Higgs transverse momentum with a jet veto: a double-differential resummation

Luca Rottoli
University of Milan-Bicocca \& LBNL

Based on 1909.04704 with P. Monni and P. Torrielli

The Higgs boson sector

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{N \nu} F^{\mu \nu} \\
& +i \bar{D} \psi \psi
\end{aligned}
$$

Various questions still unanswered

- What is the form of the Higgs potential?
- Is it really ϕ^{4} ?

$$
+x_{i} y_{i j} x_{j} \phi+h . c .
$$

- Are Yukawa couplings responsible for all fermion masses (5 orders of magnitude)?

$$
+\left|D_{m} \phi\right|^{2}-V(\phi)
$$

- ..

Higgs sector needs stress-testing

How can we stress-test the Higgs sector?

$$
g=g_{\mathrm{SM}}(1+\delta)
$$

$$
\delta \sim \mathcal{O}\left(\frac{v^{2}}{\Lambda_{\mathrm{NP}}^{2}}\right)
$$

Higher precision \longrightarrow sensitivity to small deviations \longrightarrow higher scales being probed

The Higgs transverse momentum

[ATLAS 1802.04146]

- Relatively easy to measure
- Sensitivity to New Physics (e.g. light Yukawa couplings, trilinear Higgs self-coupling)

[CMS 1812.06504]
[Bishara et al. '16][Soreq et al. '16]

The Higgs transverse momentum

[ATLAS 1802.04146]

- Experimental analyses categorize events into jet bins according to the jet multiplicity
- Increased sensitivity to Higgs boson kinematics, spin-CP properties, BSM effects...
- Similar comments apply also to other analyses (e.g. VH with boosted Higgs, W+W- production...)

The Higgs transverse momentum

[ATLAS 1802.04146]

- Experimental analyses categorize events into jet bins according to the jet multiplicity
- Increased sensitivity to Higgs boson kinematics, spin-CP properties, BSM effects...
- Similar comments apply also to other analyses (e.g. VH with boosted Higgs, W+W- production...)
- Current description of double-differential distributions based on predictions with NNLO+PS accuracy [Hamilton et al. 1309.0017]

The Higgs transverse momentum

Can we reach higher accuracy for double-differential observables?

- Focus on the zero-jet bin $p_{\perp}^{J} \leq p_{\perp}^{\mathrm{J}, \mathrm{V}}$
- Jet veto enforced to enhance the Higgs signal with respect to its backgrounds (e.g. W+W- event selection) or study of different production channels (e.g. STXS)

The appearance of large logarithms

The appearance of large logarithms

Large(ish) jet veto logarithms

$$
L=\ln \left(p_{\perp}^{\mathrm{J}, \mathrm{v}} / m_{H}\right) \quad p_{\perp}^{\mathrm{J}, \mathrm{v}}<m_{H}
$$

The appearance of large logarithms

$L=\ln \left(\left|\vec{p}_{\perp}^{H}+\vec{p}_{\perp}^{J}\right| / p_{\perp}^{H}\right) \quad$ Sudakov shoulder logarithms

The appearance of large logarithms

Fixed order predictions no longer reliable:
all order resummation of the perturbative series mandatory

It's not a bug, it's a feature

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC safe observables
Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase space, restrictive cuts)

$$
\begin{aligned}
\tilde{\sigma}_{1}\left(p_{\perp}\right) & \sim \underbrace{\int \frac{d \theta}{\theta} \frac{d E}{E} \Theta\left(p_{\perp}-E \theta\right)}_{\operatorname{lell} \theta_{\theta}}
\end{aligned} \underbrace{\frac{\int}{\theta} \frac{d \theta}{E}}_{\mathscr{A l}}
$$

It's not a bug, it's a feature

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC safe observables

Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase space, restrictive cuts)

$$
\begin{aligned}
\tilde{\sigma}_{1}\left(p_{\perp}\right) & \sim \underbrace{\int \frac{d \theta}{\theta} \frac{d E}{E} \Theta\left(p_{\perp}-E \theta\right)}_{\text {ellel }}
\end{aligned} \underbrace{\int \frac{\int d \theta}{\theta} \frac{d E}{E}}_{\alpha^{\Omega} \rho}
$$

$p_{\perp} \rightarrow 0$: observable can

become negative even in the perturbative regime

Double logarithms leftovers of the real-virtual cancellation of IRC divergences

Making pQCD great again: all-order resummation

Soft-collinear emission of two gluons

Making pQCD great again: all-order resummation

Soft-collinear emission of two gluons

Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_{s}^{2} \ln ^{4} p_{\perp} / m_{H}$

Making pQCD great again: all-order resummation

Soft-collinear emission of two gluons

Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_{s}^{2} \ln ^{4} p_{\perp} / m_{H}$ All order structure

$$
\tilde{\sigma}(v)=\sum_{n=0}^{\infty} \alpha_{s}^{n} \sum_{m=1}^{2 n} c_{n m} L^{m}+\ldots \quad L=\ln \left(p_{\perp} / m_{H}\right)
$$

Making pQCD great again: all-order resummation

Soft-collinear emission of two gluons

Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_{s}^{2} \ln ^{4} p_{\perp} / m_{H}$

All order structure

$$
\tilde{\sigma}(v)=\sum_{n=0}^{\infty} \alpha_{s}^{n} \sum_{m=1}^{2 n} c_{n m} L^{m}+\ldots \quad L=\ln \left(p_{\perp} / m_{H}\right)
$$

Origin of the logs is simple. Resum them to all orders by reorganizing the series

$$
\tilde{\sigma}(v)=f_{1}\left(\alpha_{s} L^{2}\right)+\frac{1}{L} f_{2}\left(\alpha_{s} L^{2}\right)+\ldots
$$

Making pQCD great again: all-order resummation

Soft-collinear emission of two gluons

Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_{s}^{2} \ln ^{4} p_{\perp} / m_{H}$

All order structure

$$
\tilde{\sigma}(v)=\sum_{n=0}^{\infty} \alpha_{s}^{n} \sum_{m=1}^{2 n} c_{n m} L^{m}+\ldots \quad L=\ln \left(p_{\perp} / m_{H}\right)
$$

Origin of the logs is simple. Resum them to all orders by reorganizing the series

$$
\tilde{\sigma}(v)=f_{1}\left(\alpha_{s} L^{2}\right)+\frac{1}{L} f_{2}\left(\alpha_{s} L^{2}\right)+\ldots
$$

Poor man's leading logarithmic (LL) resummation of the perturbative series

Accurate for $L \sim 1 / \sqrt{\alpha_{s}}$

All-order resummation: exponentiation

Independent emissions $k_{1}, \ldots k_{n}$ (plus corresponding virtual contributions) in the soft and collinear limit with strong angular ordering

$$
d \Phi_{n}\left|\mathscr{M}\left(k_{1}, \ldots k_{n}\right)\right|^{2} \rightarrow \frac{1}{n!} \alpha_{s}^{n} \prod_{i=1}^{n} \frac{d E_{i}}{E_{i}} \frac{d \theta_{i}}{\theta_{i}}
$$

All-order resummation: exponentiation

Independent emissions $k_{1}, \ldots k_{n}$ (plus corresponding virtual contributions) in the soft and collinear limit with strong angular ordering

$$
d \Phi_{n}\left|\mathscr{M}\left(k_{1}, \ldots k_{n}\right)\right|^{2} \rightarrow \frac{1}{n!} \alpha_{s}^{n} \prod_{i=1}^{n} \frac{d E_{i}}{E_{i}} \frac{d \theta_{i}}{\theta_{i}}
$$

Calculate observable with arbitrary number of emissions: exponentiation

$$
\tilde{\sigma} \simeq \sum_{n=0}^{\infty} \frac{1}{n!} \alpha_{s}^{n} \prod_{i=1}^{n} \int \frac{d E_{i}}{E_{i}} \frac{d \theta_{i}}{\theta_{i}}\left[\Theta\left(p_{\perp}-E_{i} \theta_{i}\right)-1\right] \simeq e^{-\alpha_{s} L^{2}} \begin{aligned}
& \text { Sudakov suppression [Sudakov '54] } \\
& \begin{array}{l}
\text { Price for constraining } \\
\text { real radiation }
\end{array}
\end{aligned}
$$

Exponentiated form allows for a more powerful reorganization

$$
\tilde{\sigma}=\exp \left[\begin{array}{cc}
\sum_{n}\left(\mathcal{O}\left(\alpha_{s}^{n} L^{n+1}\right)+\mathcal{O}\left(\alpha_{s}^{n} L^{n}\right)+\mathcal{O}\left(\alpha_{s}^{n} L^{n-1}\right)+\ldots\right) \\
\mathrm{LL} & \text { NLL }
\end{array}\right]
$$

Region of applicability now valid up to $L \sim 1 / \alpha_{s^{\prime}}$ successive terms suppressed by $\mathcal{O}\left(\alpha_{s}\right)$

All-order resummation: exponentiation

Exponentiation in direct space generally not possible. Phase-space constraints typically do not factorize in direct space

$$
\tilde{\sigma}(v) \sim \int_{i}^{\prod_{i}^{n}}\left[d k_{i}\right]\left|\operatorname{ll}\left(k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta_{\mathrm{PS}}\left(v-V\left(k_{1}, \ldots k_{n}\right)\right)
$$

How to achieve resummation?

All-order resummation: (re)-factorization

Solution 1: move to conjugate space where phase space factorization is manifest
Exponentiation in conjugate space; inverse transform to move back to direct space

Extremely successful approach

- Catani, Trentadue, Mangano, Marchesini, Webber, Nason, Dokshitzer...
- Collins, Soper, Sterman, Laenen, Magnea...
- Manohar, Bauer, Stewart, Becher, Neubert....
+ many others!

Emphasis on properties of QCD matrix elements and QCD radiation

Factorization properties in the singular region and associated RGEs
(factorization \rightarrow evolution \rightarrow resummation)

SCET vs. dQCD not an issue [Sterman et al. '13, '14][Bonvini, Forte, Ghezzi, Ridolfi, LR '12, '13, '14][Becher, Neubert et al. '08, '11, 14]

Limitation: it is process-dependent, and must be performed manually and analytically for each observable for some complex observable difficult/impossible to derive factorization theorem

All-order resummation: CAESAR/ARES approach

Translate the resummability into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety

Simple observable easy to calculate

$$
\tilde{\sigma} \sim \int \frac{d v_{1}}{v_{1}} \Sigma_{s}\left(v_{1}\right) \mathscr{F}\left(v, v_{1}\right)
$$

Transfer function relates the resummation of the full observable to the one of the simple observable.
i.e. conditional probability

All-order resummation: CAESAR/ARES approach

Solution 2:

Translate the resummability into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety
[Banfi, Salam, Zanderighi '01, '03, '04]
[Banfi, McAslan, Monni, Zanderighi, El-Menoufi '14, '18]

Separation obtained by introducing a resolution scale $q_{0}=\epsilon k_{t, 1}$
$\tilde{\sigma} \sim \int\left[d k_{1}\right] e^{-R\left(q_{0}\right)} \xrightarrow{\text { Unresolved emission can be treated as totally unconstrained }} \longrightarrow$ exponentiation

All-order resummation: CAESAR/ARES approach

Translate the resummability into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety [Banfi, Salam, Zanderighi '01, ${ }^{\text {'03, }}$, 04]

Separation obtained by introducing a resolution scale $q_{0}=\epsilon k_{t, 1}$

Resolved emission treated exclusively with Monte Carlo methods. Integral is finite, can be integrated in $d=4$ with a computer
k_{t}-ordering

An example : resummation of the transverse momentum spectrum

Resummation of transverse momentum is particularly delicate because p_{\perp} is a vectorial quantity
Two concurring mechanisms leading to a system with small p_{\perp}
estereseestereceemee

$$
p_{\perp}^{2} \sim k_{t, i}^{2} \ll m_{H}^{2}
$$

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

$$
\sum_{i=1}^{n} \vec{k}_{t, i} \simeq 0
$$

Large kinematic cancellations
$p_{\perp} \sim 0$ far from the Sudakov limit

Exponential suppression

An example : resummation of the transverse momentum spectrum

Resummation of transverse momentum is particularly delicate because p_{\perp} is a vectorial quantity
Two concurring mechanisms leading to a system with small p_{\perp}

Dominant at small p_{\perp}

estevelecesecesemen

$$
p_{\perp}^{2} \sim k_{t, i}^{2} \ll m_{H}^{2}
$$

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Resummation of the transverse momentum spectrum in b space

Solution 1: move to conjugate space where phase space factorization is manifest

$$
\underset{\text { [Parisi, Petronzio '79; Collins, Soper, Sterman '85] }}{p_{\perp} \text { resummation }} \delta^{(2)}\left(\vec{p}_{t}-\sum_{i=1}^{n} \vec{k}_{t, i}\right)=\int d^{2} b \frac{1}{4 \pi^{2}} e^{i \vec{b} \cdot \vec{p}_{t}} \prod_{i=1}^{n} e^{-i \vec{b} \cdot \vec{k}_{t, i}}
$$

Resummation of the transverse momentum spectrum in b space

Solution 1: move to conjugate space where phase space factorization is manifest

$$
\underset{\text { [Parisi, Petronzio '79; Collins, Soper, Sterman '85] }}{p_{\perp} \text { resummation }} \delta^{(2)}\left(\vec{p}_{t}-\sum_{i=1}^{n} \vec{k}_{t, i}\right)=\int d^{2} b \frac{1}{4 \pi^{2}} e^{i \vec{b} \cdot \vec{p}_{t}} \prod_{i=1}^{n} e^{-i \vec{b} \cdot \vec{k}_{t, i}}
$$

Exponentiation in conjugate space
virtual corrections

$$
\sigma=\sigma_{0} \int d^{2} \vec{p}_{\perp}^{H} \int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{\perp}^{H}} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \int\left[d k_{i}\right]\left|M\left(k_{i}\right)\right|^{2}\left(e^{i \vec{b} \cdot \vec{k}_{t, i}}-1\right)=\sigma_{0} \int d^{2} \vec{p}_{\perp}^{H} \int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{\perp}^{H}} e^{-R_{\mathrm{NLL}}(L)}
$$

NLL formula with scale-independent PDFs

$$
R_{\mathrm{NLL}}(L)=-L g_{1}\left(\alpha_{s} L\right)-g_{2}\left(\alpha_{s} L\right) \quad L=\ln \left(m_{H} b / b_{0}\right)
$$

Logarithmic accuracy defined in terms of $\ln \left(m_{H} b / b_{0}\right)$

Resummation of the transverse momentum spectrum in direct space

Solution 2: Translate the resummability into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety

Resummation in direct space is a highly non-trivial problem: a naive resummation of logarithmic terms at small p_{\perp} is not sensible, as one loses the correct power-suppressed scaling if only logarithms are retained.

It is not possible to reproduce a power-like behaviour with logs of $p_{\perp} / m_{H} \quad$ [Frixione, Nason, Ridolfi '98]

Solution to the problem recently formulated by extending the CAESAR/ARES approach to deal with observables with azimuthal cancellations: RadISH approach
[Monni, Re, Torrielli '16][Bizon, Monni, Re, LR, Torrielli '17]

Problem recently addressed also within SCET [Ebert, Tackmann '17]

Resummation of the transverse momentum spectrum in direct space

Result at NLL accuracy can be written as

$$
\begin{array}{rlr}
\sigma\left(p_{\perp}\right)= & \sigma_{0} \int \frac{d v_{1}}{v_{1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(v_{1}\right)} & v_{i}=k_{t, i} / m_{H}, \quad \zeta_{i}=v_{i} / v_{1} \\
& \left.\times \epsilon^{R^{\prime}\left(v_{1}\right)} R^{\prime}\left(v_{1}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} v_{1}\right) \Theta\left(p_{\perp}-\left|\vec{k}_{t, i}+\cdots \vec{k}_{t, n+1}\right|\right)\right)
\end{array}
$$

Resummation of the transverse momentum spectrum in direct space

Result at NLL accuracy can be written as

$$
\tilde{\sigma} \sim \int \frac{d v_{1}}{v_{1}} \Sigma_{s}\left(v _ { 1 } \mathscr { F } \left(v, v_{1}\right.\right.
$$

$$
\begin{aligned}
\sigma\left(p_{\perp}\right)= & \sigma_{0} \int \frac{d v_{1}}{v_{1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(v_{1}\right)} \text { Simple observable } v_{i}=k_{t, i} / m_{H}, \quad \zeta_{i}=v_{i} / v_{1} \\
& \left.\times \epsilon^{R^{\prime}\left(v_{1}\right)} R^{\prime}\left(v_{1}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} v_{1}\right) \Theta\left(p_{\perp}-\left|\vec{k}_{t, i}+\cdots \vec{k}_{t, n+1}\right|\right)\right)
\end{aligned}
$$

Transfer function

Resummation of the transverse momentum spectrum in direct space

Result at NLL accuracy can be written as

$$
\tilde{\sigma} \sim \int \frac{d v_{1}}{v_{1}} \Sigma_{s}\left(v _ { 1 } \mathscr { F } \left(v, v_{1}\right.\right.
$$

$$
\begin{aligned}
\sigma\left(p_{\perp}\right)= & \sigma_{0} \int \frac{d v_{1}}{v_{1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(v_{1}\right)} \text { Simple observable } \quad v_{i}=k_{t, i} / m_{H}, \quad \zeta_{i}=v_{i} / v_{1} \\
& \left.\times \epsilon^{R^{\prime}\left(v_{1}\right)} R^{\prime}\left(v_{1}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} v_{1}\right) \Theta\left(p_{\perp}-\left|\vec{k}_{t, i}+\cdots \vec{k}_{t, n+1}\right|\right)\right)
\end{aligned}
$$

Transfer function
Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes (as $\mathcal{O}(\epsilon)$) and result is finite in four dimensions

Subleading effects retained: no divergence at small p_{\perp}, power-like behaviour respected
Logarithmic accuracy defined in terms of $\ln \left(m_{H} / k_{t 1}\right)$
Result formally equivalent to the b-space formulation [Bizon, Monni, Re, LR, Torrielli ' 17$]$

Direct space formulation

1. Similar in spirit to a semi-inclusive parton shower, but with higher-order logarithms, and full control on the formal accuracy
2. Thanks to its versatility, the approach can be exploited to formulate the resummation for entire classes of observables in an unique framework
3. More differential description of the QCD radiation than that usually possible in a conjugate-space formulation

Direct space formulation

N^{3} LL result

Price to pay: less compact formulation

$$
\begin{align*}
& \frac{d \Sigma(v)}{d \Phi_{B}}=\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R\left(k_{t 11}\right)} \mathcal{N}_{\mathbb{N}^{3} L \mathrm{~L}}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right\} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right) \\
& +\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t+1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s}}{\zeta_{s}} \frac{d \phi_{s}}{2 \pi}\left\{\left(R^{\prime}\left(k_{t 1}\right) \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)\right)\right. \\
& \times\left(R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}+\frac{1}{2} R^{\prime \prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\zeta_{s}}\right)-R^{\prime}\left(k_{t 1}\right)\left(\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-2 \frac{\beta_{0}}{\pi} \alpha_{s}^{2}\left(k_{t 1}\right) \hat{P}^{(0)} \otimes \mathcal{N}_{\mathrm{NLL}}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}\right) \\
& \left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\}\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\} \\
& +\frac{1}{2} \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s 1}}{\zeta_{s 1}} \frac{d \phi_{s 1}}{2 \pi} \int_{0}^{1} \frac{d \zeta_{s 2}}{\zeta_{s 2}} \frac{d \phi_{s 2}}{2 \pi} R^{\prime}\left(k_{t 1}\right) \\
& \times\left\{\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\left(R^{\prime \prime}\left(k_{t 1}\right)\right)^{2} \ln \frac{1}{\zeta_{s 1}} \ln \frac{1}{\zeta_{s 2}}-\partial_{L} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) R^{\prime \prime}\left(k_{t 1}\right)\left(\ln \frac{1}{\zeta_{s 1}}+\ln \frac{1}{\zeta_{s 2}}\right)\right. \\
& \left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\} \\
& \times\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}, k_{s 2}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}\right)\right)-\right. \\
& \left.\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 2}\right)\right)+\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}+\mathcal{O}\left(\alpha_{s}^{n} \ln ^{2 n-6} \frac{1}{v}\right) \text {, } \tag{3.18}
\end{align*}
$$

1. Similar in spirit to a semi-inclusive parton shower, but with higher-order logarithms, and full control on the formal accuracy

Resummation of the transverse momentum spectrum at $\mathbf{N}^{3} L L+N N L O$

N3LL result matched to NNLO H $+\mathrm{j}, \mathrm{Z}+\mathrm{j}, \mathrm{W} \pm+\mathrm{j}$ [Bizon, LR et al. '17, $\left.{ }^{18,}{ }^{\prime} 19\right]$

[ATLAS 1912.02844]
$\mathrm{H}+\mathrm{j}$ at same accuracy also in SCET [Chen et al. '18]
2. Thanks to its versatility, the approach can be exploited to formulate the resummation for entire classes of observables in an unique framework

Direct space formulation: generality

NLL result for p_{\perp}^{J}

$$
\sigma\left(p_{\perp}^{\mathrm{J}}\right)=\sigma_{0} e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)}
$$

NLL result for p_{\perp}^{H}

$$
\sigma\left(p_{\perp}^{H}\right)=\sigma_{0} \int d^{2} \vec{p}_{\perp}^{H} \int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{\perp}^{H}} e^{-R_{\mathrm{NLL}}(L)}
$$

Direct space formulation: generality

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$
\begin{gathered}
\sigma(v)=\sigma_{0} \int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} R^{\prime}\left(k_{t, 1}\right) d \mathscr{Z} \Theta\left(v-V\left(k_{1}, \ldots, k_{n+1}\right)\right) \\
d \mathscr{\mathscr { L }}=\epsilon^{R^{\prime}\left(k_{t, 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} k_{t, 1}\right)
\end{gathered}
$$

Direct space formulation: generality

NLL result for p_{\perp}^{J}

$$
\sigma\left(p_{\perp}^{\mathrm{J}}\right)=\sigma_{0} e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)}
$$

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$
\begin{gathered}
\sigma\left(p_{\perp}^{\mathrm{J}}\right)=\sigma_{0} \int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} R^{\prime}\left(k_{t, 1}\right) d \mathscr{Z} \Theta\left(p_{T}^{J}-\max \left\{k_{t, 1}, \ldots k_{t, n+1}\right\}\right) \\
d \mathscr{\not}=\epsilon^{R^{\prime}\left(k_{t, 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} k_{t, 1}\right)
\end{gathered}
$$

Direct space formulation: generality

$$
\begin{gathered}
\text { NLL result for } p_{\perp}^{H} \\
\sigma\left(p_{\perp}^{J}\right)=\sigma_{0} e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{S} L\right)} \\
\sigma\left(p_{\perp}^{H}\right)=\sigma_{0} \int d^{2} \vec{p}_{\perp}^{H} \int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{\perp}^{H}} e^{-R_{\mathrm{NLL}}(L)}
\end{gathered}
$$

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli '17]

$$
\begin{gathered}
\sigma\left(p_{\perp}^{H}\right)=\sigma_{0} \int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} R^{\prime}\left(k_{t, 1}\right) d \mathscr{Z} \Theta\left(p_{T}^{H}-\left|\vec{k}_{t, 1}+\cdots \vec{k}_{t, n+1}\right|\right) \\
d \mathscr{Z}=\epsilon^{R^{\prime}\left(k_{t, 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} k_{t, 1}\right)
\end{gathered}
$$

Direct space formulation: generality

differential control in momentum space provides guidance to double-differential resummation

Double-differential resummation at NLL in b space

At NLL, emissions are strongly ordered in angle. k_{t}-clustering algorithms will associate each emission to a different jet

Double-differential resummation at NLL in b space

At NLL, emissions are strongly ordered in angle. k_{t}-clustering algorithms will associate each emission to a different jet

Additional constraint on real radiation
p_{\perp}^{H} resummation formula
$\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, 1}, \ldots, k_{t, n}\right\}\right)=\prod_{i=1}^{n} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-k_{t, i}\right)$

$$
\frac{d \sigma}{d^{2} \vec{p} H}=\sigma_{0} \int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{\perp}^{H}} e^{-R_{\mathrm{NLL}}(L)}
$$

Double-differential resummation at NLL in b space

At NLL, emissions are strongly ordered in angle. k_{t}-clustering algorithms will associate each emission to a different jet

Additional constraint on real radiation

$$
\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, 1}, \ldots, k_{t, n}\right\}\right)=\prod_{i=1}^{n} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-k_{t, i}\right)
$$

$$
\text { Joint } p_{\perp}^{H}, p_{\perp}^{\mathrm{J}, \mathrm{v}_{\text {resummation formula }} .}
$$

$$
\frac{d \sigma\left(p_{\perp}^{\mathrm{J}, V}\right)}{d^{2} \vec{p}_{\perp}^{H}}=\sigma_{0} \int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{\perp}^{H}} e^{-S_{\mathrm{NLL}}(L)}
$$

CMW scheme [Catani, Marchesini, Webber '91]

$$
S_{\mathrm{NLL}}(L)=-L g_{1}\left(\alpha_{s} L\right)-g_{2}\left(\alpha_{s} L\right)+\int_{0}^{m_{H}} \frac{d k_{t}}{k_{t}} R_{\mathrm{NLL}}^{\prime}\left(k_{t}\right) J_{0}\left(b k_{t}\right) \Theta\left(k_{t}-p_{\perp}^{\mathrm{J} \cdot \mathrm{~V}}\right) \quad R_{\mathrm{NLL}}^{\prime}\left(k_{t}\right)=4\left(\frac{\alpha_{s}^{\mathrm{CMW}}\left(k_{t}\right)}{\pi} C_{A} \ln \frac{m_{H}}{k_{t}}-\alpha_{s}\left(k_{t}\right) \beta_{0}\right)
$$

Double-differential resummation at NNLL in b space

Crucial observation: in b space the phase space constraints entirely factorize
The jet veto constraint can be included by implementing the jet veto resummation at the b-space integrand level directly in impact-parameter space

Inclusive contribution: phase space constraint of the form

$$
\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, 1}, \ldots, k_{t, n}\right\}\right)=\prod_{i=1}^{n} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-k_{t, i}\right)
$$

Promote radiator at NNLL

$$
S_{\mathrm{NNLL}}=-L g_{1}\left(\alpha_{s} L\right)-g_{2}\left(\alpha_{s} L\right)-\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\int_{0}^{m_{H}} \frac{d k_{t}}{k_{t}} R_{\mathrm{NNLL}}^{\prime}\left(k_{t}\right) J_{0}\left(b k_{t}\right) \Theta\left(k_{t}-p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)
$$

Double-differential resummation at NNLL in b space

Crucial observation: in b space the phase space constraints entirely factorize $e^{i \vec{b} \cdot \vec{k}_{t, i}}$ The jet veto constraint can be included by implementing the jet veto resummation at the b-space integrand level directly in impact-parameter space

Inclusive contribution: phase space constraint of the form

$$
\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, 1}, \ldots, k_{t, n}\right\}\right)=\prod_{i=1}^{n} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-k_{t, i}\right)
$$

Promote radiator at NNLL

$$
S_{\mathrm{NNLL}}=-L g_{1}\left(\alpha_{s} L\right)-g_{2}\left(\alpha_{s} L\right)-\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\int_{0}^{m_{H}} \frac{d k_{t}}{k_{t}} R_{\mathrm{NNLL}}^{\prime}\left(k_{t}\right) J_{0}\left(b k_{t}\right) \Theta\left(k_{t}-p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)
$$

Resummation formula must be amended at NNLL [Banfi et al. '12][Becher et al. '13][Stewart et al. ' 14]

- clustering correction: jet algorithm can cluster two independent emissions into the same jet
- correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission accounting for configurations where the two correlated emissions (non abelian) are not clustered in the same jet

Double-differential resummation at NNLL in b space

clustering correction: jet algorithm can cluster two emissions into the same jet

$$
\mathscr{F}_{\text {clust }}=\frac{1}{2!} \int\left[d k_{a}\right]\left[d k_{b}\right] M^{2}\left(k_{a}\right) M^{2}\left(k_{b}\right) J_{a b}(R) e^{i \vec{b} \cdot \vec{k}_{t, a b}}\left[\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-k_{t, a b}\right)-\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, a}, k_{t, b}\right\}\right)\right]
$$

$$
J_{a b}(R)=\Theta\left(R^{2}-\Delta \eta_{a b}^{2}-\Delta \phi_{a b}^{2}\right)
$$

Double-differential resummation at NNLL in b space

clustering correction: jet algorithm can cluster two emissions into the same jet

$$
\mathscr{F}_{\text {clust }}=\frac{1}{2!} \int\left[d k_{a}\right]\left[d k_{b}\right] M^{2}\left(k_{a}\right) M^{2}\left(k_{b}\right) J_{a b}(R) e^{i \vec{b} \cdot \vec{k}_{t, a b}}\left[\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-k_{t, a b}\right)-\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, a}, k_{t, b}\right\}\right)\right]
$$

$$
J_{a b}(R)=\Theta\left(R^{2}-\Delta \eta_{a b}^{2}-\Delta \phi_{a b}^{2}\right)
$$

Double-differential resummation at NNLL in b space

correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission accounting for configurations where the two correlated emissions are not clustered in the same jet

$$
\mathscr{F}_{\text {correl }}=\frac{1}{2!} \int\left[d k_{a}\right]\left[d k_{b}\right] \tilde{M}^{2}\left(k_{a}, k_{b}\right)\left(1-J_{a b}(R)\right) e^{i \vec{b} \cdot \vec{k}_{t, a b}} \times\left[\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, a}, k_{t, b}\right\}\right)-\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-k_{t, a b}\right)\right]
$$

Double-differential resummation at NNLL in b space

correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission accounting for configurations where the two correlated emissions are not clustered in the same jet

At NNLL, all remaining emissions can be considered to be far in angle from the pair k_{a}, k_{b}

Double-differential resummation at NNLL in b space

NNLL prediction finally requires the consistent treatment of non-soft collinear emissions off the initial state particles

Soft and non-soft emission cannot be clustered by a k_{t}-type jet algorithm. Non-soft collinear radiation can be handled by taking a Mellin transform of the resummed cross section, giving rise to scale evolution of PDFs and of the $\mathcal{O}\left(\alpha_{s}\right)$ collinear coefficient functions

Double-differential resummation at NNLL in b space

NNLL prediction finally requires the consistent treatment of non-soft collinear emissions off the initial state particles

Soft and non-soft emission cannot be clustered by a k_{t}-type jet algorithm. Non-soft collinear radiation can be handled by taking a Mellin transform of the resummed cross section, giving rise to scale evolution of PDFs and of the $\mathcal{O}\left(\alpha_{s}\right)$ collinear coefficient functions

Final result at NNLL, including hard-virtual corrections at $\mathcal{O}\left(\alpha_{s}\right)$

$$
\begin{aligned}
& \frac{d \sigma\left(p_{\perp}^{\mathrm{J}, v}\right)}{d y_{H} d^{2} \vec{p}_{\perp}^{H}}=M_{\mathrm{gg} \rightarrow \mathrm{H}}^{2} \mathscr{H}\left(\alpha_{s}\left(m_{H}\right)\right) \int_{\mathscr{C}_{1}} \frac{d \nu_{1}}{2 \pi i} \int_{\mathscr{C}_{2}} \frac{d \nu_{2}}{2 \pi i} x_{1}^{-\nu_{1}} x_{2}^{-\nu_{2}} \int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{\perp}^{H}} e^{-S_{\text {NNLL }}}\left(1+\mathscr{F}_{\text {clust }}+\mathscr{F}_{\text {correl }}\right)
\end{aligned}
$$

> Mellin moments
> Flavour indices

Double-differential resummation in direct space

Just need to combine measurement functions!
At NLL

$$
\sigma\left(p_{\perp}^{H}\right)=\sigma_{0} \int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} R^{\prime}\left(k_{t, 1}\right) d \mathscr{F} \Theta\left(p_{\perp}^{H}-\left|\vec{k}_{t, 1}+\cdots \vec{k}_{t, n+1}\right|\right)
$$

Double-differential resummation in direct space

Just need to combine measurement functions!
At NLL

$$
\sigma\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)=\sigma_{0} \int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} R^{\prime}\left(k_{t, 1}\right) d \mathscr{\not} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, 1}, \ldots k_{t, n+1}\right\}\right)
$$

Double-differential resummation in direct space

Just need to combine measurement functions!
At NLL

$$
\sigma\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}, p_{\perp}^{H}\right)=\sigma_{0} \int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} R^{\prime}\left(k_{t, 1}\right) d \mathscr{\not} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, 1}, \ldots k_{t, n+1}\right\}\right) \Theta\left(p_{\perp}^{H}-\left|\vec{k}_{t, 1}+\cdots \vec{k}_{t, n+1}\right|\right)
$$

Double-differential resummation in direct space

? Just need to combine measurement functions!
At NLL

$$
\sigma\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}, p_{\perp}^{H}\right)=\sigma_{0} \int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} R^{\prime}\left(k_{t, 1}\right) d \mathscr{E} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, 1}, \ldots k_{t, n+1}\right\}\right) \Theta\left(p_{\perp}^{H}-\left|\vec{k}_{t, 1}+\cdots \vec{k}_{t, n+1}\right|\right)
$$

Same philosophy at NNLL

$$
\sigma^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)=\sigma_{\mathrm{incl}}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{~V}}\right)+\sigma_{\text {clust }}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)+\sigma_{\mathrm{corr}}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{~V}}\right)
$$

where e.g.

$$
\begin{aligned}
\sigma_{\mathrm{clust}}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}\right) & \simeq \int_{0}^{\infty} \frac{d k_{t, 1}}{k_{t, 1}} \frac{d \phi_{1}}{2 \pi} \int d \mathscr{\mathscr { L }} e^{-R\left(k_{t, 1}\right)} 8 C_{A}^{2} \frac{\alpha_{s}^{2}\left(k_{t, 1}\right)}{\pi^{2}} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{~V}}-\max _{i>1}\left\{k_{t, i}\right\}\right) \\
& \times \int_{0}^{k_{t, 1}} \frac{d k_{t, s_{1}}}{k_{t, s_{1}}} \frac{d \phi_{s_{1}}}{2 \pi} \int_{-\infty}^{\infty} d \Delta \eta_{1 s_{1}} J_{1 s_{1}}(R)\left[\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\vec{k}_{t, s_{1}}\right|\right)-\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-k_{t, 1}\right)\right]
\end{aligned}
$$

Double-differential resummation in direct space

? Just need to combine measurement functions!
At NLL

$$
\sigma\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}, p_{\perp}^{H}\right)=\sigma_{0} \int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} R^{\prime}\left(k_{t, 1}\right) d \mathscr{E} \Theta\left(p_{\perp}^{J, v}-\max \left\{k_{t, 1}, \ldots k_{t, n+1}\right\}\right) \Theta\left(p_{\perp}^{H}-\left|\vec{k}_{t, 1}+\cdots \vec{k}_{t, n+1}\right|\right)
$$

Same philosophy at NNLL

$$
\sigma^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)=\sigma_{\mathrm{incl}}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{~V}}\right)+\sigma_{\text {clust }}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)+\sigma_{\mathrm{corr}}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{~V}}\right)
$$

where e.g

$$
\begin{aligned}
\sigma_{\mathrm{clust}}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}, p_{\perp}^{H}\right) & \simeq \int_{0}^{\infty} \frac{d k_{t, 1}}{k_{t, 1}} \frac{d \phi_{1}}{2 \pi} \int d \mathscr{Z} e^{-R\left(k_{t, 1}\right)} 8 C_{A}^{2} \frac{\alpha_{s}^{2}\left(k_{t, 1}\right)}{\pi^{2}} \Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{~V}}-\max _{i>1}\left\{k_{t, i}\right\}\right) \\
& \times \int_{0}^{k_{t, 1}} \frac{d k_{t, s_{1}}}{k_{t, s_{1}}} \frac{d \phi_{s_{1}}}{2 \pi} \int_{-\infty}^{\infty} d \Delta \eta_{1 s_{1}} J_{1 s_{1}}(R)\left[\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\vec{k}_{t, s_{1} \mid}\right|\right)-\Theta\left(p_{\perp}^{\mathrm{J}, \mathrm{~V}}-k_{t, 1}\right)\right] \\
& \times \Theta\left(p_{\perp}^{H}-\left|\vec{k}_{t, 1}+\ldots+\vec{k}_{t, n+1}+\vec{k}_{t, s_{1}}\right|\right)
\end{aligned}
$$

And analogously for other contributions

NNLL cross section differential in p_{\perp}^{H}, cumulative in $p_{\perp}^{J} \leq p_{\perp}^{\mathrm{J}, ~}$

NNLL cross section differential in p_{\perp}^{H}, cumulative in $p_{\perp}^{\mathrm{J}} \leq p_{\perp}^{\mathrm{JVV}}$

NNLL cross section differential in p_{\perp}^{H}, cumulative in $p_{\perp}^{\mathrm{J}} \leq p_{\perp}^{\mathrm{JVV}}$

NNLL cross section differential in p_{\perp}^{H}, cumulative in $p_{\perp}^{J} \leq p_{\perp}^{\mathrm{J}, V}$

[Catani, Webber '97]
Sudakov shoulder: integrable
singularity beyond LO at
$p_{\perp}^{H} \simeq p_{\perp}^{\mathrm{J}, \mathrm{V}}$
Logarithms associated to the Shoulder are resummed in the limit $p_{\perp}^{H} \sim p_{\perp}^{\mathrm{J}, \mathrm{V}} \ll m_{H}$

Accuracy check at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

Comparison of the expansion of the resummed result with the fixed order at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in the limit $p_{\perp}^{H} \sim p_{\perp}^{\mathrm{J}, \mathrm{v}} \ll m_{H}$

$$
\begin{aligned}
\sigma^{\mathrm{NNLO}}\left(p_{\perp}^{H}<p_{\perp}^{H, v}, p_{\perp}^{\mathrm{J}}<p_{\perp}^{\mathrm{J}, v}\right) & =\sigma^{\mathrm{NNLO}}-\int \Theta\left(p_{\perp}^{H}>p_{\perp}^{H, v}\right) \vee \Theta\left(p_{\perp}^{\mathrm{J}}>p_{\perp}^{\mathrm{J}, v}\right) d \sigma_{H+\mathrm{J}}^{\mathrm{NLO}} \\
& \left.\left.\sim \frac{\sigma_{0}\left(1+\alpha_{s}\left(L^{2}+L+c_{1}\right)+\alpha_{s}^{2}\left(L^{4}+L^{3}+L^{2}+L\right.\right.}{\text { Fully predicted at NNLL }}+c_{1}\right)\right)
\end{aligned}
$$

Difference at the double-cumulative level

$$
\Delta\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}, p_{\perp}^{H, \mathrm{v}}\right)=\sigma^{\mathrm{NNLO}}\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}, p_{\perp}^{H, \mathrm{v}}\right)-\sigma_{\mathrm{exp} .}^{\mathrm{NNLL}}\left(p_{\perp}^{\mathrm{J}, \mathrm{v}}, p_{\perp}^{H, \mathrm{v}}\right)
$$

should go to a constant when the logarithms get large $\left(p_{\perp}^{H} \sim p_{\perp}^{\mathrm{J}, \mathrm{V}} \ll m_{H}\right)$

Accuracy check at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

Difference at the double-cumulative level goes to a constant (all logarithmic terms correctly predicted)

Very strong check: NNLL resummation of the logarithms associated to the shoulder

Analogous checks performed in the limits $p_{\perp}^{H} \ll p_{\perp}^{\mathrm{J}, \mathrm{v}}<m_{H}$ and $p_{\perp}^{\mathrm{J}, \mathrm{v}} \ll p_{\perp}^{H}<m_{H}$

LHC results: Higgs transverse momentum with a jet veto

Multiplicative matching to fixed order (NLO H+j from MCFM, NNLO H from ggHiggs)
[Campbell, Ellis, Giele,'15]
[Bonvini et al '13]

LHC results: Higgs transverse momentum with a jet veto

Multiplicative matching to fixed order (NLO H+j from MCFM, NNLO H from ggHiggs)
[Campbell, Ellis, Giele,'15]
[Bonvini et al '13]
residual uncertainties at NNLL+NLO at the 10\% level

good perturbative convergence to the left of the shoulder; above, multi-particle configurations play a substantial role
large K-factor becomes relevant at larger p_{\perp}^{H}

LHC applications: W+W- production

Jet vetoed analyses commonly enforced in LHC searches

For instance, $\mathrm{W}+\mathrm{W}-$ channel, which is relevant for BSM searches into leptons missing energy and/or jets and Higgs measurements, suffers from a signal contamination due to large top-quark background

Fiducial region defined by a rather stringent jet veto

W+W- transverse momentum with a jet veto

RadISH+MATRIX interface for generic $2 \rightarrow 1$ and $2 \rightarrow 2$ colour singlet processes
[Kallweit, Wiesemann, Re, LR 2004.07720]
[Wiesemann, Re, Zanderighi '18] Comparison with NNLOPS result (much lower log accuracy) shows differences at the $\mathcal{O}(10 \%)$ level

Fixed order predictions from MATRIX
[Grazzini, Kallweit, Rathlev, Wiesemann '15, '17]
reduced sensitivity to the Sudakov shoulder with
3. More differential description of the QCD radiation than that usually possible in a conjugate-space formulation

Direct space: access to differential information and underlying dynamics

Possible access to subleading jets and higher moments

Summary

- Precision of the data demands an increasing theoretical accuracy at the multi-differential level to fully exploit LHC potential
- First joint resummation for a double-differential kinematic observable involving a jet algorithm in hadronic collisions
- Direct space formulation (RadISH) provides guidance to obtain elegant and compact formulation in b-space at NNLL accuracy and offers access to underlying dynamics
- Formalism can be readily extended to more complex final states; $2 \rightarrow 1$ and $2 \rightarrow 2$ colour singlet processes soon available via upcoming MATRIX+RadISH framework

Backup

All-order structure of the matrix element

$$
v=p_{t} / M
$$

single-particle phase space

Transverse observable resummation with RadISH

1. Establish a logarithmic counting for the squared matrix element $\left|\mathscr{M}\left(\Phi_{B}, k_{1}, \ldots k_{n}\right)\right|^{2}$

Decompose the squared amplitude in terms of \boldsymbol{n}-particle correlated blocks, denoted by $\left|\tilde{M}\left(k_{1}, \ldots, k_{n}\right)\right|^{2}$ $\left(\left|\tilde{M}\left(k_{1}\right)\right|^{2}=\left|\mathscr{M}\left(k_{1}\right)\right|^{2}\right.$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|\mathscr{M}\left(\Phi_{B}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\mid \mathscr{M}_{B}\left(\left.\Phi_{B}\right|^{2}\right. \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|\cdot \mathcal{M L}\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a x} k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right] \mid \tilde{\mathscr{M}}\left(k_{a},\right. \\
\left|\tilde{M}\left(k_{1}\right)\right|^{2}
\end{array}=\frac{\left|M\left(k_{1}\right)\right|^{2}}{\left|M_{B}\right|^{2}}=\left|M\left(k_{1}\right)\right|^{2} . \\
& \left|\tilde{M}\left(k_{1}, k_{2}\right)\right|^{2}=\frac{\left|M\left(k_{1}, k_{2}\right)\right|^{2}}{\left|M_{B}\right|^{2}}-\frac{1}{2!}\left|M\left(k_{1}\right)\right|^{2} M\left|\left(k_{2}\right)\right|^{2} \\
& \text { *expression valid for } \\
& \text { inclusive observables }
\end{aligned}
$$

Upon integration over the phase space, the expansion can be put in a one to one correspondence with the logarithmic structure

Systematic recipe to include terms up to the desired logarithmic accuracy

Resummation in direct space: the \boldsymbol{p}_{t} case

2. Exploit rIRC safety to single out the IRC singularities of the real matrix element and achieve the cancellation of the exponentiated divergences of virtual origin

Introduce a slicing parameter $\epsilon \ll 1$ such that all inclusive blocks with $k_{t, i}<\epsilon k_{t, 1}$, with $k_{t, 1}$ hardest emission, can be neglected in the computation of the observable

$$
\begin{aligned}
& \Sigma(v)=\int d \Phi_{B}\left|\mathscr{M}_{B}\left(\Phi_{B}\right)\right|^{2} \mathscr{V}\left(\Phi_{B}\right) \quad \text { unresolved emissions } \\
& \left.\times \int\left[d k_{1}\right] \mid \mathscr{M}\left(k_{1}\right)\right)_{\text {inc }}^{2}\left(\sum_{l=0}^{\infty} \frac{1}{l!} \int \prod_{i=2}^{l+1}\left[d k_{j}\right]\left|\cdot \mathscr{M}\left(k_{j}\right)\right|_{\text {inc }}^{2} \Theta\left(\epsilon V\left(k_{1}\right)-V\left(k_{j}\right)\right)\right) \\
& \times\left(\sum_{m=0}^{\infty} \frac{1}{m!} \int \prod_{i=2}^{m+1}\left[d k_{i}\right]\left|\mathscr{M}\left(k_{i}\right)\right|_{\text {inc }}^{2} \Theta\left(V\left(k_{i}\right)-\epsilon V\left(k_{1}\right)\right) \Theta\left(v-V\left(\Phi_{B}, k_{1}, \ldots, k_{m+1}\right)\right)\right)
\end{aligned}
$$

resolved emissions
Unresolved emission doesn't contribute to the evaluation of the observable: it can be exponentiated directly and employed to cancel the virtual divergences, giving rise to a Sudakov radiator

$$
\mathscr{V}\left(\Phi_{B}\right) \exp \left\{\int[d k]|\mathscr{M}(k)|_{\text {inc }}^{2} \Theta\left(\epsilon V\left(k_{1}\right)-V(k)\right)\right\} \simeq e^{-R\left(\epsilon V\left(k_{1}\right)\right)}
$$

Resummation in direct space: the \boldsymbol{p}_{t} case

Result at NLL accuracy can be written as

$$
\begin{array}{rlr}
\Sigma(v)= & \sigma^{(0)} \int \frac{d v_{1}}{v_{1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(\left(v_{1}\right)\right.} R^{\prime}\left(v_{1}\right) \quad v_{i}=V\left(k_{i}\right), \quad \zeta_{i}=v_{i} / v_{1} \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} v_{1}\right) \Theta\left(v-V\left(\Phi_{B}, k_{1}, \ldots, k_{n+1}\right)\right)
\end{array}
$$

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes exactly and result is finite in four dimensions

It contains subleading effect which in the original CAESAR approach are disposed of by expanding R and R^{\prime} around v

Not possible! valid only if the ratio v_{i} / v remains of order one in the whole emission phase space, but for observables which feature kinematic cancellations there are configurations with $v_{i} \gg v$. Subleading effects necessary

Resummation in direct space: the \boldsymbol{p}_{t} case

Result at NLL accuracy can be written as

$$
\begin{array}{rlr}
\Sigma(v)= & \sigma^{(0)} \int \frac{d v_{1}}{v_{1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(\epsilon v_{1}\right)} R^{\prime}\left(v_{1}\right) \quad v_{i}=V\left(k_{i}\right), \quad \zeta_{i}=v_{i} / v_{1} \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} v_{1}\right) \Theta\left(v-V\left(\Phi_{B}, k_{1}, \ldots, k_{n+1}\right)\right)
\end{array}
$$

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes exactly and result is finite in four dimensions

Convenient to perform an expansion around $k_{t 1}$ (more efficient and simpler implementation)

$$
\begin{aligned}
& R\left(\epsilon k_{t 1}\right)=R\left(k_{t 1}\right)+\frac{d R\left(k_{t 1}\right)}{d \ln \left(1 / k_{t 1}\right)} \ln \frac{1}{\epsilon}+\mathcal{O}\left(\ln ^{2} \frac{1}{\epsilon}\right) \\
& R^{\prime}\left(k_{t i}\right)=R^{\prime}\left(k_{t 1}\right)+\mathcal{O}\left(\ln \frac{k_{t 1}}{k_{t i}}\right)
\end{aligned}
$$

Subleading effects retained: no divergence at small v, power-like behaviour respected
Logarithmic accuracy defined in terms of $\ln \left(M / k_{t 1}\right)$
Result formally equivalent to the b-space formulation

Parton luminosities

Consider configurations in which emissions are ordered in $k_{t, i,} k_{t, 1}$ hardest emission Phase space for each secondary emission can be depicted in the Lund diagram

- DGLAP evolution can be performed inclusively up to $\epsilon k_{t, 1}$ thanks to rIRC safety
- In the overlapping region hard-collinear emissions modify the observable's value: the evolution should be performed exclusively (unintegrated in k_{t})
- At NLL the real radiation can be approximated with its soft limit: DGLAP can be performed inclusively up to $k_{t, 1}$ (i.e. one can evaluate $\mu_{\mathrm{F}}=k_{t, 1}$)

Beyond NLL

Extension to NNLL and beyond requires the systematic inclusion of the correlated blocks necessary to achieve the desired logarithmic accuracy

Moreover, one needs to relax a series of assumptions which give rise to subleading corrections neglected at NLL (for instance, exact rapidity bounds). These corrections can be included systematically by including additional terms in the expansion

$$
R\left(\epsilon v_{1}\right)=R\left(v_{1}\right)+\frac{d R\left(v_{1}\right)}{d \ln \left(1 / v_{1}\right)} \ln \frac{1}{\epsilon}+\mathcal{O}\left(\ln ^{2} \frac{1}{\epsilon}\right)
$$

Finally, one needs to specify a complete treatment for hard-collinear radiation. Starting at NNLL one or more real emissions can be hard and collinear to the emitting leg, and the available phase space for subsequent real emissions changes

Two classes of contributions:

- one soft by construction and which is analogous to the R^{\prime} contribution

$$
R^{\prime}\left(v_{i}\right)=R^{\prime}\left(v_{1}\right)+\mathcal{O}\left(\ln \frac{v_{1}}{v_{i}}\right)
$$

- another hard and collinear (exclusive DGLAP step): last step of DGLAP evolution must be performed unintegrated in k_{t}

Logarithmic counting

Necessary to establish a well defined logarithmic counting: possibile to do that by decomposing the squared amplitude in terms of n-particle correlated blocks (nPC)

$$
\text { e.g. pp } \rightarrow H+\text { emission of up to } 2 \text { (soft) gluons } O\left(\alpha_{s}{ }^{2}\right)
$$

Logarithmic counting defined in terms of nPC blocks (owing to rIRC safety of the observable)

Logarithmic counting: correlated blocks

15 this LL is absorbed in the resummation of $|\mathrm{M}(\mathrm{k})|^{2}$
Thanks to P. Monni

Resummation at NLL accuracy

Final result at NLL

$$
\begin{aligned}
\frac{d \Sigma(v)}{d \Phi_{B}} & =\int \frac{d k_{t, 1}}{k_{t, 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t, 1}\right)} \epsilon^{R^{\prime}\left(k_{t, 1}\right)} \mathscr{L}_{\mathrm{NLL}}\left(k_{t, 1}\right) R^{\prime}\left(k_{t, 1}\right) \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(\zeta_{i} k_{t, 1}\right) \Theta\left(v-V\left(\Phi_{B}, k_{1}, \ldots, k_{n+1}\right)\right)
\end{aligned}
$$

This formula can be evaluated by means of fast Monte Carlo methods RadISH (Radiation off Initial State Hadrons)

Parton luminosity at NLL reads

$$
\mathscr{L}_{\mathrm{NLL}}\left(k_{t, 1}\right)=\sum_{c} \frac{d\left|M_{B}\right|_{c \bar{c}}^{2}}{d \Phi_{B}} f_{c}\left(x_{1}, k_{t, 1}^{2}\right) f_{\bar{c}}\left(x_{2}, k_{t, 1}^{2}\right)
$$

At higher logarithmic accuracy, it includes coefficient functions and hard-virtual corrections

Result at \mathbf{N}^{3} LL accuracy

$$
\left.\begin{array}{l}
\frac{d \Sigma(v)}{d \Phi_{B}}=\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{N}^{3} \mathrm{LL}}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right) \\
+\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s}}{\zeta_{s}} \frac{d \phi_{s}}{2 \pi}\left\{\left(R^{\prime}\left(k_{t 1}\right) \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)\right)\right. \\
\times\left(R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}+\frac{1}{2} R^{\prime \prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\zeta_{s}}\right)-R^{\prime}\left(k_{t 1}\right)\left(\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-2 \frac{\beta_{0}}{\pi} \alpha_{s}^{2}\left(k_{t 1}\right) \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}\right) \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\}\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\} \\
+\frac{1}{2} \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s 1}}{\zeta_{s 1}} \frac{d \phi_{s 1}}{2 \pi} \int_{0}^{1} \frac{d \zeta_{s 2}}{\zeta_{s 2}} \frac{d \phi_{s 2}}{2 \pi} R^{\prime}\left(k_{t 1}\right) \\
\times\left\{\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\left(R^{\prime \prime}\left(k_{t 1}\right)\right)^{2} \ln \frac{1}{\zeta_{s 1}} \ln \frac{1}{\zeta_{s 2}}-\partial_{L} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) R^{\prime \prime}\left(k_{t 1}\right)\left(\ln \frac{1}{\zeta_{s 1}}+\ln \frac{1}{\zeta_{s 2}}\right)\right. \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\} \\
\times\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}, k_{s 2}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}\right)\right)-\right. \\
\left.\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 2}\right)\right)+\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}+\mathcal{O}\left(\alpha_{s}^{n} \ln 2 n-6\right. \\
v
\end{array}\right),
$$

[Bizon, Monni, Re, LR, Torrielli '17]
All ingredients to perform resummation at \mathbf{N}^{3} LL accuracy are now available
[Catani et al. '11, '12][Gehrmann et al. '14][Li, Zhu '16, Vladimirov '16][Moch et al. '18, Lee et al. '19]

Fixed-order predictions now available at NNLO

Matching with fixed order

Multiplicative matching performed at the double-cumulant level
fixed-order double-cumulative result at NNLO
double-cumulative result at NNLL

$$
\sigma_{\mathrm{NNLO}}\left(p_{\perp}^{H}<p_{\perp}^{H, \mathrm{v}}, p_{\perp}^{\mathrm{J}}<p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)=\sigma_{\mathrm{NNLO}}-\int \Theta\left(p_{\perp}^{H}>p_{\perp}^{H, \mathrm{v}}\right) \vee \Theta\left(p_{\perp}^{\mathrm{J}}>p_{\perp}^{\mathrm{J}, \mathrm{v}}\right) d \sigma_{H+J, \mathrm{NLO}}
$$

$$
\sigma_{\mathrm{match}}\left(p_{\perp}^{H}<p_{\perp}^{H, \mathrm{v}}, p_{\perp}^{\mathrm{J}}<p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)=\frac{\sigma_{\mathrm{NNLL}}\left(p_{\perp}^{H}<p_{\perp}^{H, \mathrm{v}}, p_{\perp}^{\mathrm{J}}<p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)}{\sigma_{\mathrm{NNLL}}\left(\left\{p_{\perp}^{\mathrm{J},}, p_{\perp}^{H, \mathrm{v}}\right\} \rightarrow \infty\right)}\left[\sigma_{\mathrm{NNLL}}\left(\left\{p_{\perp}^{\mathrm{J}, \mathrm{v}}, p_{\perp}^{H, \mathrm{v}}\right\} \rightarrow \infty\right) \frac{\sigma_{\mathrm{NNLO}}\left(p_{\perp}^{H}<p_{\perp}^{H, \mathrm{v}}, p_{\perp}^{\mathrm{J}}<p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)}{\sigma_{\mathrm{NNLL}, \exp }\left(p_{\perp}^{H}<p_{\perp}^{H, \mathrm{v}}, p_{\perp}^{\mathrm{J}}<p_{\perp}^{\mathrm{J}, \mathrm{v}}\right)}\right]_{O\left(\left(a_{s}^{2}\right)\right.}
$$

asymptotic limit of the NNLL result
expansion of the double-cumulative result at NNLL

- $\mathrm{NNLL}+\mathrm{NNLO}$ result for $p_{\perp}^{\mathrm{J}, \mathrm{v}}$ recovered for $p_{\perp}^{\mathrm{H}, \mathrm{v}} \rightarrow \infty$
- NNLO constant included through multiplicative matching (NNLL' accuracy)

Matching to fixed order: multiplicative matching

Cumulative cross section should reduce to the fixed order at large v

$$
\begin{aligned}
& \Sigma_{\text {matched }}^{\operatorname{mult}}(v) \sim \Sigma_{\text {res }}(v)\left[\frac{\Sigma_{\text {f.o. }}(v)}{\Sigma_{\text {res }}(v)}\right]_{\text {expanded }} \begin{array}{l}
\text { - allows to include constant terms from } \\
\\
\\
\text { NNLO (if N3LO total xs available) }
\end{array} \\
& \Sigma_{\text {f.o }}(v)=\sigma_{\text {f.o. }}-\int_{v}^{\infty} \frac{d \sigma}{d v} d v \text { physical suppression at small } v \text { cures } \\
& \text { potential instabilities }
\end{aligned}
$$

To ensure that resummation does not affect the hard region of the spectrum when the matching is performed we introduce modified logarithms
This corresponds to restrict the rapidity phase space at large $k_{t} \int_{-\ln Q / k_{k, i}}^{\ln Q / k_{k i}} d \eta \rightarrow \int_{-\ln Q / k_{t, 1}}^{\ln Q / k_{t, 1}} d \eta \rightarrow \int_{-\epsilon}^{\epsilon} d \eta \rightarrow 0$

$$
\ln \left(Q / k_{t 1}\right) \rightarrow \frac{1}{p} \ln \left(1+\left(\frac{Q}{k_{t 1}}\right)^{p}\right)
$$

Q : perturbative resummation scale

used to probe the size of subleading logarithmic corrections
p : arbitrary matching parameter

Predictions for the Z spectrum at 8 TeV

- Good description of the data in all fiducial regions
- Perturbative uncertainty at the few percent level, still does not match the precision of the ATLAS data

Resummation of the transverse momentum spectrum at $\mathbf{N}^{3} L L+N N L O$

N3LL result matched to NNLO H+j, Z+j, Wt+j [Bizon, LR etal. '18,'19]

Theoretical predictions for Z and W observables at 13 TeV

Results obtained using the following fiducial cuts (agreed with ATLAS)

$$
\begin{gathered}
p_{t}^{\ell^{ \pm}}>25 \mathrm{GeV}, \quad\left|\eta^{\ell^{ \pm}}\right|<2.5, \quad 66 \mathrm{GeV}<M_{\ell \ell}<116 \mathrm{GeV} \\
p_{t}^{\ell}>25 \mathrm{GeV}, \quad\left|\eta^{\ell}\right|<2.5, \quad E_{T}^{\nu_{\ell}}>25 \mathrm{GeV}, \quad m_{T}>50 \mathrm{GeV}
\end{gathered}
$$

using NNPDF3.1 with $\alpha_{s}\left(M_{z}\right)=0.118$ and setting the central scales to

$$
\mu_{R}=\mu_{F}=M_{T}=\sqrt{M_{\ell \ell^{\prime}}^{2}+p_{T}^{2}}, \quad Q=\frac{M_{\ell \ell^{\prime}}}{2}
$$

5 flavour (massless) scheme: no HQ effects, LHAPDF PDF thresholds

Scale uncertainties estimated by varying renormalization and factorization scale by a factor of two around their central value (7 point variation) and varying the resummation scale by a factor of 2 around its central value for factorization and renormalization scales set to their central value: $\mathbf{9}$ point envelope

Matching parameter p set to 4 as a default

No non perturbative parameters included in the following

Predictions for the Z spectrum

Predictions for the W^{+}and W^{-}spectra

Ratio of differential distributions

Z and W production share a similar pattern of QCD radiative corrections
Crucial to understand correlation between Z and W spectra to exploit data-driven predictions

$$
\frac{1}{\sigma^{W}} \frac{d \sigma^{W}}{p_{\perp}^{W}} \sim \frac{1}{\sigma_{\text {data }}^{Z}} \frac{d \sigma_{\text {data }}^{Z}}{p_{\perp}^{Z}} \frac{\frac{1}{\sigma_{\text {theory }}^{W}} \frac{d \sigma_{\text {theory }}^{W}}{p_{\perp}^{W}}}{\frac{1}{\sigma_{\text {theory }}^{Z}} \frac{d \sigma_{\text {theory }}^{Z}}{p_{\perp}^{Z}}}
$$

Several choices are possible:

- Correlate resummation and renormalisation scale variations, keep factorisation scale uncorrelated, while keeping

$$
\frac{1}{2} \leq \frac{\mu_{\mathrm{F}}^{\mathrm{num}}}{\mu_{\mathrm{F}}^{\text {den }}} \leq 2
$$

- More conservative estimate: vary both renormalisation and factorisation scales in an uncorrelated way with

$$
\frac{1}{2} \leq \frac{\mu^{\mathrm{num}}}{\mu^{\mathrm{den}}} \leq 2
$$

Results for $W^{-/} W^{+}$ratio

Results for Z / W^{+}ratio

Equivalence with b-space formulation

$$
\frac{d \Sigma(v)}{d \Phi_{B}}=\int_{\mathscr{C}_{1}} \frac{d N_{1}}{2 \pi i} \int_{\mathscr{C}_{2}} \frac{d N_{2}}{2 \pi i} x_{1}^{-N_{1}} x_{2}^{-N_{2}} \sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}^{T}} \mathbf{f}_{N_{1}}^{T}\left(\mu_{0}\right) \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(\nu) \mathbf{f}_{N_{2}}\left(\mu_{0}\right)
$$

unresolved emission + virtual corrections

$$
\begin{array}{ll}
& \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(v)=\left[\mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}\left(\mu_{0}\right)\right) H\left(\mu_{R}\right) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(\mu_{0}\right)\right)\right] \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \\
\text { ved + virtual } \\
\text { ons } & \\
& \sum^{-\mathbf{R}\left(k_{1}\right)} \exp \left\{-\sum_{t=1}^{2}\left(\int_{\epsilon k_{1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{t}}\left(\alpha_{s}\left(k_{t}\right)\right)+\int_{\epsilon k_{1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \boldsymbol{\Gamma}_{N_{e}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right)\right\}
\end{array}
$$

Result valid for all inclusive observables (e.g. $\left.p_{t,} \varphi^{*}\right)$

Formulation equivalent to \boldsymbol{b}-space result (up to a scheme change in the anomalous dimensions)

$$
\begin{aligned}
\frac{d^{2} \Sigma(v)}{d \Phi_{B} d p_{t}}= & \sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}} \int b d b p_{t} J_{0}\left(p_{t} b\right) \mathbf{f}^{T}\left(b_{0} / b\right) \mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}\left(b_{0} / b\right)\right) H(M) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(b_{0} / b\right)\right) \mathbf{f}\left(b_{0} / b\right) \\
& \times \exp \left\{-\sum_{\ell=1}^{2} \int_{0}^{M} \frac{d k_{t}}{k_{t}} \mathbf{R}_{\ell}^{\prime}\left(k_{t}\right)\left(1-J_{0}\left(b k_{t}\right)\right)\right\} \quad\left(1-J_{0}\left(b k_{t}\right)\right) \simeq \Theta\left(k_{t}-\frac{b_{0}}{b}\right)+\frac{\zeta_{3}}{12} \frac{\partial^{3}}{\partial \ln \left(M b / b_{0}\right)^{3}} \Theta\left(k_{t}-\frac{b_{0}}{b}\right)
\end{aligned}
$$

Equivalence with b-space formulation

The Landau pole and the small p_{T} limit

Running coupling $\alpha_{s}\left(k_{t, 1}{ }^{2}\right)$ and Sudakov radiator hit Landau pole at

$$
\alpha_{s}\left(\mu_{R}^{2}\right) \beta_{0} \ln Q / k_{t 1}=\frac{1}{2} \quad k_{t 1} \sim 0.01 \mathrm{GeV}, \quad \mu_{R}=Q=m_{Z}
$$

Only real cutoff in the calculation: emission probability is set to zero below this scale and parton densities are frozen.

At small p_{t} the large azimuthal cancellations dominate over the Sudakov suppression: the cutoff is never an issue in practice

$$
\frac{d^{2} \Sigma(v)}{d p_{t} d \Phi_{B}} \simeq 2 \sigma^{(0)}\left(\Phi_{B}\right) p_{t}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{M^{2}}\right)^{\frac{16}{25} \ln \frac{41}{16}}
$$

[^0]
Behaviour at small p_{t}

Explicit evaluation shows that the Parisi-Petronzio perturbative scaling at small p_{t} is reproduced. At NLL, Drell-Yan pair production, $n_{f}=4$

As now higher logarithmic terms (up to $N^{3} L L$) are under control, the coefficient of this scaling can be systematically improved in perturbation theory (non-perturbative effects - of the same order - not considered)
N^{3} LL calculation allows one to have control over the terms of relative order $O\left(\alpha_{s}{ }^{2}\right)$. Scaling $L \sim 1 / \alpha_{s}$ valid in the deep infrared regime.

$$
\begin{aligned}
\frac{d \Sigma\left(p_{t}\right)}{d \Phi_{B}}= & \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R^{\prime}\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right) \times \\
& \times \underbrace{\epsilon^{R^{\prime}\left(k_{t 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(k_{t 1}\right)\right) \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t(n+1)}\right|\right)}_{\equiv \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t(n+1)}\right|\right)} .
\end{aligned}
$$

$-L=\ln \left(M / k_{t 1}\right)$; luminosity $\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)=\sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}} f_{c_{1}}\left(x_{1}, k_{t 1}\right) f_{c_{2}}\left(x_{2}, k_{t 1}\right)$.

- $\int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta$ finite as $\epsilon \rightarrow 0$:

$$
\begin{gathered}
\epsilon^{R^{\prime}\left(k_{t 1}\right)}=1-R^{\prime}\left(k_{t 1}\right) \ln (1 / \epsilon)+\ldots=1-\int_{\epsilon k_{t 1}}^{k_{t 1}} R^{\prime}\left(k_{t 1}\right)+\ldots \\
\int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta=\left[1-\int_{\epsilon k_{t 1}}^{k_{t 1}} R^{\prime}\left(k_{t 1}\right)+\ldots\right]\left[\Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)+\int_{\epsilon k_{t 1}}^{k_{t 1}} R^{\prime}\left(k_{t 1}\right) \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\vec{k}_{t 2}\right|\right)+\ldots\right] \\
= \\
=\Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)+\underbrace{\int_{0}^{k_{t 1}}}_{\epsilon \rightarrow 0} R^{\prime}\left(k_{t 1}\right) \underbrace{\left[\Theta\left(p_{t}-\left|\vec{k}_{t 1}+\vec{k}_{t 2}\right|\right)-\Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)\right]}_{\text {finite: real-virtual cancellation }}+\ldots
\end{gathered}
$$

- Evaluated with Monte Carlo techniques: $\int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right]$ is generated as a parton shower over secondary emissions.
- Secondary radiation:

$$
\begin{aligned}
d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right)\right) \epsilon^{R^{\prime}\left(k_{t 1}\right)} \\
& =\sum_{n=0}^{\infty}\left(\prod_{i=2}^{n+1} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t(i-1)}} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right)\right) \epsilon^{R^{\prime}\left(k_{t 1}\right)} \\
\epsilon^{R^{\prime}\left(k_{t 1}\right)} & =e^{-R^{\prime}\left(k_{t 1}\right) \ln 1 / \epsilon}=\prod_{i=2}^{n+2} e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}
\end{aligned}
$$

with $k_{t(n+2)}=\epsilon k_{t 1}$.

- Each secondary emissions has differential probability

$$
d w_{i}=\frac{d \phi_{i}}{2 \pi} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right) e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}=\frac{d \phi_{i}}{2 \pi} d\left(e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}\right) .
$$

- $k_{t(i-1)} \geq k_{t i}$. Scale $k_{t i}$ extracted by solving $e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}=r$, with r random number extracted uniformly in $[0,1]$. Shower ordered in $k_{t i}$.
- Extract ϕ_{i} randomly in $[0,2 \pi]$.

Joint resummation in direct space

$$
\begin{align*}
& \sigma_{\mathrm{incl}}^{\mathrm{NNLL}}\left(p_{t}^{\mathrm{J}, \mathrm{v}}, p_{t}^{\mathrm{H}, \mathrm{v}}\right)=\int_{0}^{p_{t}^{\mathrm{J}, \mathrm{v}}} \frac{d k_{t, 1}}{k_{t, 1}} \frac{d \phi_{1}}{2 \pi} \int d \mathcal{Z}\left\{\frac{d}{d L_{t, 1}}\left[-e^{-R_{\mathrm{NNLL}}\left(L_{t, 1}\right)} \mathcal{L}_{\mathrm{NNLL}}\left(\mu_{\mathrm{F}} e^{-L_{t, 1}}\right)\right] \Theta\left(p_{t}^{\mathrm{H}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\cdots+\vec{k}_{t, n+1}\right|\right)\right. \\
& +e^{-R_{\mathrm{NLL}}\left(L_{t, 1}\right)} \hat{R}^{\prime}\left(k_{t, 1}\right) \int_{0}^{k_{t, 1}} \frac{d k_{t, s_{1}}}{k_{t, s_{1}}} \frac{d \phi_{s_{1}}}{2 \pi}\left[\left(\delta \hat{R}^{\prime}\left(k_{t, 1}\right)+\hat{R}^{\prime \prime}\left(k_{t, 1}\right) \ln \frac{k_{t, 1}}{k_{t, s_{1}}}\right) \mathcal{L}_{\mathrm{NLL}}\left(\mu_{\mathrm{F}} e^{-L_{t, 1}}\right)-\frac{d}{d L_{t, 1}} \mathcal{L}_{\mathrm{NLL}}\left(\mu_{\mathrm{F}} e^{-L_{t, 1}}\right)\right] \\
& \left.\times\left[\Theta\left(p_{t}^{\mathrm{H}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\cdots+\vec{k}_{t, n+1}+\vec{k}_{t, s_{1}}\right|\right)-\Theta\left(p_{t}^{\mathrm{H}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\cdots+\vec{k}_{t, n+1}\right|\right)\right]\right\} \\
& \sigma_{\text {clust }}^{\mathrm{NNLL}}\left(p_{t}^{\mathrm{J}, \mathrm{v}}, p_{t}^{\mathrm{H}, \mathrm{v}}\right)=\int_{0}^{\infty} \frac{d k_{t, 1}}{k_{t, 1}} \frac{d \phi_{1}}{2 \pi} \int d \mathcal{Z} e^{-R_{\mathrm{NLL}}\left(L_{t, 1}\right)} \mathcal{L}_{\mathrm{NLL}}\left(\mu_{\mathrm{F}} e^{-L_{t, 1}}\right) 8 C_{A}^{2} \frac{\alpha_{s}^{2}}{\pi^{2}} \frac{L_{t, 1}}{\left(1-2 \beta_{0} \alpha_{s} L_{t, 1}\right)^{2}} \Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-\max _{i>1}\left\{k_{t, i}\right\}\right) \\
& \times\left\{\int_{0}^{k_{t, 1}} \frac{d k_{t, s_{1}}}{k_{t, s_{1}}} \frac{d \phi_{s_{1}}}{2 \pi} \int_{-\infty}^{\infty} d \Delta \eta_{1 s_{1}} J_{1 s_{1}}(R)\left[\Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\vec{k}_{t, s_{1}}\right|\right)-\Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-k_{t, 1}\right)\right] \Theta\left(p_{t}^{\mathrm{H}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\cdots+\vec{k}_{t, n+1}+\vec{k}_{t, s_{1}}\right|\right)\right. \\
& +\frac{1}{2!} \hat{R}^{\prime}\left(k_{t, 1}\right) \int_{0}^{k_{t, 1}} \frac{d k_{t, s_{1}}}{k_{t, s_{1}}} \frac{d k_{t, s_{2}}}{k_{t, s_{2}}} \frac{d \phi_{s_{1}}}{2 \pi} \frac{d \phi_{s_{2}}}{2 \pi} \int_{-\infty}^{\infty} d \Delta \eta_{s_{1} s_{2}} J_{s_{1} s_{2}}(R)\left[\Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-\left|\vec{k}_{t, s_{1}}+\vec{k}_{t, s_{2}}\right|\right)-\Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, s_{1}}, k_{t, s_{2}}\right\}\right)\right] \\
& \left.\times \Theta\left(p_{t}^{\mathrm{H}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\cdots+\vec{k}_{t, n+1}+\vec{k}_{t, s_{1}}+\vec{k}_{t, s_{2}}\right|\right) \Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-k_{t, 1}\right)\right\}, \tag{42}\\
& \sigma_{\text {correl }}^{\mathrm{NNLL}}\left(p_{t}^{\mathrm{J}, \mathrm{v}}, p_{t}^{\mathrm{H}, \mathrm{v}}\right)=\int_{0}^{\infty} \frac{d k_{t, 1}}{k_{t, 1}} \frac{d \phi_{1}}{2 \pi} \int d \mathcal{Z} e^{-R_{\mathrm{NLL}}\left(L_{t, 1}\right)} \mathcal{L}_{\mathrm{NLL}}\left(\mu_{\mathrm{F}} e^{-L_{t, 1}}\right) 8 C_{A}^{2} \frac{\alpha_{s}^{2}}{\pi^{2}} \frac{L_{t, 1}}{\left(1-2 \beta_{0} \alpha_{s} L_{t, 1}\right)^{2}} \Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-\max _{i>1}\left\{k_{t, i}\right\}\right) \\
& \times\left\{\int_{0}^{k_{t, 1}} \frac{d k_{t, s_{1}}}{k_{t, s_{1}}} \frac{d \phi_{s_{1}}}{2 \pi} \int_{-\infty}^{\infty} d \Delta \eta_{1 s_{1}} \mathcal{C}\left(\Delta \eta_{1 s_{1}}, \Delta \phi_{1 s_{1}}, \frac{k_{t, 1}}{k_{t, s_{1}}}\right)\left(1-J_{1 s_{1}}(R)\right)\right. \\
& \times\left[\Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-k_{t, 1}\right)-\Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\vec{k}_{t, s_{1}}\right|\right)\right] \Theta\left(p_{t}^{\mathrm{H}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\cdots+\vec{k}_{t, n+1}+\vec{k}_{t, s_{1}}\right|\right) \\
& +\frac{1}{2!} \hat{R}^{\prime}\left(k_{t, 1}\right) \int_{0}^{k_{t, 1}} \frac{d k_{t, s_{1}}}{k_{t, s_{1}}} \frac{d k_{t, s_{2}}}{k_{t, s_{2}}} \frac{d \phi_{s_{1}}}{2 \pi} \frac{d \phi_{s_{2}}}{2 \pi} \int_{-\infty}^{\infty} d \Delta \eta_{s_{1} s_{2}} \mathcal{C}\left(\Delta \eta_{s_{1} s_{2}}, \Delta \phi_{s_{1} s_{2}}, \frac{k_{t, s_{2}}}{k_{t, s_{1}}}\right)\left(1-J_{s_{1} s_{2}}(R)\right) \Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-k_{t, 1}\right) \\
& \begin{array}{r}
\left.\times\left[\Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-\max \left\{k_{t, s_{1}}, k_{t, s_{2}}\right\}\right)-\Theta\left(p_{t}^{\mathrm{J}, \mathrm{v}}-\left|\vec{k}_{t, s_{1}}+\vec{k}_{t, s_{2}}\right|\right)\right] \Theta\left(p_{t}^{\mathrm{H}, \mathrm{v}}-\left|\vec{k}_{t, 1}+\cdots+\vec{k}_{t, n+1}+\vec{k}_{t, s_{1}}+\vec{k}_{t, s_{2}}\right|\right)\right\} . \\
\text { Remote 4D Seminar, UC Berkeley \& LBNL, 1st June } 2020
\end{array} \tag{43}
\end{align*}
$$

[^0]: Thanks to P. Monni

