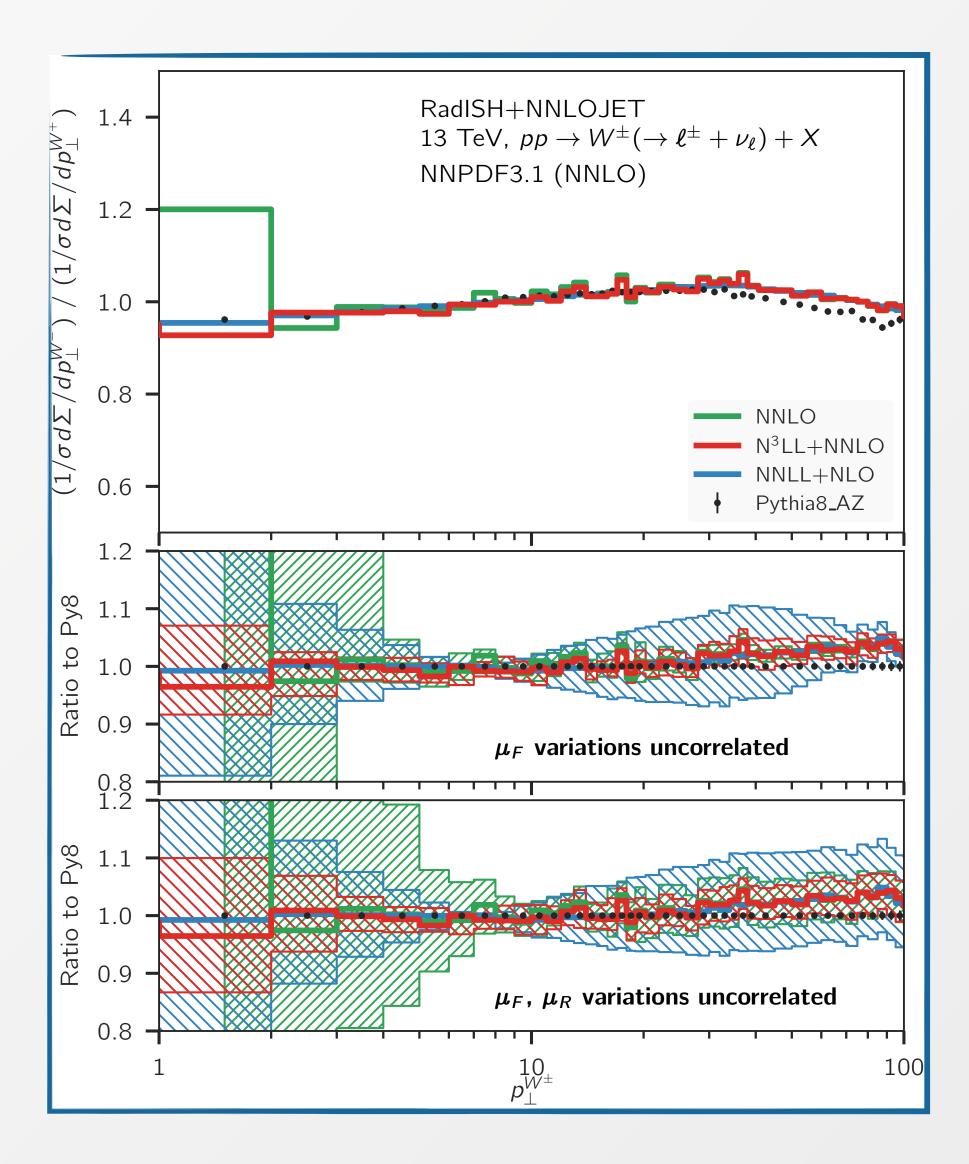
Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

$$\frac{1}{2} \le \frac{\mu_{\rm F}^{\rm num}}{\mu_{\rm F}^{\rm den}} \le 2$$

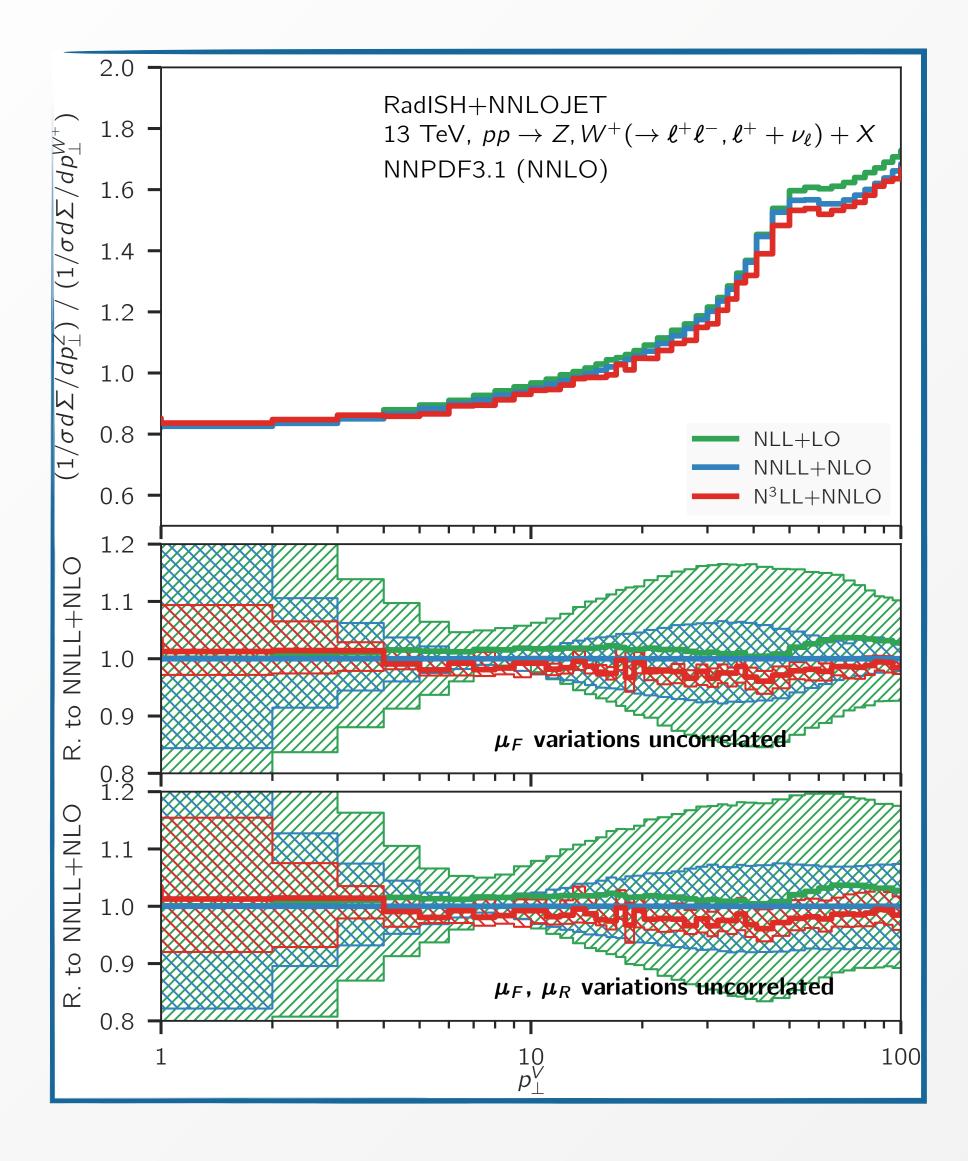
• More conservative estimate: vary both renormalisation and factorisation scales in an uncorrelated way with

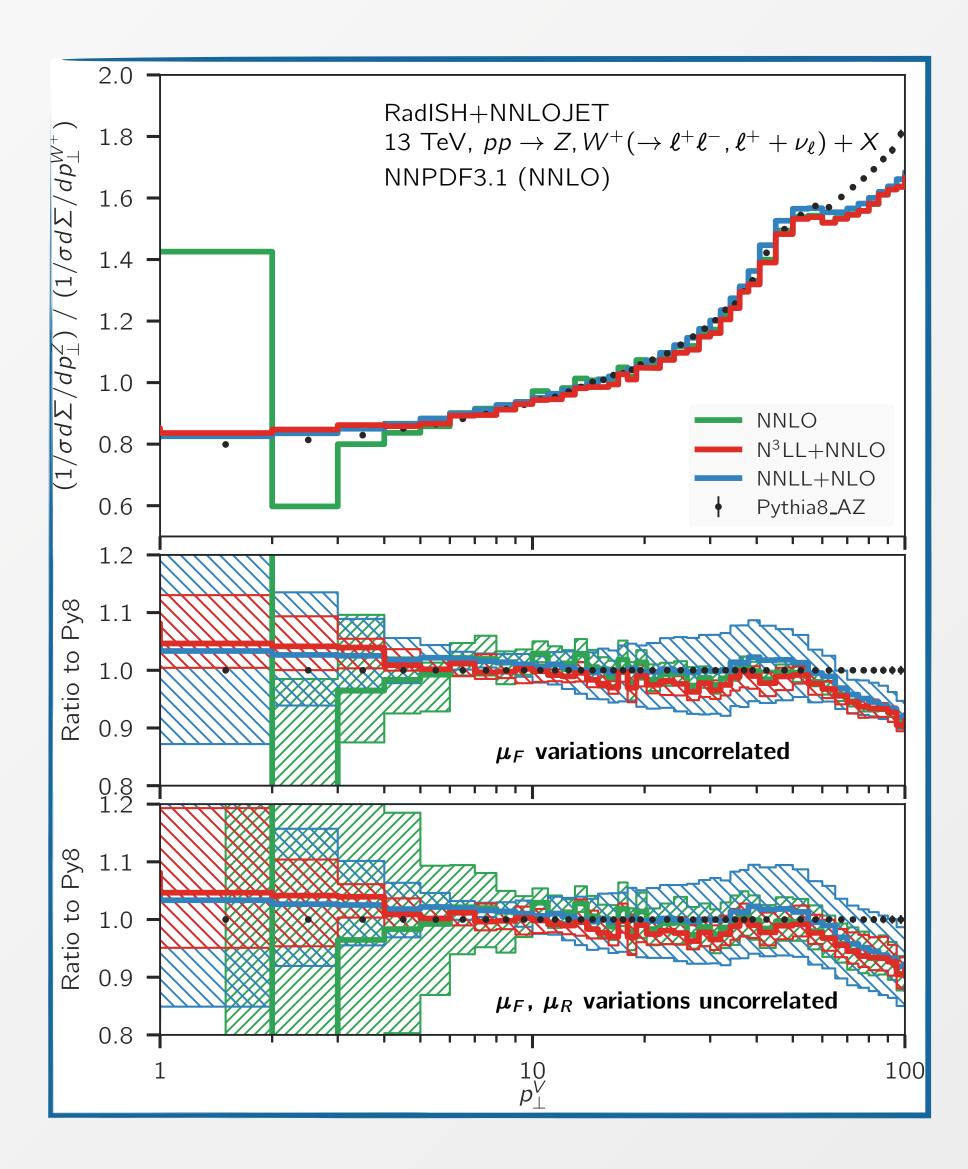
Results for W-/W+ ratio



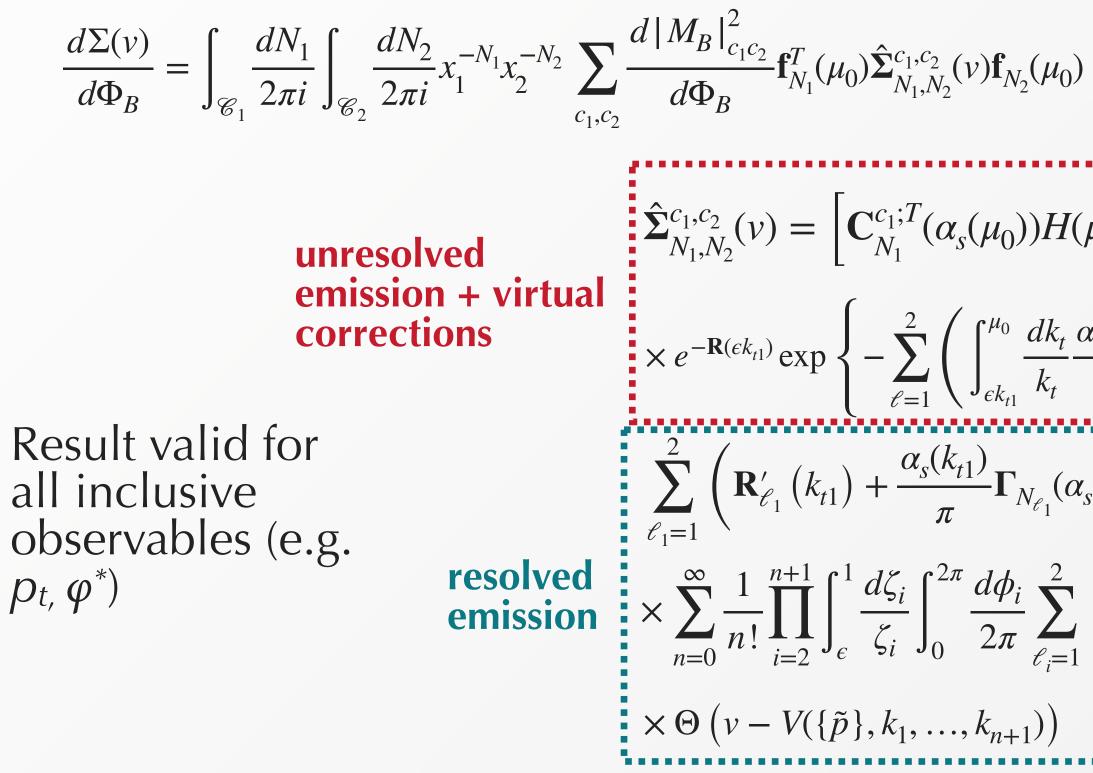


Results for *Z*/*W*⁺ **ratio**





Equivalence with *b*-space formulation



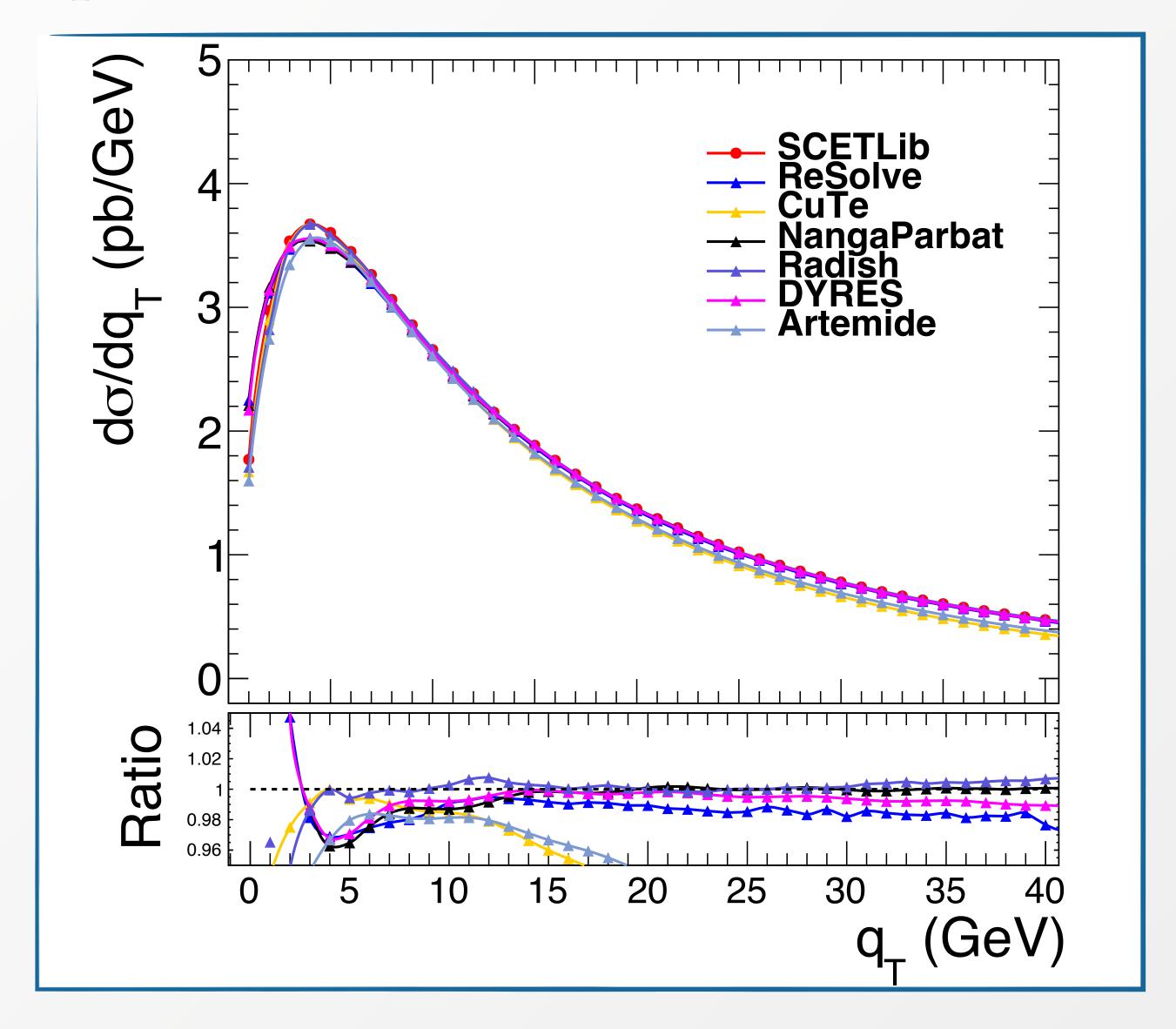
Formulation equivalent to *b*-space result (up to a scheme change in the anomalous dimensions)

$$\frac{d^{2}\Sigma(v)}{d\Phi_{B}dp_{t}} = \sum_{c_{1},c_{2}} \frac{d|M_{B}|^{2}_{c_{1}c_{2}}}{d\Phi_{B}} \int b \, db \, p_{t} J_{0}(p_{t}b) \, \mathbf{f}^{T}(b_{0}/b) \mathbf{C}^{c_{1};T}_{N_{1}}(\alpha_{s}(b_{0}/b)) H(M) \mathbf{C}^{c_{2}}_{N_{2}}(\alpha_{s}(b_{0}/b)) \mathbf{f}(b_{0}/b) \\ \times \exp\left\{-\sum_{\ell=1}^{2} \int_{0}^{M} \frac{dk_{t}}{k_{t}} \mathbf{R}'_{\ell}\left(k_{t}\right)(1-J_{0}(bk_{t}))\right\} \qquad (1-J_{0}(bk_{t})) \simeq \Theta(k_{t}-\frac{b_{0}}{b}) + \frac{\zeta_{3}}{12} \frac{\partial^{3}}{\partial \ln(Mb/b_{0})^{3}} \Theta(k_{t}-\frac{b_{0}}{b})$$

$$\begin{split} \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} \\ \left\{ -\sum_{\ell=1}^{2} \left(\int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ \left\{ -\sum_{\ell=1}^{2} \left(\int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \right\} \\ \left\{ -\sum_{\ell=1}^{2} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}^{\prime}(k_{ti}) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \\ \tilde{p} \right\}, k_{1}, \dots, k_{n+1}) \end{split}$$

N³LL effect: absorbed in the definition of *H*₂, *B*₃, *A*₄ coefficients wrt to CSS Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

Equivalence with *b*-space formulation

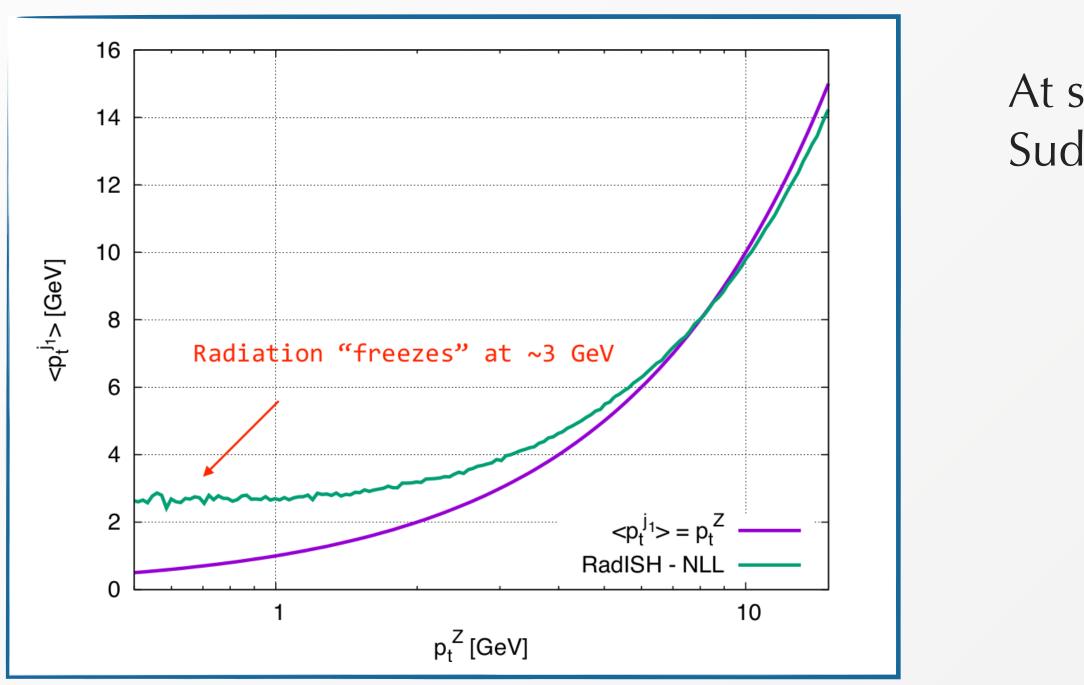


The Landau pole and the small p_T limit

Running coupling $\alpha_s(k_{t1}^2)$ and Sudakov radiator hit Landau pole at

$$\alpha_s(\mu_R^2)\beta_0 \ln Q/k_{t1} = \frac{1}{2} \qquad \qquad k_{t1} = \frac{1}{2}$$

Only real cutoff in the calculation: emission probability is set to zero below this scale and parton densities are frozen.

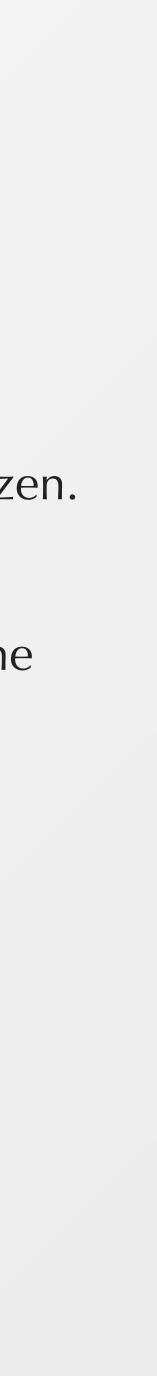


Thanks to P. Monni

 $\sim 0.01 \,\text{GeV}, \quad \mu_R = Q = m_Z$

At small *p*_t the large azimuthal cancellations dominate over the Sudakov suppression: the cutoff is never an issue in practice

$$\frac{d^2 \Sigma(v)}{dp_t d\Phi_B} \simeq 2\sigma^{(0)}(\Phi_B) p_t \left(\frac{\Lambda_{\rm QCD}^2}{M^2}\right)^{\frac{16}{25}\ln\frac{41}{16}}$$



Behaviour at small p_t

Explicit evaluation shows that the Parisi-Petronzio perturbative scaling at small p_t is reproduced. At NLL, Drell-Yan pair production, $n_f=4$

$$\frac{d^2 \Sigma(v)}{dp_t d\Phi_B} = 4 \,\sigma^{(0)}(\Phi_B) \, p_t \int_{\Lambda_{\rm QCD}}^M \frac{dk_{t1}}{k_{t1}^3} e^{-R(k_{t1})} \simeq 2\sigma^{(0)}(\Phi_B) p_t \left(\frac{\Lambda_{\rm QCD}^2}{M^2}\right)^{\frac{16}{25}\ln\frac{41}{16}}$$

As now higher logarithmic terms (up to N³LL) are under control, the coefficient of this scaling can be systematically improved in *perturbation* theory (non-perturbative effects – of the same order – not considered)

N³LL calculation allows one to have control over the terms of relative order $O(\alpha_s^2)$. Scaling $L \sim 1/\alpha_s$ valid in the deep infrared regime.

Numerical implementation

$$\frac{d\Sigma(p_t)}{d\Phi_B} = \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R'(k_{t1})} \mathcal{L}_{\text{NLL}}(k_{t1}) \right) \times \\
\times \underbrace{\epsilon^{R'(k_{t1})} \sum_{n=0}^\infty \frac{1}{n!} \left(\prod_{i=2}^{n+1} \int_{\epsilon k_{t1}}^{k_{t1}} \frac{dk_{ti}}{k_{ti}} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(k_{t1}) \right) \Theta(p_t - |\vec{k}_{t1} + \dots + \vec{k}_{t(n+1)}|)}_{\equiv \int d\mathcal{Z}[\{R', k_i\}] \Theta(p_t - |\vec{k}_{t1} + \dots + \vec{k}_{t(n+1)}|)}$$

► $L = \ln(M/k_{t1})$; luminosity $\mathcal{L}_{NLL}(k_{t1}) =$

• $\int d\mathcal{Z}[\{R', k_i\}]\Theta$ finite as $\epsilon \to 0$:

$$\epsilon^{R'(k_{t1})} = 1 - R'(k_{t1}) \ln(1/\epsilon) + \dots = 1 - \int_{\epsilon k_{t1}}^{k_{t1}} R'(k_{t1}) + \dots,$$

$$\left[1 - \int_{\epsilon k_{t1}}^{k_{t1}} R'(k_{t1}) + \dots\right] \left[\Theta(p_t - |\vec{k}_{t1}|) + \int_{\epsilon k_{t1}}^{k_{t1}} R'(k_{t1})\Theta(p_t - |\vec{k}_{t1} + \vec{k}_{t2}|) + \dots\right]$$

$$\Theta(p_t - |\vec{k}_{t1}|) + \underbrace{\int_{0}^{k_{t1}} R'(k_{t1})}_{0} \underbrace{\left[\Theta(p_t - |\vec{k}_{t1} + \vec{k}_{t2}|) - \Theta(p_t - |\vec{k}_{t1}|)\right]}_{0} + \dots$$
finite: real virtual cancellation

$$\begin{aligned} \epsilon^{R'(k_{t1})} &= 1 - R'(k_{t1}) \ln(1/\epsilon) + \dots = 1 - \int_{\epsilon k_{t1}}^{k_{t1}} R'(k_{t1}) + \dots, \\ \int d\mathcal{Z}[\{R', k_i\}]\Theta &= \left[1 - \int_{\epsilon k_{t1}}^{k_{t1}} R'(k_{t1}) + \dots\right] \left[\Theta(p_t - |\vec{k}_{t1}|) + \int_{\epsilon k_{t1}}^{k_{t1}} R'(k_{t1})\Theta(p_t - |\vec{k}_{t1} + \vec{k}_{t2}|) + \dots\right] \\ &= \Theta(p_t - |\vec{k}_{t1}|) + \underbrace{\int_{0}^{k_{t1}} R'(k_{t1})}_{\epsilon \to 0} \underbrace{\left[\Theta(p_t - |\vec{k}_{t1} + \vec{k}_{t2}|) - \Theta(p_t - |\vec{k}_{t1}|)\right]}_{\text{finite: real-virtual cancellation}} + \dots \end{aligned}$$

▶ Evaluated with Monte Carlo techniques: $\int d\mathcal{Z}[\{R', k_i\}]$ is generated as a parton shower over secondary emissions.

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

$$= \sum_{c_1,c_2} \frac{d|M_B|^2_{c_1c_2}}{d\Phi_B} f_{c_1}(x_1,k_{t_1}) f_{c_2}(x_2,k_{t_1}).$$

Thanks to P. Torrielli

Numerical implementation

Secondary radiation:

$$d\mathcal{Z}[\{R',k_i\}] = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=2}^{n+1} \int_0^{2\pi} \frac{d\phi_i}{2\pi} \int_{\epsilon k_{t1}}^{k_{t1}} \frac{dk_{ti}}{k_{ti}} R'(k_{t1})\right) \epsilon^{R'(k_{t1})}$$
$$= \sum_{n=0}^{\infty} \left(\prod_{i=2}^{n+1} \int_0^{2\pi} \frac{d\phi_i}{2\pi} \int_{\epsilon k_{t1}}^{k_{t(i-1)}} \frac{dk_{ti}}{k_{ti}} R'(k_{t1})\right) \epsilon^{R'(k_{t1})},$$
$$\epsilon^{R'(k_{t1})} = e^{-R'(k_{t1})\ln 1/\epsilon} = \prod_{n=0}^{n+2} e^{-R'(k_{t1})\ln k_{t(i-1)}/k_{ti}},$$

i=2

with $k_{t(n+2)} = \epsilon k_{t1}$.

Each secondary emissions has differential probability

$$dw_{i} = \frac{d\phi_{i}}{2\pi} \frac{dk_{ti}}{k_{ti}} R'(k_{t1}) e^{-R'(k_{t1})\ln k_{t(i-1)}/k_{ti}} = \frac{d\phi_{i}}{2\pi} d\left(e^{-R'(k_{t1})\ln k_{t(i-1)}/k_{ti}}\right).$$

► $k_{t(i-1)} \ge k_{ti}$. Scale k_{ti} extracted by solving $e^{-R'(k_{t1}) \ln k_{t(i-1)}/k_{ti}} = r$, with r random number extracted uniformly in [0, 1]. Shower ordered in k_{ti} .

• Extract ϕ_i randomly in $[0, 2\pi]$.

Joint INFN-UNIMI-UNIMIB Pheno Seminars, 21 Apr 2020

Thanks to P. Torrielli

Joint resummation in direct space

$$\begin{split} &\sigma_{\text{holl}}^{\text{NNLL}}(p_{t}^{\text{Lv}}, p_{t}^{\text{Rv}}) = \int_{0}^{p_{t}^{1,v}} \frac{dk_{t,1}}{k_{t,1}} \frac{d\phi_{1}}{2\pi} \int d\mathcal{Z} \left\{ \frac{d}{dL_{t,1}} \left[-e^{-R_{\text{NNLL}}(L_{t,1})} \mathcal{L}_{\text{NNLL}}(\mu_{\text{F}}e^{-L_{t,1}}) \right] \Theta\left(p_{t}^{\text{Rv}} - |\vec{k}_{t,1} + \dots + \vec{k}_{t,n+1}\right) \right. \\ &+ e^{-R_{\text{NNLL}}(L_{t,1})} \hat{h}'(k_{t,1}) \int_{0}^{k_{t,1}} \frac{d\phi_{t,1}}{k_{t,n_{1}}} \frac{d\phi_{2}}{2\pi} \left[\left(\delta\hat{h}'(k_{t,1}) + \hat{h}''(k_{t,1}) \ln \frac{k_{t,1}}{k_{t,n_{1}}} \right) \mathcal{L}_{\text{NLL}}(\mu_{\text{F}}e^{-L_{t,1}}) - \frac{d}{dL_{t,1}} \mathcal{L}_{\text{NLL}}(\mu_{\text{F}}e^{-L_{t,1}}) \right] \\ &\times \left[\Theta\left(p_{t}^{n_{v}} - |\vec{k}_{t,1} + \dots + \vec{k}_{t,n+1} + \vec{k}_{t,n}| \right) - \Theta\left(p_{t}^{n_{v}} - |\vec{k}_{t,1} + \dots + \vec{k}_{t,n+1}| \right) \right] \right\}, \tag{38} \\ &\sigma_{\text{olust}}^{\text{NNLL}}(p_{t}^{1,v}, p_{t}^{1,v}) = \int_{0}^{\infty} \frac{dk_{t,1}}{k_{t,1}} \frac{d\phi_{1}}{2\pi} \int d\mathcal{Z} e^{-R_{\text{NLL}}(L_{t,1})} \mathcal{L}_{\text{NLL}}(\mu_{\text{F}}e^{-L_{t,1}}) 8C_{A}^{2} \frac{\alpha^{2}}{\pi^{2}} \frac{L_{t,1}}{(1 - 2\beta_{0}\alpha_{s}L_{t,1})^{2}} \Theta\left(p_{t}^{1,v} - \frac{k_{t,s}}{s^{s+1}} \right) \\ &\times \left\{ \int_{0}^{k_{t,1}} \frac{dk_{t,s}}{k_{t,s}} \frac{d\phi_{s,1}}{2\pi} \int_{-\infty}^{\infty} d\lambda_{\eta_{1,s}} J_{1,s_{2}}(R) \left[\Theta\left(p_{t}^{1,v} - |\vec{k}_{t,1} + \vec{k}_{t,s_{1}}| \right) - \Theta\left(p_{t}^{1,v} - k_{t,1}\right) \right] \Theta\left(p_{t}^{n_{v}} - |\vec{k}_{t,s} + \vec{k}_{t,s_{1}}| \right) \right] \\ &+ \frac{1}{2!} \hat{h}'(k_{t,1}) \int_{0}^{k_{t,1}} \frac{dk_{t,s,2}}{k_{t,s,n}} \frac{dk_{t,s,2}}{d\alpha_{s,n}} \frac{d\phi_{s,n}}{2\pi} \frac{d\phi_{s,n}}{2\pi} \frac{d\phi_{s,n}}{2\pi} \int_{-\infty}^{\infty} d\lambda_{\eta_{1,s_{1}}} J_{1,s_{2}}(R) \left[\Theta\left(p_{t}^{1,v} - |\vec{k}_{t,1} + \vec{k}_{t,s_{1}}| \right) \right] \right] \\ &+ \frac{1}{2!} \hat{h}'(k_{t,1}) \int_{0}^{k_{t,1}} \frac{dk_{t,s,n}}{k_{t,s,n}} \frac{dk_{t,s,n}}{d\alpha_{s,n}} \frac{d\phi_{s,n}}{2\pi} \frac{d\phi_{s,n}}{2\pi} \frac{d\phi_{s,n}}{2\pi} \frac{d\phi_{s,n}}{2\pi} \int_{-\infty}^{\infty} d\lambda_{\eta_{1,s_{1}}} R_{s,n}(R) \left[\Theta\left(p_{t}^{1,v} - |\vec{k}_{t,s_{1}} + \vec{k}_{t,s_{1}}| \right) \right] \right] \\ &+ \frac{1}{2!} \hat{h}'(k_{t,1}) \int_{0}^{k_{t,1}} \frac{dk_{t,s,n}}{k_{t,s,n}} \frac{d\phi_{s,n}}{2\pi} \frac{d\phi_{s,n}}{2$$