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The Higgs boson sector

Higgs sector needs 
stress-testing

• What is the form of the Higgs potential? 

• Is it really ? 

• Are Yukawa couplings responsible for all 
fermion masses (5 orders of magnitude)?  

• …

ϕ4

Various questions still unanswered
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How can we stress-test the Higgs sector?

g = gSM (1 + δ) δ ∼ 𝒪 ( v2

Λ2
NP )

Higher precision sensitivity to small deviations higher scales being probed
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The Higgs transverse momentum
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Figure 26: The di�erential cross sections for pp ! H ! �� as a function of (a) p��T and (b) |y�� | are shown
and compared to the SM expectations.

small whilst retaining enough statistical power to measure the di�erential spectra. The measured pj1
T

spectrum shown in Figure 27(a) is compared to the default MC prediction as introduced in the previous
section as well as to the NNLOJET and SCET���(STWZ) [99, 135] predictions. Both the NNLOJET
and SCET��� predictions are corrected using isolation correction factors to account for the impact of
the isolation e�ciency. In addition, the NNLOJET prediction is corrected for the kinematic acceptance
and the uncertainties in these corrections is included in the uncertainty bands of both NNLOJET and
SCET���. The first bin of the leading jet pT spectrum represents zero-jet events that do not contain
any jet with pT> 30 GeV. The predicted pT distributions slightly exceed the measured distribution
at low transverse momentum and all show a slight deficit at large transverse momentum. Both are
compatible with the observed slightly harder Higgs boson transverse momentum distribution. The
measured |yj1 | distribution shown in Figure 27(b) is compared to the default MC and the NNLOJET
predictions: Both show a slight excess at low rapidity. In Figure 27(c) the measured subleading jet pT
distribution is shown. The first bin of pj2

T represents one-jet events that do not contain two or more jets
with pT> 30 GeV. The measured distribution is compared to the default MC, S����� (M���@N��),
and G�S�� predictions, as introduced in Section 9.4. Finally, in Figure 27(d) the subleading jet
rapidity distribution, |yj2 |, is shown and compared to the expectation from the default MC, S�����
(M���@N��), and G�S�� predictions. The SM predictions are in agreement with the measured
distributions and no significant deviations are seen.

9.5.3 Measurements of cross sections probing spin and CP

The absolute value of the cosine of the angle between the beam axis and the photons in the Collins–
Soper frame [11] of the Higgs boson, | cos ✓⇤ |, can be used to study the spin of the Higgs boson. The
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Figure 6: Simultaneous fit to data for kb and kc, assuming a coupling dependence of the branch-
ing fractions (left) and the branching fractions implemented as nuisance parameters with no
prior constraint (right). The one standard deviation contour is drawn for the combination
(H ! gg and H ! ZZ), the H ! gg channel, and the H ! ZZ channel in black, red, and
blue, respectively. For the combination the two standard deviation contour is drawn as a black
dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the
right hand side of the plots.
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Figure 7: Likelihood scan of kb while profiling kc (left), and of kc while profiling kb (right). The
filled markers indicate the limits at 95% CL. The branching fractions are considered dependent
on the values of the couplings.

The spectra obtained are interpreted in the k-framework [32], in which simultaneous variations
of kb and kc, kt and kb, and kt and the anomalous direct coupling to the gluon field cg are fitted
to the p

H
T spectra. The limits obtained for the individual couplings are �1.1 < kb < 1.1 and

�4.9 < kc < 4.8 at 95% confidence level, assuming the branching fractions scale with the
Higgs boson couplings following the standard model prediction. For the charm coupling kc in

[ATLAS 1802.04146] [CMS 1812.06504]

• Relatively easy to measure 

• Sensitivity to New Physics (e.g. light Yukawa couplings, trilinear 
Higgs self-coupling) 
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Figure 6. Comparison of the pT,h (left) and mWh (right) spectrum in Wh production. The upper
panels show the SM predictions (black) as well as the cases c̄6 = �10 (blue) and c̄6 = 10 (red). The
ratios between the case c̄6 = �10 and the SM (blue) and the case c̄6 = 10 and the SM (red) are
displayed in the lower panels. All results correspond to pp collisions at

p
s = 13TeV.

panel), one observes instead a richer pattern of possible deviations. While Brbb̄ and Brcc̄

receive only corrections at the few percent level for c̄6 2 [�15, 15], the modifications in all
other branching ratios can reach or slightly exceed 10% in the same c̄6 range. The impact
of O(�) corrections is thus generically smaller in the branching ratios than in the partial
decay widths, since in the former quantities the universal Higgs wave function corrections
partially cancel. Notice finally that only Brgg is enhanced with respect to the SM, while
the ⌧+⌧�, WW , ZZ and �� branching ratios all tend to be suppressed.

7.3 Modifications of the V h and VBF Higgs distributions

Since the vertex corrections (3.1) depend in a non-trivial way on the external 4-momenta,
the O(�) corrections not only change the overall size of the cross sections in V h and VBF
Higgs production but also modify the shape of the corresponding kinematic distributions.
In this subsection we present results for the spectra that are most sensitive to modifications
in the trilinear Higgs coupling. All results shown below correspond to

p
s = 13 TeV,

PDF4LHC15_nnlo_mc PDFs and the default scale choices introduced in Section 7.1. Off-shell
effects in Higgs-boson production are taken into account by modelling the width of the
Higgs with a Breit-Wigner line shape.

We begin our discussion with pp ! Wh. In Figure 6 the distributions of the Higgs-
boson transverse momentum (pT,h) and the invariant mass of the Wh system (mWh) are
shown. The black curves in the panels represent the SM predictions, while the blue and
red curves correspond to a new-physics scenario with c̄6 = �10 and c̄6 = 10, respectively.
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[Bizon et al. 1610.05771]

[Bishara et al. ’16][Soreq et al. ’16]
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Figure 30: The double-di�erential cross section for pp ! H ! �� as a function of (a) p��T and Njets, for jets
with pT > 30 GeV, and (b) p��T and | cos ✓⇤ | separating the two regions of | cos ✓⇤ | < 0.5 and | cos ✓⇤ | > 0.5
from each other. The data and theoretical predictions are presented in the same way as in Figure 26.

Table 16: The expected uncertainties, expressed in percent, in the cross sections measured in the diphoton
fiducial, VBF-enhanced, Nlepton � 1, tt̄H-enhanced, and high Emiss

T regions. The fit systematic uncertainty
includes the e�ect of the photon energy scale and resolution, and the impact of the background modeling on
the signal yield. The theoretical modeling uncertainty is defined as the envelope of the signal composition, the
modeling of Higgs boson transverse momentum and rapidity distribution, and the uncertainty of parton shower
and the underlying event (labeled as “UE/PS”) as described in Section 7.4.

Source Uncertainty in fiducial cross section
Diphoton VBF-enhanced Nlepton � 1 tt̄H-enhanced High Emiss

T
Fit (stat.) 17% 22% 72% 176% 53%
Fit (syst.) 6% 9% 27% 138% 13%

Photon energy scale & resolution 4.3% 3.5% 3.1% 10% 4.1%
Background modeling 4.2% 7.8% 26.7% 138% 12.2%

Photon e�ciency 1.8% 1.8% 1.8% 1.8% 1.9%
Jet energy scale/resolution - 8.9% - 4.5% 6.9%
b-jet flavor tagging - - - 3% -
Lepton selection - - 0.7% 0.2% -
Pileup 1.1% 2.9% 1.3% 2.5% 2.5%
Theoretical modeling 0.1% 4.5% 4.0% 8.1% 31%

Signal composition 0.1% 4.5% 3.1% 8.1% 25%
Higgs boson pH

T & |yH | 0.1% 0.9% 0.2% 0.7% 0.1%
UE/PS - 0.3% 0.7% 1.1% 31%

Luminosity 3.2% 3.2% 3.2% 3.2% 3.2%
Total 18% 26% 77% 224% 63%

the uncertainty in the fitted signal yield, due to the background modeling and the photon energy
resolution, is typically more important than the uncertainty in the correction factor due to the theoretical
modeling. The jet energy scale and resolution uncertainties become increasingly important for high-jet
multiplicities and in the tt̄H- and VBF-enhanced phase space.

71

The Higgs transverse momentum

[ATLAS 1802.04146]

• Experimental analyses categorize events 
into jet bins according to the jet 
multiplicity 

• Increased sensitivity to Higgs boson 
kinematics, spin-CP properties, BSM 
effects… 

• Similar comments apply also to other 
analyses (e.g. VH with boosted Higgs, 
W+W- production…) 
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• Experimental analyses categorize events 
into jet bins according to the jet 
multiplicity 

• Increased sensitivity to Higgs boson 
kinematics, spin-CP properties, BSM 
effects… 

• Similar comments apply also to other 
analyses (e.g. VH with boosted Higgs, 
W+W- production…) 

• Current description of double-differential 
distributions based on predictions with 
NNLO+PS accuracy
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Figure 30: The double-di�erential cross section for pp ! H ! �� as a function of (a) p��T and Njets, for jets
with pT > 30 GeV, and (b) p��T and | cos ✓⇤ | separating the two regions of | cos ✓⇤ | < 0.5 and | cos ✓⇤ | > 0.5
from each other. The data and theoretical predictions are presented in the same way as in Figure 26.

Table 16: The expected uncertainties, expressed in percent, in the cross sections measured in the diphoton
fiducial, VBF-enhanced, Nlepton � 1, tt̄H-enhanced, and high Emiss

T regions. The fit systematic uncertainty
includes the e�ect of the photon energy scale and resolution, and the impact of the background modeling on
the signal yield. The theoretical modeling uncertainty is defined as the envelope of the signal composition, the
modeling of Higgs boson transverse momentum and rapidity distribution, and the uncertainty of parton shower
and the underlying event (labeled as “UE/PS”) as described in Section 7.4.

Source Uncertainty in fiducial cross section
Diphoton VBF-enhanced Nlepton � 1 tt̄H-enhanced High Emiss

T
Fit (stat.) 17% 22% 72% 176% 53%
Fit (syst.) 6% 9% 27% 138% 13%

Photon energy scale & resolution 4.3% 3.5% 3.1% 10% 4.1%
Background modeling 4.2% 7.8% 26.7% 138% 12.2%

Photon e�ciency 1.8% 1.8% 1.8% 1.8% 1.9%
Jet energy scale/resolution - 8.9% - 4.5% 6.9%
b-jet flavor tagging - - - 3% -
Lepton selection - - 0.7% 0.2% -
Pileup 1.1% 2.9% 1.3% 2.5% 2.5%
Theoretical modeling 0.1% 4.5% 4.0% 8.1% 31%

Signal composition 0.1% 4.5% 3.1% 8.1% 25%
Higgs boson pH

T & |yH | 0.1% 0.9% 0.2% 0.7% 0.1%
UE/PS - 0.3% 0.7% 1.1% 31%

Luminosity 3.2% 3.2% 3.2% 3.2% 3.2%
Total 18% 26% 77% 224% 63%

the uncertainty in the fitted signal yield, due to the background modeling and the photon energy
resolution, is typically more important than the uncertainty in the correction factor due to the theoretical
modeling. The jet energy scale and resolution uncertainties become increasingly important for high-jet
multiplicities and in the tt̄H- and VBF-enhanced phase space.
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[Hamilton et al. 1309.0017]

[ATLAS 1802.04146]
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[Hamilton et al. 1309.0017]

[ATLAS 1802.04146]

Can we reach higher accuracy for double-differential 
observables?
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Figure 30: The double-di�erential cross section for pp ! H ! �� as a function of (a) p��T and Njets, for jets
with pT > 30 GeV, and (b) p��T and | cos ✓⇤ | separating the two regions of | cos ✓⇤ | < 0.5 and | cos ✓⇤ | > 0.5
from each other. The data and theoretical predictions are presented in the same way as in Figure 26.

Table 16: The expected uncertainties, expressed in percent, in the cross sections measured in the diphoton
fiducial, VBF-enhanced, Nlepton � 1, tt̄H-enhanced, and high Emiss

T regions. The fit systematic uncertainty
includes the e�ect of the photon energy scale and resolution, and the impact of the background modeling on
the signal yield. The theoretical modeling uncertainty is defined as the envelope of the signal composition, the
modeling of Higgs boson transverse momentum and rapidity distribution, and the uncertainty of parton shower
and the underlying event (labeled as “UE/PS”) as described in Section 7.4.

Source Uncertainty in fiducial cross section
Diphoton VBF-enhanced Nlepton � 1 tt̄H-enhanced High Emiss

T
Fit (stat.) 17% 22% 72% 176% 53%
Fit (syst.) 6% 9% 27% 138% 13%

Photon energy scale & resolution 4.3% 3.5% 3.1% 10% 4.1%
Background modeling 4.2% 7.8% 26.7% 138% 12.2%

Photon e�ciency 1.8% 1.8% 1.8% 1.8% 1.9%
Jet energy scale/resolution - 8.9% - 4.5% 6.9%
b-jet flavor tagging - - - 3% -
Lepton selection - - 0.7% 0.2% -
Pileup 1.1% 2.9% 1.3% 2.5% 2.5%
Theoretical modeling 0.1% 4.5% 4.0% 8.1% 31%

Signal composition 0.1% 4.5% 3.1% 8.1% 25%
Higgs boson pH

T & |yH | 0.1% 0.9% 0.2% 0.7% 0.1%
UE/PS - 0.3% 0.7% 1.1% 31%

Luminosity 3.2% 3.2% 3.2% 3.2% 3.2%
Total 18% 26% 77% 224% 63%

the uncertainty in the fitted signal yield, due to the background modeling and the photon energy
resolution, is typically more important than the uncertainty in the correction factor due to the theoretical
modeling. The jet energy scale and resolution uncertainties become increasingly important for high-jet
multiplicities and in the tt̄H- and VBF-enhanced phase space.
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5

The Higgs transverse momentum

• Focus on the zero-jet bin  

• Jet veto enforced to enhance the Higgs 
signal with respect to its backgrounds 
(e.g. W+W- event selection) or study of 
different production channels (e.g. STXS)

pJ
⊥ ≤ pJ,v

⊥

[ATLAS 1802.04146]

pJ
⊥ ≤ 30 GeV
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The appearance of large logarithms
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The appearance of large logarithms
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Large(ish) jet veto logarithms

1 10 20 30 40 50

pHt [GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d
�
(p

v t
)/
d
p
H t
[p
b
/
G
eV

]

MCFM
13 TeV, pp ! H + X, with pJt  30 GeV
NNPDF3.1 (NNLO)
uncertainties with µR, µF, Q variations

NLO

Jet veto  30 GeV=

L = ln( | ⃗p H
⊥ + ⃗p J

⊥ | /pH
⊥ )

Fixed order predictions no longer reliable: 
all order resummation of the perturbative series mandatory

Sudakov shoulder logarithms 

−∞
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It’s not a bug, it’s a feature

σ̃1(p⊥) ∼ ∫
dθ
θ

dE
E

Θ (p⊥ − Eθ) − ∫
dθ
θ

dE
E

∼ − ∫
dE
E

dθ
θ

Θ(Eθ − p⊥)

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC 
safe observables

Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase 
space, restrictive cuts)

θ

7
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It’s not a bug, it’s a feature

σ̃1(p⊥) ∼ ∫
dθ
θ

dE
E

Θ (p⊥ − Eθ) − ∫
dθ
θ

dE
E

∼ − ∫
dE
E

dθ
θ

Θ(Eθ − p⊥) ∼ −
1
2

ln2 p⊥/mH

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC 
safe observables

Double logarithms leftovers of the real-virtual cancellation of IRC divergences 

Sudakov 
logarithms

Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase 
space, restrictive cuts)

: observable can 
become negative even in the 
perturbative regime 

p⊥ → 0θ

7
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Making pQCD great again: all-order resummation
Soft-collinear emission of two gluons 
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Making pQCD great again: all-order resummation
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s ln4 p⊥/mH

All order structure

σ̃(v) =
∞

∑
n=0

αn
s

2n

∑
m=1

cnmLm + …

Origin of the logs is simple. Resum them to all orders by reorganizing the series

σ̃(v) = f1(αsL2) +
1
L

f2(αsL2) + …

L = ln(p⊥/mH)

Soft-collinear emission of two gluons 
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Making pQCD great again: all-order resummation

Two propagators nearly on shell, 4 divergences. Diagrams can potentially give 

All order structure

σ̃(v) =
∞

∑
n=0

αn
s

2n

∑
m=1

cnmLm + …

Origin of the logs is simple. Resum them to all orders by reorganizing the series

σ̃(v) = f1(αsL2) +
1
L

f2(αsL2) + …

Soft-collinear emission of two gluons 

Poor man’s leading logarithmic (LL) resummation of the perturbative series

L ∼ 1/ αsAccurate for 

8

α2
s ln4 p⊥/mH

L = ln(p⊥/mH)
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All-order resummation: exponentiation
Independent emissions                 (plus corresponding virtual contributions) in the soft and collinear limit with strong 
angular ordering

dΦn |ℳ(k1, …kn) |2 →
1
n!

αn
s

n

∏
i=1

dEi

Ei

dθi

θi

k1, …kn

9
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All-order resummation: exponentiation

dΦn |ℳ(k1, …kn) |2 →
1
n!

αn
s

n

∏
i=1

dEi

Ei

dθi

θi

Calculate observable with arbitrary number of emissions: exponentiation

σ̃ ≃
∞

∑
n=0

1
n!

αn
s

n

∏
i=1

∫
dEi

Ei

dθi

θi
[Θ(p⊥ − Eiθi) − 1] ≃ e−αsL2 Sudakov suppression

Price for constraining 
real radiation

σ̃ = exp [∑
n

(𝒪(αn
s Ln+1) + 𝒪(αn

s Ln) + 𝒪(αn
s Ln−1) + …)]

LL NLL NNLL

Exponentiated form allows for a more powerful reorganization

Region of applicability now valid up to , successive terms suppressed by L ∼ 1/αs 𝒪(αs)

[Sudakov ’54]

9

Independent emissions                 (plus corresponding virtual contributions) in the soft and collinear limit with strong 
angular ordering

k1, …kn
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All-order resummation: exponentiation
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αn
s
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dEi
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Calculate observable with arbitrary number of emissions: exponentiation

σ̃ ≃
∞

∑
n=0

1
n!

αn
s

n

∏
i=1

∫
dEi

Ei

dθi

θi
[Θ(p⊥ − Eiθi) − 1] ≃ e−αsL2 Sudakov suppression

Price for constraining 
real radiation

σ̃ = exp [∑
n

(𝒪(αn
s Ln+1) + 𝒪(αn

s Ln) + 𝒪(αn
s Ln−1) + …)]

LL NLL NNLL

Exponentiated form allows for a more powerful reorganization

Region of applicability now valid up to , successive terms suppressed by L ∼ 1/αs 𝒪(αs)

[Sudakov ’54]

9

Independent emissions                 (plus corresponding virtual contributions) in the soft and collinear limit with strong 
angular ordering

k1, …kn

σ̃(v) ∼ ∫
n

∏
i

[dki] |ℳ(k1, …, kn) |2 ΘPS(v − V(k1, …kn))

Exponentiation in direct space generally not possible.  
Phase-space constraints typically do not factorize in direct 

space

How to achieve resummation?
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All-order resummation: (re)-factorization

Exponentiation in conjugate space; inverse transform to move back to direct space

• Catani, Trentadue, Mangano, Marchesini, Webber, 
Nason, Dokshitzer… 

• Collins, Soper, Sterman, Laenen, Magnea… 
  

• Manohar, Bauer, Stewart, Becher, Neubert….

Extremely successful approach

Emphasis on properties of QCD 
matrix elements and QCD radiation

Factorization properties in the singular 
region and associated RGEs  
(factorization     evolution     resummation)

⏞

→ →
+ many others!SC

ET
“d

ir
ec

t 
Q

C
D

”

SCET vs. dQCD not an issue [Sterman et al. ’13, ’14][Bonvini, Forte, Ghezzi, Ridolfi, LR ’12, ’13, ’14][Becher, Neubert et al. ’08, ’11, 14] 

10

⏞

Limitation: it is process-dependent, and must be performed manually and analytically for each observable 
for some complex observable difficult/impossible to derive factorization theorem

Solution 1: move to conjugate space where phase space factorization is manifest
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Translate the resummability into properties of the observable in the presence of multiple radiation: 
recursive infrared and collinear (rIRC) safety 

σ̃ ∼ ∫
dv1

v1
Σs(v1)ℱ(v, v1)

All-order resummation: CAESAR/ARES approach

[Banfi, Salam, Zanderighi ’01, ‘03, ’04]

11

Solution 2:

Simple observable easy to calculate

[Banfi, McAslan, Monni, Zanderighi, El-Menoufi ’14, ’18]

Transfer function relates the resummation of the full 
observable to the one of the simple observable.

i.e. conditional probability

Method entirely formulated in direct space

Approach recently formulated within SCET language [Bauer, Monni ’18, ’19 + ongoing work]
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σ̃ ∼ ∫ [dk1]

Translate the resummability into properties of the observable in the presence of multiple radiation: 
recursive infrared and collinear (rIRC) safety 

All-order resummation: CAESAR/ARES approach

12

Separation obtained by introducing a resolution scale q0 = ϵkt,1

e−R(q0)

× |ℳ(k1) |2 (
∞

∑
m=0

1
m! ∫

m+1

∏
i=2

[dki] |ℳ(ki) |2 Θ(V(ki) − q0)Θ (v − V(k1, …, km+1)))
Resolved emission treated exclusively 
with Monte Carlo methods. Integral is 
finite, can be integrated in d=4 with a 
computer

Unresolved emission can be treated as totally unconstrained  
       exponentiation→

Solution 2:
[Banfi, Salam, Zanderighi ’01, ‘03, ’04]
[Banfi, McAslan, Monni, Zanderighi, El-Menoufi ’14, ’18]

-orderingkt

ϵkt,1

kt,1
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Translate the resummability into properties of the observable in the presence of multiple radiation: 
recursive infrared and collinear (rIRC) safety 

All-order resummation: CAESAR/ARES approach

12

Separation obtained by introducing a resolution scale q0 = ϵkt,1

× |ℳ(k1) |2 (
∞

∑
m=0

1
m! ∫

m+1

∏
i=2

[dki] |ℳ(ki) |2 Θ(V(ki) − q0)Θ (v − V(k1, …, km+1)))
Resolved emission treated exclusively 
with Monte Carlo methods. Integral is 
finite, can be integrated in d=4 with a 
computer

Unresolved emission can be treated as totally unconstrained  
       exponentiation→

Solution 2:
[Banfi, Salam, Zanderighi ’01, ‘03, ’04]
[Banfi, McAslan, Monni, Zanderighi, El-Menoufi ’14, ’18]

-orderingkt

ϵkt,1

kt,1

σ̃ ∼ ∫ [dk1] e−R(q0)
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Resummation of transverse momentum is particularly delicate because p⟂ is a vectorial quantity

13

n

∑
i=1

⃗k t,i ≃ 0cross section naturally 
suppressed as there is 
no phase space left for 
gluon emission 
(Sudakov limit)

Large kinematic cancellations 

p⟂ ~0 far from the Sudakov limit

p2
⊥ ∼ k2

t,i ≪ m2
H

Two concurring mechanisms leading to a system with small p⟂

Exponential 
suppression Power suppression

An example : resummation of the transverse momentum spectrum
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Resummation of transverse momentum is particularly delicate because p⟂ is a vectorial quantity

13

n

∑
i=1

⃗k t,i ≃ 0cross section naturally 
suppressed as there is 
no phase space left for 
gluon emission 
(Sudakov limit)

Large kinematic cancellations 

p⟂ ~0 far from the Sudakov limit

p2
⊥ ∼ k2

t,i ≪ m2
H

Two concurring mechanisms leading to a system with small p⟂

Exponential 
suppression Power suppression

Dominant at small  p⊥

An example : resummation of the transverse momentum spectrum
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Resummation of the transverse momentum spectrum in b space

δ(2) ( ⃗p t −
n

∑
i=1

⃗k t,i) = ∫ d2b
1

4π2
ei ⃗b ⋅ ⃗p t

n

∏
i=1

e−i ⃗b ⋅ ⃗k t,i    resummationp⊥
[Parisi, Petronzio ’79; Collins, Soper, Sterman ’85]

two-dimensional momentum conservation

14

move to conjugate space where phase space factorization is manifestSolution 1:
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Resummation of the transverse momentum spectrum in b space

δ(2) ( ⃗p t −
n

∑
i=1

⃗k t,i) = ∫ d2b
1

4π2
ei ⃗b ⋅ ⃗p t

n

∏
i=1

e−i ⃗b ⋅ ⃗k t,i    resummationp⊥

Exponentiation in conjugate space

[Parisi, Petronzio ’79; Collins, Soper, Sterman ’85]

two-dimensional momentum conservation

14

σ = σ0 ∫ d2 ⃗p H
⊥ ∫

d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥

∞

∑
n=0

1
n!

n

∏
i=1

∫ [dki] |M(ki) |2 (ei ⃗b ⋅ ⃗k t,i − 1) = σ0 ∫ d2 ⃗p H
⊥ ∫

d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−RNLL(L)

virtual corrections

RNLL(L) = − Lg1(αsL) − g2(αsL) L = ln(mHb/b0)

move to conjugate space where phase space factorization is manifestSolution 1:

NLL formula with scale-independent PDFs

Logarithmic accuracy defined in terms of ln(mHb/b0)
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Resummation in direct space is a highly non-trivial problem: a naive resummation of logarithmic terms at small p⟂ is 
not sensible, as one loses the correct power-suppressed scaling if only logarithms are retained.  

It is not possible to reproduce a power-like behaviour with logs of p⟂/mH

Resummation of the transverse momentum spectrum in direct space

15

Solution to the problem recently formulated by extending the CAESAR/ARES approach to deal with observables with 
azimuthal cancellations: RadISH approach [Monni, Re, Torrielli ’16][Bizon, Monni, Re, LR, Torrielli ’17]

Problem recently addressed also within SCET [Ebert, Tackmann ’17]

Translate the resummability into properties of the observable in the presence of multiple radiation: 
recursive infrared and collinear (rIRC) safety 

Solution 2:

[Frixione, Nason, Ridolfi ’98]
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Result at NLL accuracy can be written as

16

Resummation of the transverse momentum spectrum in direct space

× ϵR′�(v1)R′�(v1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζiv1) Θ (p⊥ − | ⃗k t,i + ⋯ ⃗k t,n+1 | ))

vi = kt,i/mH, ζi = vi/v1σ(p⊥) = σ0 ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(v1)
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Result at NLL accuracy can be written as

16

Resummation of the transverse momentum spectrum in direct space

σ̃ ∼ ∫
dv1

v1
Σs(v1)ℱ(v, v1)

× ϵR′�(v1)R′�(v1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζiv1) Θ (p⊥ − | ⃗k t,i + ⋯ ⃗k t,n+1 | ))

vi = kt,i/mH, ζi = vi/v1
Simple observable

Transfer function

σ(p⊥) = σ0 ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(v1)
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Subleading effects retained: no divergence at small , power-like behaviour respectedp⊥

Logarithmic accuracy defined in terms of ln(mH /kt1)
Result formally equivalent to the b-space formulation

Result at NLL accuracy can be written as

Formula can be evaluated with Monte Carlo method; dependence on  vanishes (as ) and result is finite in four 
dimensions 

ϵ 𝒪(ϵ)

16

Resummation of the transverse momentum spectrum in direct space

[Bizon, Monni, Re, LR, Torrielli ’17]

× ϵR′�(v1)R′�(v1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζiv1) Θ (p⊥ − | ⃗k t,i + ⋯ ⃗k t,n+1 | ))

vi = kt,i/mH, ζi = vi/v1
Simple observable

Transfer function

σ(p⊥) = σ0 ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(v1)

σ̃ ∼ ∫
dv1

v1
Σs(v1)ℱ(v, v1)
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Direct space formulation

1. Similar in spirit to a semi-inclusive parton shower, but with higher-order logarithms, and full control on 
the formal accuracy 

2. Thanks to its versatility, the approach can be exploited to formulate the resummation for entire classes of 
observables in an unique framework 

3. More differential description of the QCD radiation than that usually possible in a conjugate-space 
formulation
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Direct space formulation

Price to pay: less compact formulation

where we simplified the notation by using

R
0(kt1) =

X

`=1,2

R
0
`
(kt1). (3.15)

The dependence on the regulator ✏ cancels exactly in Eq. (3.14).
We can transform back to momentum space, thus abandoning the matrix notation used so far. We
define the derivatives of the parton densities by means of the DGLAP evolution equation

@f(µ, x)

@ lnµ
=

↵s(µ)

⇡

Z
1

x

dz

z
P̂ (z,↵s(µ))f(µ,

x

z
), (3.16)

where P̂ (z,↵s(µ)) is the regularised splitting function

P̂ (z,↵s(µ)) = P̂
(0)(z) +

↵s(µ)

2⇡
P̂

(1)(z) +

✓
↵s(µ)

2⇡

◆2

P̂
(2)(z) + . . . (3.17)

Including terms up to N3LL, we can therefore recast Eqs. (3.12), (2.47) as

d⌃(v)

d�B

=

Z
dkt1

kt1

d�1

2⇡
@L

⇣
�e

�R(kt1)LN3LL(kt1)
⌘Z

dZ[{R0
, ki}]⇥ (v � V ({p̃}, k1, . . . , kn+1))

+

Z
dkt1

kt1

d�1

2⇡
e
�R(kt1)

Z
dZ[{R0

, ki}]

Z
1

0

d⇣s

⇣s

d�s

2⇡

(✓
R

0(kt1)LNNLL(kt1)� @LLNNLL(kt1)

◆

⇥

✓
R

00(kt1) ln
1

⇣s
+

1

2
R

000(kt1) ln
2 1

⇣s

◆
�R

0(kt1)

✓
@LLNNLL(kt1)� 2

�0

⇡
↵
2

s
(kt1)P̂

(0)
⌦ LNLL(kt1) ln

1

⇣s

◆

+
↵
2
s
(kt1)

⇡2
P̂

(0)
⌦ P̂

(0)
⌦ LNLL(kt1)

)⇢
⇥ (v � V ({p̃}, k1, . . . , kn+1, ks))�⇥ (v � V ({p̃}, k1, . . . , kn+1))

�

+
1

2

Z
dkt1

kt1

d�1

2⇡
e
�R(kt1)

Z
dZ[{R0

, ki}]

Z
1

0

d⇣s1

⇣s1

d�s1
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Z
1

0
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2⇡
R

0(kt1)

⇥

(
LNLL(kt1) (R

00(kt1))
2
ln

1

⇣s1
ln

1

⇣s2
� @LLNLL(kt1)R

00(kt1)

✓
ln

1

⇣s1
+ ln

1

⇣s2

◆

+
↵
2
s
(kt1)

⇡2
P̂

(0)
⌦ P̂
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⌦ LNLL(kt1)

)

⇥

⇢
⇥ (v � V ({p̃}, k1, . . . , kn+1, ks1, ks2))�⇥ (v � V ({p̃}, k1, . . . , kn+1, ks1))�

⇥ (v � V ({p̃}, k1, . . . , kn+1, ks2)) +⇥ (v � V ({p̃}, k1, . . . , kn+1))

�
+O

✓
↵
n

s
ln2n�6 1

v

◆
, (3.18)

where we defined @L = d/dL.
Until now we have explicitly considered the case of flavour-conserving real emissions, for which we
derived Eq. (3.18). We now turn to the inclusion of the flavour-changing splitting kernels, that
enter purely in the hard-collinear limit and contribute to the DGLAP evolution. In order to include
an arbitrary number of these splittings, one is forced to relax the assumption of kt ordering that
we made in our discussion of Section 2.3.7 Indeed, if some soft radiation occurs after the flavour-
changing collinear emission has taken place, then it becomes quite cumbersome to determine the

7
We are grateful to A. Banfi for a discussion about this aspect.
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N3LL result
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1. Similar in spirit to a semi-inclusive parton shower, but with higher-order 
logarithms, and full control on the formal accuracy
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N3LL result matched to NNLO H+j, Z+j, W±+j

19

Resummation of the transverse momentum spectrum at N3LL+NNLO
[Bizon, LR et al. ’17, ‘18, ’19] 

[Chen et al. ’18] H+j at same accuracy also in SCET
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Figure 5: Comparison of the normalized p
``
T (left) and �⇤⌘ (right) distributions predicted by di�erent computations:

P�����8 with the AZ tune, P�����+P�����8 with the AZNLO tune, S����� v2.2.1 and R��ISH (only for p
``
T )

with the Born level combined measurement. The uncertainties of the measurement are shown as vertical bars and
uncertainties of the S����� and R��ISH predictions are indicated by the coloured bands.

constraint of 0.5  µ�/µ�  2 around the nominal value of m`` . The deviation from the FEWZ calculation
is taken as an intrinsic uncertainty in the NNLO QCD calculation. A more detailed discussion of the
agreement with theory predictions using di�erent PDF sets is given in Ref. [69].

The di�erential measurements are compared with a variety of predictions of the p
``
T and �⇤⌘ spectra that

are based on di�erent theoretical approaches to take into account both the soft and hard emissions from
the initial state (ISR). Unless stated otherwise, the predictions do not consider NLO EW e�ects. The
comparisons between the combined result corrected to QED Born level and the various predictions are
shown in Figures 5 and 6. Systematic uncertainties in the theoretical predictions are evaluated for this
comparison where feasible.

The first prediction is obtained from P�����8 with matrix elements at LO in ↵S supplemented with a
parton shower with the AZ set of tuned parameters [22]. The AZ tune optimized the intrinsic kT and
parton shower ISR parameters to optimally describe the ATLAS 7 TeV p

``
T and �⇤⌘ data [22, 77]. It was

later used in the measurement of the W-boson mass using 7 TeV data [20], which requires a high-precision
description of the W-boson transverse momentum spectrum at low pT.

The second prediction is based on P�����+P�����8 using NLO matrix elements with the P�����8 parton
shower parameters set according to the AZNLO tune [22] derived using the same data as the P�����8 AZ
tune. The predictions using the AZ and AZNLO tunes describe the 13 TeV data to within 2–4% in the
region of low p

``
T < 40 GeV and �⇤⌘ < 0.5, and in this region the prediction using the P�����8 AZ tune is

the one that agrees best with the data. This shows that predictions based on tunes to 7 TeV collision data
can also provide a good description at significantly higher centre-of-mass energies for low p

``
T . At high

p
``
T these predictions are well below the data due to missing higher-order matrix elements, similar to the

situation observed at lower
p

s.

The third prediction is simulated with the S����� v2.2.1 [18] generator. In this set-up, NLO-accurate
matrix elements for up to two partons, and LO-accurate matrix elements for up to four partons are calculated
with the Comix [78] and OpenLoops [79, 80] libraries. The default S����� parton shower [81] based on
Catani–Seymour dipole factorisation and the cluster hadronization model [82] is used with the dedicated

14
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2. Thanks to its versatility, the approach can be exploited to formulate the 
resummation for entire classes of observables in an unique framework 
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Direct space formulation: generality

σ(pJ
⊥) = σ0eLg1(αsL)+g2(αsL) σ(pH

⊥ ) = σ0 ∫ d2 ⃗p H
⊥ ∫

d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−RNLL(L)

NLL result for pJ
⊥ NLL result for pH

⊥

vs
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σ(v) = σ0 ∫
dkt,1

kt,1 ∫
2π

0

dϕ1

2π
e−R(kt,1)R′ �(kt,1) d𝒵Θ (v − V(k1, …, kn+1))

σ(pH
⊥ ) = σ0 ∫ d2 ⃗p H

⊥ ∫
d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−RNLL(L)

NLL result for pJ
⊥ NLL result for pH

⊥

General formula for a generic transverse observable at NLL 

d𝒵 = ϵR′�(kt,1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζikt,1)

[Bizon, Monni, Re, LR, Torrielli ’17]

Direct space formulation: generality

σ(pJ
⊥) = σ0eLg1(αsL)+g2(αsL)
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σ(pJ
⊥) = σ0 ∫

dkt,1

kt,1 ∫
2π
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dϕ1

2π
e−R(kt,1)R′�(kt,1) d𝒵

σ(pH
⊥ ) = σ0 ∫ d2 ⃗p H
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d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−RNLL(L)

NLL result for pJ
⊥ NLL result for pH

⊥

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli ’17]

d𝒵 = ϵR′�(kt,1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζikt,1)

Θ (pJ
T − max{kt,1, …kt,n+1})

Direct space formulation: generality

σ(pJ
⊥) = σ0eLg1(αsL)+g2(αsL)
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σ(pH
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⊥e−RNLL(L)

NLL result for pJ
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General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli ’17]

d𝒵 = ϵR′�(kt,1)
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∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζikt,1)

Θ (pH
T − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)

Direct space formulation: generality

σ(pH
⊥ ) = σ0 ∫

dkt,1

kt,1 ∫
2π

0

dϕ1

2π
e−R(kt,1)R′�(kt,1) d𝒵

σ(pJ
⊥) = σ0eLg1(αsL)+g2(αsL)
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σ(v) = σ0 ∫
dkt,1

kt,1 ∫
2π

0

dϕ1

2π
e−R(kt,1)R′ �(kt,1) d𝒵

σ(pH
⊥ ) = σ0 ∫ d2 ⃗p H

⊥ ∫
d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−RNLL(L)

NLL result for pJ
⊥ NLL result for pH

⊥

General formula for a generic transverse observable at NLL [Bizon, Monni, Re, LR, Torrielli ’17]

d𝒵 = ϵR′�(kt,1)
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζikt,1)

Θ (pH
T − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)

Direct space formulation: generality

differential control in momentum space provides guidance to 
double-differential resummation 

σ(pJ
⊥) = σ0eLg1(αsL)+g2(αsL)
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Double-differential resummation at NLL in b space

21

At NLL, emissions are strongly ordered in angle. -clustering algorithms will associate each emission to a different jetkt
H kt,4kt,3

kt,1

kt,2
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Double-differential resummation at NLL in b space

21

Additional constraint on real radiation

H

dσ
d2 ⃗p H

⊥
= σ0 ∫

d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−RNLL(L)Θ(pJ,v

⊥ − max{kt,1, …, kt,n}) =
n

∏
i=1

Θ(pJ,v
⊥ −kt,i)kt,ikt,1, …, kt,n

 resummation formulapH
⊥

H

kt,1

kt,4kt,3

kt,2

At NLL, emissions are strongly ordered in angle. -clustering algorithms will associate each emission to a different jetkt
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dσ(pJ,v
⊥ )

d2 ⃗p H
⊥

= σ0 ∫
d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−SNLL(L)

SNLL(L) = − Lg1(αsL) − g2(αsL) + ∫
mH

0

dkt

kt
R′�NLL(kt)J0(bkt)Θ(kt − pJ.v

⊥ ) R′�NLL(kt) = 4 ( αCMW
s (kt)

π
CA ln

mH

kt
− αs(kt)β0)

[Catani, Marchesini, Webber ’91]CMW scheme

αCMW
s

H

Double-differential resummation at NLL in b space

Joint , resummation formulapH
⊥ pJ,v

⊥

Additional constraint on real radiation

dσ
d2 ⃗p H

⊥
= σ0 ∫

d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−RNLL(L)Θ(pJ,v

⊥ − max{kt,1, …, kt,n}) =
n

∏
i=1

Θ(pJ,v
⊥ −kt,i)kt,ikt,1, …, kt,n

 resummation formulapH
⊥

H kt,4kt,3

kt,1

kt,2

At NLL, emissions are strongly ordered in angle. -clustering algorithms will associate each emission to a different jetkt
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Double-differential resummation at NNLL in b space

22

Crucial observation: in b space the phase space constraints entirely factorize 

The jet veto constraint can be included by implementing the jet veto resummation at the b-space integrand level 
directly in impact-parameter space

ei ⃗b ⋅ ⃗k t,i

Θ(pJ,v
⊥ − max{kt,1, …, kt,n}) =

n

∏
i=1

Θ(pJ,v
⊥ − kt,i)kt,ikt,1, …, kt,n

Inclusive contribution: phase space constraint of the form

SNNLL = − Lg1(αsL) − g2(αsL) − αsg3(αsL) + ∫
mH

0

dkt

kt
R′�NNLL(kt)J0(bkt)Θ(kt − pJ,v

⊥ )

Promote radiator at NNLL
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Double-differential resummation at NNLL in b space

22

Crucial observation: in b space the phase space constraints entirely factorize 

The jet veto constraint can be included by implementing the jet veto resummation at the b-space integrand level 
directly in impact-parameter space

ei ⃗b ⋅ ⃗k t,i

Θ(pJ,v
⊥ − max{kt,1, …, kt,n}) =

n

∏
i=1

Θ(pJ,v
⊥ − kt,i)kt,ikt,1, …, kt,n

Inclusive contribution: phase space constraint of the form

SNNLL = − Lg1(αsL) − g2(αsL) − αsg3(αsL) + ∫
mH

0

dkt

kt
R′�NNLL(kt)J0(bkt)Θ(kt − pJ,v

⊥ )

Promote radiator at NNLL

Resummation formula must be amended at NNLL

• clustering correction: jet algorithm can cluster two independent emissions into the same jet 

• correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission 
accounting for configurations where the two correlated emissions (non abelian) are not clustered in the same jet

[Banfi et al. ’12][Becher et al. ’13][Stewart et al. ’14]
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Double-differential resummation at NNLL in b space

23

clustering correction: jet algorithm can cluster two emissions into the same jet

ℱclust =
1
2! ∫ [dka][dkb]M2(ka)M2(kb)Jab(R) ei ⃗b ⋅ ⃗k t,ab [Θ(pJ,v

⊥ − kt,ab) − Θ(pJ,v
⊥ − max{kt,a, kt,b})]Jab(R)ℱclust

H

kt,1

kt,a kt,b

Jab(R) = Θ (R2 − Δη2
ab − Δϕ2

ab)

kt,3

kt,2
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Double-differential resummation at NNLL in b space

23

clustering correction: jet algorithm can cluster two emissions into the same jet

Jab(R) = Θ (R2 − Δη2
ab − Δϕ2

ab)

ℱclust =
1
2! ∫ [dka][dkb]M2(ka)M2(kb)Jab(R) ei ⃗b ⋅ ⃗k t,ab [Θ(pJ,v

⊥ − kt,ab) − Θ(pJ,v
⊥ − max{kt,a, kt,b})]Jab(R)ℱclust

H

kt,1

kt,3

kt,ab = | ⃗k t,a + ⃗k t,b |

kt,2
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Double-differential resummation at NNLL in b space

24

correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission 
accounting for configurations where the two correlated emissions are not clustered in the same jet

ℱcorrel =
1
2! ∫ [dka][dkb]M̃2(ka, kb)(1 − Jab(R))ei ⃗b ⋅ ⃗k t,ab × [Θ(pJ,v

⊥ − max{kt,a, kt,b}) − Θ(pJ,v
⊥ − kt,ab)]M̃2(ka, kb)ℱcorrel

kt,1

kt,2

kt,3

ka

kb
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Double-differential resummation at NNLL in b space

24

correlated correction: amends the inclusive treatment of the correlated squared amplitude for two emission 
accounting for configurations where the two correlated emissions are not clustered in the same jet

ℱcorrel =
1
2! ∫ [dka][dkb]M̃2(ka, kb)(1 − Jab(R))ei ⃗b ⋅ ⃗k t,ab × [Θ(pJ,v

⊥ − max{kt,a, kt,b}) − Θ(pJ,v
⊥ − kt,ab)]

At NNLL, all remaining emissions can be considered to be far in angle from the pair ka, kb

M̃2(ka, kb)ℱcorrel

ka

kb

kt,1

kt,2

kt,3
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Double-differential resummation at NNLL in b space

25

NNLL prediction finally requires the consistent treatment of non-soft collinear emissions off the initial state particles

Soft and non-soft emission cannot be clustered by a kt-type jet algorithm. Non-soft collinear radiation can be 
handled by taking a Mellin transform of the resummed cross section, giving rise to scale evolution of PDFs and of 
the           collinear coefficient functions 𝒪(αs)
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× Cν1,gb1
(αs(b0/b)) Cν2,gb2

(αs(b0/b))[𝒫 e
− ∫mH

pJ,v
⊥

dμ
μ Γ(C)

ν1
(αs(μ))J0(bμ)]

c1b1
[𝒫 e

− ∫mH
pJ,v

⊥

dμ
μ Γ(C)

ν2
(αs(μ))J0(bμ)]

c2b2

Double-differential resummation at NNLL in b space

25

NNLL prediction finally requires the consistent treatment of non-soft collinear emissions off the initial state particles

Soft and non-soft emission cannot be clustered by a kt-type jet algorithm. Non-soft collinear radiation can be 
handled by taking a Mellin transform of the resummed cross section, giving rise to scale evolution of PDFs and of 
the           collinear coefficient functions 𝒪(αs)

dσ(pJ,v
⊥ )

dyHd2 ⃗p H
⊥

= M2
gg→H ℋ(αs(mH)) ∫𝒞1

dν1

2πi ∫𝒞2

dν2

2πi
x−ν1

1 x−ν2
2 ∫

d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥ e−SNNLL (1 + ℱclust + ℱcorrel)

× fν1,a1
(b0/b) fν2,a2

(b0/b)[𝒫 e
− ∫mH

pJ,v
⊥

dμ
μ Γν1

(αs(μ))J0(bμ)]
c1a1

[𝒫 e
− ∫mH

pJ,v
⊥

dμ
μ Γν2

(αs(μ))J0(bμ)]
c2a2

ℱclust ℱcorrel

Mellin moments
Flavour indices

ℋ(αs(mH))

Final result at NNLL, including hard-virtual corrections at 𝒪(αs)
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Double-differential resummation in direct space

26

σ(pH
⊥ ) = σ0 ∫

dkt,1

kt,1 ∫
2π

0

dϕ1

2π
e−R(kt,1)R′�(kt,1) d𝒵Θ (pH

⊥ − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)
At NLL

pH
⊥ Θ (pH

⊥ − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)

Just need to combine measurement functions! 
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Double-differential resummation in direct space
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2π
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⊥ − max {kt,1, …kt,n+1})Θ (pJ,v
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⊥

Just need to combine measurement functions! 



Remote 4D Seminar, UC Berkeley & LBNL, 1st June 2020

Double-differential resummation in direct space

26

σ(pJ,v
⊥ , pH

⊥ ) = σ0 ∫
dkt,1

kt,1 ∫
2π

0

dϕ1

2π
e−R(kt,1)R′�(kt,1) d𝒵Θ (pJ,v

⊥ − max {kt,1, …kt,n+1}) Θ (pH
⊥ − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)Θ (pJ,v
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At NLL

Θ (pH
⊥ − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)pJ,v

⊥ pH
⊥

Just need to combine measurement functions! 
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Double-differential resummation in direct space

26

At NLL

σNNLL
clust (pJ,v

⊥ ) ≃ ∫
∞

0

dkt,1

kt,1

dϕ1

2π ∫ d𝒵 e−R(kt,1) 8 C2
A

α2
s (kt,1)
π2

Θ (pJ,v
⊥ − max

i>1
{kt,i})

Same philosophy at NNLL

σNNLL(pJ,v
⊥ ) = σNNLL

incl (pJ,v
⊥ ) + σNNLL

clust (pJ,v
⊥ ) + σNNLL

corr (pJ,v
⊥ )pJ,v

⊥ pJ,v
⊥ pJ,v

⊥ pJ,v
⊥

where e.g.

Θ (pJ,v
⊥ − max

i>1
{kt,i})pJ,v

⊥

× ∫
kt,1

0

dkt,s1

kt,s1

dϕs1

2π ∫
∞

−∞
dΔη1s1

J1s1
(R)[Θ(pJ,v

⊥ − | ⃗k t,1 + ⃗k t,s1
|)− Θ(pJ,v

⊥ − kt,1)][Θ(pJ,v
⊥ − | ⃗k t,1 + ⃗k t,s1

|)− Θ(pJ,v
⊥ − kt,1)]

�Just need to combine measurement functions! 

σ(pJ,v
⊥ , pH

⊥ ) = σ0 ∫
dkt,1

kt,1 ∫
2π

0

dϕ1

2π
e−R(kt,1)R′�(kt,1) d𝒵Θ (pJ,v

⊥ − max {kt,1, …kt,n+1}) Θ (pH
⊥ − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)Θ (pJ,v

⊥ − max {kt,1, …kt,n+1}) Θ (pH
⊥ − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)pJ,v

⊥ pH
⊥
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Double-differential resummation in direct space
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σ(pJ,v
⊥ , pH

⊥ ) = σ0 ∫
dkt,1

kt,1 ∫
2π

0

dϕ1

2π
e−R(kt,1)R′�(kt,1) d𝒵Θ (pJ,v

⊥ − max {kt,1, …kt,n+1}) Θ (pH
⊥ − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)Θ (pJ,v
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�Just need to combine measurement functions! 

At NLL

Θ (pH
⊥ − | ⃗k t,1 + ⋯ ⃗k t,n+1 |)

σNNLL
clust (pJ,v

⊥ , pH
⊥ ) ≃ ∫

∞

0

dkt,1

kt,1

dϕ1

2π ∫ d𝒵 e−R(kt,1) 8 C2
A

α2
s (kt,1)
π2

Θ (pJ,v
⊥ − max

i>1
{kt,i})

× ∫
kt,1

0

dkt,s1

kt,s1

dϕs1

2π ∫
∞

−∞
dΔη1s1

J1s1
(R)[Θ(pJ,v

⊥ − | ⃗k t,1 + ⃗k t,s1
|)− Θ(pJ,v

⊥ − kt,1)]

Same philosophy at NNLL

σNNLL(pJ,v
⊥ ) = σNNLL

incl (pJ,v
⊥ ) + σNNLL

clust (pJ,v
⊥ ) + σNNLL

corr (pJ,v
⊥ )

pJ,v
⊥ pH

⊥

pJ,v
⊥ pJ,v

⊥ pJ,v
⊥ pJ,v

⊥

× Θ(pH
⊥ − | ⃗k t,1 + … + ⃗k t,n+1 + ⃗k t,s1

|)

where e.g 

Θ (pJ,v
⊥ − max

i>1
{kt,i})pJ,v

⊥ pH
⊥

Θ(pH
⊥ − | ⃗k t,1 + … + ⃗k t,n+1 + ⃗k t,s1

|)
And analogously for other contributions

[Θ(pJ,v
⊥ − | ⃗k t,1 + ⃗k t,s1

|)− Θ(pJ,v
⊥ − kt,1)]
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NNLL cross section differential in , cumulative in pH
⊥ pJ

⊥ ≤ pJ,v
⊥

27
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NNLL cross section differential in , cumulative in pH
⊥ pJ

⊥ ≤ pJ,v
⊥

Peaked structure (Sudakov) + 
power-like suppression at 
very small  pH

⊥

Sudakov suppression at small pJ
⊥

27
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NNLL cross section differential in , cumulative in pH
⊥ pJ

⊥ ≤ pJ,v
⊥

At a given value of   it 

corresponds to the  cross 
section in the 0-jet bin

pJ,v
⊥

pH
⊥

27

pJ
⊥ ≤ pJ,v

⊥

dσ(pJ.v
⊥ )

dpH
⊥

pH
⊥

pp → H + X
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NNLL cross section differential in , cumulative in pH
⊥ pJ

⊥ ≤ pJ,v
⊥

Sudakov shoulder: integrable 
singularity beyond LO at

 pH
⊥ ≃ pJ,v

⊥Logarithms associated to the Shoulder are 
resummed in the limit pH

⊥ ∼ pJ,v
⊥ ≪ mH

[Catani, Webber ’97]

27
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Accuracy check at 𝒪(α2
s )

28

Comparison of the expansion of the resummed result with the fixed order at  in the limit 𝒪(α2
s ) pH

⊥ ∼ pJ,v
⊥ ≪ mH

σNNLO(pH
⊥ < pH,v

⊥ , pJ
⊥ < pJ,v

⊥ ) = σNNLO − ∫ Θ(pH
⊥ > pH,v

⊥ ) ∨ Θ(pJ
⊥ > pJ,v

⊥ )dσNLO
H+J
NLONNLO

∼ σ0(1 + αs(L2 + L + c1) + α2
s (L4 + L3 + L2 + L + c1))1 + αs(L2 + L + c1) + α2
s (L4 + L3 + L2 + L

Fully predicted at NNLL

Δ(pJ,v
⊥ , pH,v

⊥ ) = σNNLO(pJ,v
⊥ , pH,v

⊥ ) − σNNLL
exp. (pJ,v

⊥ , pH,v
⊥ )

Difference at the double-cumulative level

should go to a constant when the logarithms get large ( )pH
⊥ ∼ pJ,v

⊥ ≪ mH

c1
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Accuracy check at 𝒪(α2
s )

29

-36.45
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-36.3
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-36.15

-36.1

-5 -4.5 -4 -3.5 -3 -2.5

RadISH vs. NNLOJET, 13 TeV
µR = µF = 125 GeV, Q = mH = 125.18 GeV
NNPDF3.1 (NNLO)

Δ
(p
tJ,
v ,
p t
H
,v
)[
pb
]

ln(pt
H,v/mH)

pt
J,v = 2 pt

H,v Difference at the double-cumulative level 
goes to a constant (all logarithmic terms 
correctly predicted)

Very strong check: NNLL resummation of 
the logarithms associated to the shoulder

Analogous checks performed in the limits 
 and pH

⊥ ≪ pJ,v
⊥ < mH pJ,v

⊥ ≪ pH
⊥ < mH
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LHC results: Higgs transverse momentum with a jet veto

30

Multiplicative matching to fixed order (NLO H+j from MCFM, NNLO H from ggHiggs) 
[Campbell, Ellis, Giele,’15] [Bonvini et al ’13]

1 10 20 30 40 50

pHt [GeV]
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H t
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b
/
G
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MCFM
13 TeV, pp ! H + X, with pJt  30 GeV
NNPDF3.1 (NNLO)
uncertainties with µR, µF, Q variations

NLO

−∞
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�
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v t
)/
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p
H t
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b
/
G
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]

RadISH+MCFM
13 TeV, pp ! H + X, with pJt  30 GeV
NNPDF3.1 (NNLO)
uncertainties with µR, µF, Q variations

NLL+LO

NLO

NNLL+NLO

LHC results: Higgs transverse momentum with a jet veto

30

Multiplicative matching to fixed order (NLO H+j from MCFM, NNLO H from ggHiggs) 
[Campbell, Ellis, Giele,’15] [Bonvini et al ’13]

much reduced sensitivity 
to the Sudakov shoulder 
with respect to NLO 
spectrum

large K-factor becomes relevant 
at larger pH

⊥
residual uncertainties at 
NNLL+NLO at the 10% level

good perturbative convergence to the left of the shoulder; 
above, multi-particle configurations play a substantial role
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LHC applications: W+W- production

31

Jet vetoed analyses commonly enforced in LHC searches

For instance, W+W- channel, which is relevant for BSM searches into leptons missing energy and/or jets and 
Higgs measurements, suffers from a signal contamination due to large top-quark background

Fiducial region defined by a rather stringent jet veto
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W+W- transverse momentum with a jet veto

32

reduced sensitivity to the 
Sudakov shoulder with 
respect to NLO spectrum

Comparison with NNLOPS 
result (much lower log 
accuracy) shows differences 
at the  level𝒪(10%)

[Wiesemann, Re, Zanderighi ’18]

[Kallweit, Wiesemann, Re, LR 2004.07720]
RadISH+MATRIX interface for generic 2⟶1 and 2⟶2 colour singlet processes

[Grazzini, Kallweit, Rathlev, Wiesemann ’15, ’17]

Fixed order predictions from MATRIX
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3. More differential description of the QCD radiation than that usually possible 
in a conjugate-space formulation
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Direct space: access to differential information and underlying dynamics

33

preliminary

Possible access to subleading jets and higher moments

preliminaryn

∑
i=1

⃗k t,i ≃ 0

Dominant at 
small  p⊥
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Summary

34

• Precision of the data demands an increasing theoretical accuracy at the multi-differential level to fully exploit 
LHC potential 

• First joint resummation for a double-differential kinematic observable involving a jet algorithm in hadronic 
collisions 

• Direct space formulation (RadISH) provides guidance to obtain elegant and compact formulation in b-space at 
NNLL accuracy and offers access to underlying dynamics 

• Formalism can be readily extended to more complex final states; 2⟶1 and 2⟶2 colour singlet processes soon 
available via upcoming MATRIX+RadISH framework 
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Backup
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e.g. [Dixon, Magnea, Sterman ’08]

Σ(v) = ∫ dΦB𝒱(ΦB)
∞

∑
n=0

∫
n

∏
i=1

[dki] |ℳ(ΦB, k1, …kn) |2 Θ(v − V({ΦB}, k1, …kn))

single-particle phase space

matrix element for n real emissions

+

2

+⋯

2

v = pt /M

All-order structure of the matrix element

all-order form factor 
(virtuals)
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×
∞

∑
n=0

1
n! {

n

∏
i=1

( |ℳ(ki) |2 + ∫ [dka][dkb] |ℳ̃(ka, kb) |2 δ(2)( ⃗k ta + ⃗k tb − ⃗k ti)δ(Yab − Yi)

1. Establish a logarithmic counting for the squared matrix element |ℳ(ΦB, k1, …kn) |2

Decompose the squared amplitude in terms of n-particle correlated blocks, denoted by   
(                          )

|ℳ̃(k1, …, kn) |2

|ℳ̃(k1) |2 = |ℳ(k1) |2

∞

∑
n=0

|ℳ(ΦB, k1, …, kn) |2 = |ℳB(ΦB |2

+∫ [dka][dkb][dkc] |ℳ̃(ka, kb, kc) |2 δ(2)( ⃗k ta + ⃗k tb + ⃗k tc − ⃗k ti)δ(Yabc − Yi) + …)} ≡ |ℳB(ΦB) |2
∞

∑
n=0

1
n!

n

∏
i=1

|ℳ(ki) |2
inc

LL NLL

NNLL

*expression valid for 
inclusive observables

Upon integration over the phase space, the expansion can be put in a one to one correspondence with the 
logarithmic structure 

Systematic recipe to include terms up to the desired logarithmic accuracy 

Transverse observable resummation with RadISH

|M̃(k1) |2 =
|M(k1) |2

|MB |2 = |M(k1) |2

|M̃(k1, k2) |2 =
|M(k1, k2) |2

|MB |2 −
1
2!

|M(k1) |2 M | (k2) |2
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Resummation in direct space: the pt case

Σ(v) = ∫ dΦB |ℳB(ΦB) |2 𝒱(ΦB)

× ∫ [dk1] |ℳ(k1) |2
inc

∞

∑
l=0

1
l! ∫

l+1

∏
j=2

[dkj] |ℳ(kj) |2
inc Θ(ϵV(k1) − V(kj))

× (
∞

∑
m=0

1
m! ∫

m+1

∏
i=2

[dki] |ℳ(ki) |2
inc Θ(V(ki) − ϵV(k1))Θ (v − V(ΦB, k1, …, km+1)))

unresolved emissions

Unresolved emission doesn’t contribute to the evaluation of the observable: it can be exponentiated directly and 
employed to cancel the virtual divergences, giving rise to a Sudakov radiator

𝒱(ΦB)exp {∫ [dk] |ℳ(k) |2
inc Θ(ϵV(k1) − V(k))} ≃ e−R(ϵV(k1))

resolved emissions

Introduce a slicing parameter ϵ ≪ 1 such that all inclusive blocks with kt,i < ϵkt,1, with kt,1 hardest emission, can be 
neglected in the computation of the observable 

2. Exploit rIRC safety to single out the IRC singularities of the real matrix element and achieve the cancellation of 
the exponentiated divergences of virtual origin
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Resummation in direct space: the pt case

Σ(v) = σ(0) ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(ϵv1)R′�(v1)

×
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζiv1) Θ (v − V(ΦB, k1, …, kn+1))

Result at NLL accuracy can be written as

vi = V(ki), ζi = vi /v1

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes exactly and result is finite in four 
dimensions 

It contains subleading effect which in the original CAESAR approach are disposed of by expanding R and R’ around v 

R(ϵv1) = R(v) +
dR(v)

d ln(1/v)
ln

v
ϵv1

+ 𝒪 (ln2 v
ϵv1 )

R′�(vi) = R′�(v) + 𝒪 (ln
v
vi )

Not possible!  valid only if the ratio vi/v remains of order one in the whole emission phase space, but for observables 
which feature kinematic cancellations there are configurations with vi≫ v. Subleading effects necessary
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Resummation in direct space: the pt case

R(ϵkt1) = R(kt1) +
dR(kt1)

d ln(1/kt1)
ln

1
ϵ

+ 𝒪 (ln2 1
ϵ )

R′�(kti) = R′�(kt1) + 𝒪 (ln
kt1

kti )

Convenient to perform an expansion around kt1 (more efficient and simpler implementation)

Subleading effects retained: no divergence at small v, power-like behaviour respected

Logarithmic accuracy defined in terms of ln(M/kt1)

Result formally equivalent to the b-space formulation

Σ(v) = σ(0) ∫
dv1

v1 ∫
2π

0

dϕ1

2π
e−R(ϵv1)R′�(v1)

×
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζiv1) Θ (v − V(ΦB, k1, …, kn+1))

Result at NLL accuracy can be written as

vi = V(ki), ζi = vi /v1

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes exactly and result is finite in four 
dimensions 
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Parton luminosities

DGLA
P

DGLAP

Real emissions

Sudakov suppression

ln(kt /M )

η

ln(kt,1/M )

ln(ϵkt,1/M )ln(1/ϵ)

Consider configurations in which emissions are ordered in kt,i, kt,1 hardest emission

Phase space for each secondary emission can be depicted in the Lund diagram

resolved emissions live 
in this strip

remaining unresolved real emissions are 
combined with the virtual corrections to 
give rise to Sudakov suppression

rapidity in the centre-of-mass 
frame of the incoming partons

DGLAP evolution governs 
the radiation in the strictly 
collinear limit 

• DGLAP evolution can be performed inclusively up to ϵkt,1 thanks to rIRC safety  
• In the overlapping region hard-collinear emissions modify the observable's value: the evolution should be 

performed exclusively (unintegrated in kt) 
• At NLL the real radiation can be approximated with its soft limit: DGLAP can be performed inclusively up to kt,1 

(i.e. one can evaluate μF=kt,1)
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Beyond NLL
Extension to NNLL and beyond requires the systematic inclusion of the correlated blocks necessary to 
achieve the desired logarithmic accuracy

Moreover, one needs to relax a series of assumptions which give rise to subleading corrections 
neglected at NLL (for instance, exact rapidity bounds). These corrections can be included 
systematically by including additional terms in the expansion 

R(ϵv1) = R(v1) +
dR(v1)

d ln(1/v1)
ln

1
ϵ

+ 𝒪 (ln2 1
ϵ )

Finally, one needs to specify a complete treatment for hard-collinear radiation. Starting at NNLL one 
or more real emissions can be hard and collinear to the emitting leg, and the available phase space 
for subsequent real emissions changes

Two classes of contributions:  

• one soft by construction and which is analogous to the R’ contribution

R′�(vi) = R′�(v1) + 𝒪 (ln
v1

vi )
• another hard and collinear (exclusive DGLAP step): last step of DGLAP evolution must be 

performed unintegrated in kt
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|M(p1, p2, k1, k2) |2 =

Logarithmic counting

Necessary to establish a well defined logarithmic counting: possibile to do that by decomposing the 
squared amplitude in terms of n-particle correlated blocks (nPC)

e.g. pp → H + emission of up to 2 (soft) gluons O(αs2)  

outgoing partons 2
x Analogue structure with n 

gluon emissions

Logarithmic counting defined in terms of nPC blocks (owing to rIRC safety of the observable)

+

+perm

= + perm

+

1PC0 1PC0 1PC0 2PC0

+ ++

+

+

only gluons for simplicity

+

1PC1

2
x

LL NLLNLL LL

𝒪(αs)

𝒪(α2
s ){

{
}

}
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Logarithmic counting: correlated blocks

• Write all-order cross section as (                                                      ) 

• Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes 
(resummation means iteration of lower-order amplitudes)

15

Direct space: real radiation
V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

+ + . . .

+ +

+ . . .

| {z }
↵2

sL
4

| {z }
↵sL2

| {z }
+↵2

sL
2↵2

sL
3

this LL is absorbed in the resummation of |M(k)|2

Thanks to P. Monni
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RadISH (Radiation off Initial State Hadrons)This formula can be evaluated by means of fast Monte Carlo methods

Resummation at NLL accuracy

dΣ(v)
dΦB

= ∫
dkt,1

kt,1 ∫
2π

0

dϕ1

2π
e−R(kt,1)ϵR′�(kt,1)ℒNLL(kt,1)R′�(kt,1)

×
∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
R′�(ζikt,1) Θ (v − V(ΦB, k1, …, kn+1))

Final result at NLL

ℒNLL(kt,1) = ∑
c

d |MB |2
cc̄

dΦB
fc(x1, k2

t,1) fc̄(x2, k2
t,1)

Parton luminosity at NLL reads

At higher logarithmic accuracy, it includes coefficient functions and hard-virtual corrections
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Result at N3LL accuracy

where we simplified the notation by using

R
0(kt1) =

X

`=1,2

R
0
`
(kt1). (3.15)

The dependence on the regulator ✏ cancels exactly in Eq. (3.14).
We can transform back to momentum space, thus abandoning the matrix notation used so far. We
define the derivatives of the parton densities by means of the DGLAP evolution equation

@f(µ, x)

@ lnµ
=

↵s(µ)

⇡

Z
1

x

dz

z
P̂ (z,↵s(µ))f(µ,

x

z
), (3.16)

where P̂ (z,↵s(µ)) is the regularised splitting function

P̂ (z,↵s(µ)) = P̂
(0)(z) +

↵s(µ)

2⇡
P̂

(1)(z) +

✓
↵s(µ)

2⇡

◆2

P̂
(2)(z) + . . . (3.17)

Including terms up to N3LL, we can therefore recast Eqs. (3.12), (2.47) as

d⌃(v)

d�B

=

Z
dkt1

kt1

d�1

2⇡
@L

⇣
�e

�R(kt1)LN3LL(kt1)
⌘Z

dZ[{R0
, ki}]⇥ (v � V ({p̃}, k1, . . . , kn+1))

+

Z
dkt1

kt1

d�1

2⇡
e
�R(kt1)

Z
dZ[{R0

, ki}]

Z
1

0

d⇣s

⇣s

d�s

2⇡

(✓
R

0(kt1)LNNLL(kt1)� @LLNNLL(kt1)

◆

⇥

✓
R

00(kt1) ln
1

⇣s
+

1

2
R

000(kt1) ln
2 1

⇣s

◆
�R

0(kt1)

✓
@LLNNLL(kt1)� 2

�0

⇡
↵
2

s
(kt1)P̂

(0)
⌦ LNLL(kt1) ln

1

⇣s

◆

+
↵
2
s
(kt1)

⇡2
P̂

(0)
⌦ P̂

(0)
⌦ LNLL(kt1)

)⇢
⇥ (v � V ({p̃}, k1, . . . , kn+1, ks))�⇥ (v � V ({p̃}, k1, . . . , kn+1))

�

+
1

2

Z
dkt1

kt1

d�1

2⇡
e
�R(kt1)

Z
dZ[{R0

, ki}]

Z
1

0

d⇣s1

⇣s1

d�s1

2⇡

Z
1

0

d⇣s2

⇣s2

d�s2

2⇡
R

0(kt1)

⇥

(
LNLL(kt1) (R

00(kt1))
2
ln

1

⇣s1
ln

1

⇣s2
� @LLNLL(kt1)R

00(kt1)

✓
ln

1

⇣s1
+ ln

1

⇣s2

◆

+
↵
2
s
(kt1)

⇡2
P̂

(0)
⌦ P̂

(0)
⌦ LNLL(kt1)

)

⇥

⇢
⇥ (v � V ({p̃}, k1, . . . , kn+1, ks1, ks2))�⇥ (v � V ({p̃}, k1, . . . , kn+1, ks1))�

⇥ (v � V ({p̃}, k1, . . . , kn+1, ks2)) +⇥ (v � V ({p̃}, k1, . . . , kn+1))

�
+O

✓
↵
n

s
ln2n�6 1

v

◆
, (3.18)

where we defined @L = d/dL.
Until now we have explicitly considered the case of flavour-conserving real emissions, for which we
derived Eq. (3.18). We now turn to the inclusion of the flavour-changing splitting kernels, that
enter purely in the hard-collinear limit and contribute to the DGLAP evolution. In order to include
an arbitrary number of these splittings, one is forced to relax the assumption of kt ordering that
we made in our discussion of Section 2.3.7 Indeed, if some soft radiation occurs after the flavour-
changing collinear emission has taken place, then it becomes quite cumbersome to determine the

7
We are grateful to A. Banfi for a discussion about this aspect.

– 25 –

All ingredients to perform resummation at N3LL accuracy are now available
[Catani et al. ’11, ’12][Gehrmann et al. ’14][Li, Zhu ’16, Vladimirov ’16][Moch et al. ’18, Lee et al. ‘19]

Fixed-order predictions now available at NNLO
[A. Gehrmann-De Ridder et al. ’15, 16, ’17][Boughezal et al. ’15, 16]

[Bizon, Monni, Re, LR, Torrielli ’17]
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Matching with fixed order
Multiplicative matching performed at the double-cumulant level

σmatch(pH
⊥ < pH,v

⊥ , pJ
⊥ < pJ,v

⊥ ) =
σNNLL(pH

⊥ < pH,v
⊥ , pJ

⊥ < pJ,v
⊥ )

σNNLL({pJ,v
⊥ , pH,v

⊥ } → ∞) [σNNLL({pJ,v
⊥ , pH,v

⊥ } → ∞)
σNNLO(pH

⊥ < pH,v
⊥ , pJ

⊥ < pJ,v
⊥ )

σNNLL,exp(pH
⊥ < pH,v

⊥ , pJ
⊥ < pJ,v

⊥ ) ]
𝒪(α2

s )

double-cumulative result at NNLL

expansion of the double-cumulative 
result at NNLL

asymptotic limit of the NNLL result

fixed-order double-cumulative result at NNLO

• NNLL+NNLO result for  recovered for  

• NNLO constant included through multiplicative matching (NNLL’ accuracy)

pJ,v
⊥ pH,v

⊥ → ∞

σNNLO(pH
⊥ < pH,v

⊥ , pJ
⊥ < pJ,v

⊥ ) = σNNLO − ∫ Θ(pH
⊥ > pH,v

⊥ ) ∨ Θ(pJ
⊥ > pJ,v

⊥ )dσH+J,NLONLONNLO
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Matching to fixed order: multiplicative matching
Cumulative cross section should reduce to the fixed order at large v 

Σmult
matched(v) ∼ Σres(v)[ Σf.o.(v)

Σres(v) ]
expanded

• allows to include constant terms from 
NNLO (if N3LO total xs available) 

• physical suppression at small v  cures 
potential instabilities 

To ensure that resummation does not affect the hard region of the spectrum when the matching is performed we 
introduce modified logarithms

ln(Q/kt1) →
1
p

ln 1 + ( Q
kt1 )

p
: perturbative resummation scaleQ

used to probe the size of subleading 
logarithmic corrections 

: arbitrary matching parameterp

This corresponds to restrict the rapidity phase space at large kt

Σf.o(v) = σf.o. − ∫
∞

v

dσ
dv

dv

∫
ln Q/kt,i

−ln Q/kt,i

dη → ∫
ln Q/kt,1

−ln Q/kt,1

dη → ∫
ϵ

−ϵ
dη → 0
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Predictions for the Z spectrum at 8 TeV

• Good description of the data in all fiducial regions 

• Perturbative uncertainty at the few percent level, still 
does not match the precision of the ATLAS data 
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N3LL result matched to NNLO H+j, Z+j, W±+j

16

Resummation of the transverse momentum spectrum at N3LL+NNLO

RadISH+NNLOJET, 13 TeV, mH = 125 GeV

µR = µF = mH/2, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations

d
Σ

/d
 p

tH
 [

p
b

/G
e

V
]

NNLL+NLO

NNLO

N3LL+NNLO
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Theoretical predictions for Z and W observables at 13 TeV

No non perturbative parameters included in the following    

Results obtained using the following fiducial cuts (agreed with ATLAS)

pℓ±

t > 25 GeV, |ηℓ±
| < 2.5, 66 GeV < Mℓℓ < 116 GeV

using NNPDF3.1 with 𝛼s(MZ)=0.118 and setting the central scales to

μR = μF = MT = M2
ℓℓ′� + p2

T , Q =
Mℓℓ′ �

2
5 flavour (massless) scheme: no HQ effects, LHAPDF PDF thresholds

Scale uncertainties estimated by varying renormalization and factorization scale by a factor of two around their 
central value (7 point variation) and varying the resummation scale by a factor of 2 around its central value for 
factorization and renormalization scales set to their central value: 9 point envelope

Matching parameter p set to 4 as a default

pℓ
t > 25 GeV, |ηℓ | < 2.5, Eνℓ

T > 25 GeV, mT > 50 GeV

Bizon, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Monni, Re, LR, Walker, 190x.xxxx
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Thanks to Jan Kretzschmar for providing the 
PYTHIA8 AZ tune results
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Ratio of differential distributions

1
σW

dσW

pW
⊥

∼
1

σZ
data

dσZ
data

pZ
⊥

1
σW

theory

dσW
theory

pW
⊥

1
σZ

theory

dσZ
theory

pZ
⊥

Z and W production share a similar pattern of QCD radiative corrections

Crucial to understand correlation between Z and W spectra to exploit data-driven predictions

Several choices are possible:
• Correlate resummation and renormalisation scale variations, keep factorisation scale uncorrelated, while 

keeping 

• More conservative estimate: vary both renormalisation and factorisation scales in an uncorrelated way with

1
2

≤
μnum

F

μden
F

≤ 2

1
2

≤
μnum

μden
≤ 2
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Results for W-/W+ ratio
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Results for Z/W+ ratio
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Equivalence with b-space formulation
dΣ(v)
dΦB

= ∫𝒞1

dN1

2πi ∫𝒞2

dN2

2πi
x−N1

1 x−N2
2 ∑

c1,c2

d |MB |2
c1c2

dΦB
fT
N1

(μ0)Σ̂
c1,c2
N1,N2

(v)fN2
(μ0)

unresolved  
emission + virtual 
corrections

Σ̂c1,c2
N1,N2

(v) = [Cc1;T
N1

(αs(μ0))H(μR)Cc2
N2

(αs(μ0))] ∫
M

0

dkt1

kt1 ∫
2π

0

dϕ1

2π

× e−R(ϵkt1) exp −
2

∑
ℓ=1 (∫

μ0

ϵkt1

dkt

kt

αs(kt)
π

ΓNℓ
(αs(kt)) + ∫

μ0

ϵkt1

dkt

kt
Γ(C)

Nℓ
(αs(kt)))

2

∑
ℓ1=1

(R′�ℓ1 (kt1) +
αs(kt1)

π
ΓNℓ1

(αs(kt1)) + Γ(C)
Nℓ1

(αs(kt1)))
×

∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π

2

∑
ℓi=1

(R′�ℓi (kti) +
αs(kti)

π
ΓNℓi

(αs(kti)) + Γ(C)
Nℓi

(αs(kti)))
× Θ (v − V({p̃}, k1, …, kn+1))

resolved 
emission

Result valid for 
all inclusive 
observables (e.g. 
pt, φ*)

Formulation equivalent to b-space result (up to a scheme change in the anomalous dimensions)

d2Σ(v)
dΦBdpt

= ∑
c1,c2

d |MB |2
c1c2

dΦB ∫ b db ptJ0(ptb) fT(b0/b)Cc1;T
N1

(αs(b0/b))H(M)Cc2
N2

(αs(b0/b))f(b0/b)

× exp {−
2

∑
ℓ=1

∫
M

0

dkt

kt
R′�ℓ (kt)(1 − J0(bkt))} (1 − J0(bkt)) ≃ Θ(kt −

b0

b
) +

ζ3

12
∂3

∂ ln(Mb/b0)3
Θ(kt −

b0

b
)

N3LL effect: absorbed in the definition 
of H2, B3, A4 coefficients wrt to CSS 
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Equivalence with b-space formulation

• As seen in Valerio’s slides the first step of benchmarking has been 
quite successful    

• ReSolve, NangaParbat, DYRES, Radish, SCETlib are within ~1% in 
qT>10 GeV and qT<80 GeV regions 

• Cute, Artemide, and PB-TMD show larger differences 

• No inputs from Resbos 

• Demonstrated that low qT (<10GeV) differences are due to 
Landau-pole regularization procedure 

Level-1 benchmarking
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Thanks to P. Monni

Running coupling 𝛼s(kt,12) and Sudakov radiator hit Landau pole at

αs(μ2
R)β0 ln Q/kt1 =

1
2

kt1 ∼ 0.01 GeV, μR = Q = mZ

Only real cutoff in the calculation: emission probability is set to zero below this scale and parton densities are frozen. 

At small pt  the large azimuthal cancellations dominate over the 
Sudakov suppression: the cutoff is never an issue in practice

comments II

I azimuthal cancellations [at NLL, with L = 1 for simplicity]

d
2⌃(pt)

d2ptd�B
= �

(0)(�B)

Z
dkt1

kt1

d�1

2⇡
e
�R(kt1)R

0(kt1)

Z
dZ[{R0

, ki}]�
(2)(~pt�~kt1�...�~kt,n+1)

Sudakov freezes at kt1 � pt, random azimuthal orientation given by dZ[{R0
, ki}]

10 / 16

d2Σ(v)
dptdΦB

≃ 2σ(0)(ΦB)pt (
Λ2

QCD

M2 )
16
25 ln 41

16

The Landau pole and the small pT limit
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Behaviour at small pt

Explicit evaluation shows that the Parisi-Petronzio perturbative scaling at small pt is reproduced. At NLL, Drell-Yan pair 
production, nf=4

d2Σ(v)
dptdΦB

= 4 σ(0)(ΦB) pt ∫
M

ΛQCD

dkt1

k3
t1

e−R(kt1) ≃ 2σ(0)(ΦB)pt (
Λ2

QCD

M2 )
16
25 ln 41

16

As now higher logarithmic terms (up to N3LL) are under control, the coefficient of this scaling can be systematically 
improved in perturbation theory (non-perturbative effects – of the same order – not considered)

N3LL calculation allows one to have control over the terms of relative order O(αs2). Scaling L ∼ 1/αs valid in the deep 
infrared regime.
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Numerical implementation
Backup: NLL result and the finiteness in four dimensions

d⌃(pt)

d�B

=

Z
M

0

dkt1

kt1

Z
2⇡

0

d�1

2⇡
@L

⇣
�e

�R
0
(kt1)

LNLL(kt1)
⌘
⇥

⇥ ✏
R

0
(kt1)

1X

n=0

1

n!

 
n+1Y

i=2

Z
kt1

✏kt1

dkti

kti

Z
2⇡

0

d�i

2⇡
R

0(kt1)

!
⇥(pt � |~kt1 + ... + ~kt(n+1)|)

| {z }
⌘

R
dZ[{R0,ki}]⇥(pt�|~kt1+...+~kt(n+1)|)

.

I L = ln(M/kt1); luminosity LNLL(kt1) =
P

c1,c2

d|MB |2c1c2
d�B

fc1 (x1, kt1)fc2 (x2, kt1).

I
R

dZ[{R0
, ki}]⇥ finite as ✏ ! 0:

✏
R

0
(kt1) = 1� R

0(kt1) ln(1/✏) + ... = 1�

Z
kt1

✏kt1

R
0(kt1) + ...,

Z
dZ[{R0

, ki}]⇥ =


1�

Z
kt1

✏kt1

R
0(kt1) + ...

� 
⇥(pt � |~kt1|) +

Z
kt1

✏kt1

R
0(kt1)⇥(pt � |~kt1 + ~kt2|) + ...

�

= ⇥(pt � |~kt1|) +

Z
kt1

0| {z }
✏!0

R
0(kt1)

h
⇥(pt � |~kt1 + ~kt2|)�⇥(pt � |~kt1|)

i

| {z }
finite: real-virtual cancellation

+...

I Evaluated with Monte Carlo techniques:
R

dZ[{R0
, ki}] is generated as a parton shower

over secondary emissions.

Paolo Torrielli Higgs transverse-momentum resummation at N3LL 18 / 20
Thanks to P. Torrielli
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Thanks to P. Torrielli

Backup: generating secondary radiation as a parton shower

I Secondary radiation:

dZ[{R0
, ki}] =

1X

n=0

1

n!

 
n+1Y

i=2

Z
2⇡

0

d�i

2⇡

Z
kt1

✏kt1

dkti

kti

R
0(kt1)

!
✏
R

0
(kt1)

=
1X

n=0

 
n+1Y

i=2

Z
2⇡

0

d�i

2⇡

Z
kt(i�1)

✏kt1

dkti

kti

R
0(kt1)

!
✏
R

0
(kt1)

,

✏
R

0
(kt1) = e

�R
0
(kt1) ln 1/✏ =

n+2Y

i=2

e
�R

0
(kt1) ln kt(i�1)/kti ,

with kt(n+2) = ✏kt1.

I Each secondary emissions has di↵erential probability

dwi =
d�i

2⇡

dkti

kti

R
0(kt1)e

�R
0
(kt1) ln kt(i�1)/kti =

d�i

2⇡
d

⇣
e
�R

0
(kt1) ln kt(i�1)/kti

⌘
.

I kt(i�1) � kti. Scale kti extracted by solving e
�R

0
(kt1) ln kt(i�1)/kti = r, with r random

number extracted uniformly in [0, 1]. Shower ordered in kti.

I Extract �i randomly in [0, 2⇡].

Paolo Torrielli Higgs transverse-momentum resummation at N3LL 19 / 20

Numerical implementation
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11

a. NLL formula

At NLL, the measurement function for the pair of observables under consideration for a state with n emissions
reads

Θ(pJ,v

t −max{kt,1, . . . , kt,n})Θ(pH,v

t − |$kt,1 + · · ·+ $kt,n|) . (33)

Following ref. [28], we single out the emission with the largest transverse momentum kt,1, and express the NLL
cross section as

σNLL(pJ,v

t , pH,v

t ) =

! pJ,v

t

0

dkt,1
kt,1

dφ1

2π

!
dZ

d

dLt,1

)
−e−RNLL(Lt,1) LNLL(µFe

−Lt,1)
*
Θ
$
pH,v

t − |$kt,1 + · · ·+ $kt,n+1|

%
, (34)

where Lt,1 ≡ ln(Q/kt,1), and the factor LNLL reads

LNLL(µ) ≡ M2
gg→H

fg(µ, x1)fg(µ, x2) , (35)

where we introduced the explicit x dependence of the parton densities for later convenience. We also introduced the
measure dZ defined as

!
dZ ≡ -R̂

′(kt,1)
∞"

n=0

1

n!

n+1#

i=2

! kt,1

&kt,1

dkt,i
kt,i

dφi

2π
R̂′(kt,1) , (36)

with - ≪ 1 an infrared, constant, resolution parameter that allows for a numerical evaluation of eq. (34) in four
space-time dimensions. We stress that the dependence on - entirely cancels in eq. (34) for sufficiently small values:
in practice we set - = e−20. We also introduced the quantity [28]
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b. NNLL formula

Following the discussion at NLL, a first contribution to the NNLL cross section is given by the NNLL formula for
inclusive pH

t , supplemented by the jet-veto constraint. This reads [28]
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where LNNLL is given by
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Finally, we introduced
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, (40)
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. (41)

Joint resummation in direct space
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When considering σNNLL
incl (pJ,v

t , pH,v

t ) we used the phase-space constraint of eq. (33). As discussed in the letter, this

measurement function assumes that the emissions are widely separated in rapidity and therefore do not get clustered

by the jet algorithm. However, at NNLL at most two soft emissions are allowed to get arbitrarily close in angle and

to get clustered into the same jet. Accounting for this type of configurations led to the formulation of the clustering

(Fclust) and correlated (Fcorrel) corrections in the main text. In the following we will formulate these two corrections

directly in momentum space.

The clustering correction can be expressed as
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where we have explicitly separated the configuration in which one of the two clustered emissions is the hardest (k1),
from the configuration in which both clustered emissions have kt,s1/s2 ≤ kt,1. Although the latter step is not necessary,

we find it convenient to keep the two contributions separate for a Monte Carlo implementation. The same arguments

can be applied to the correlated correction, which can be expressed as
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The NNLL double-cumulative distribution is then obtained by summing the three contributions, namely

σNNLL
(pJ,v

t , pH,v

t ) = σNNLL
incl (pJ,v

t , pH,v

t ) + σNNLL
clust (pJ,v

t , pH,v
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correl (p

J,v

t , pH,v

t ) . (44)

We refer to Section 4.3 of ref. [29] for the Monte Carlo evaluation of the above equations, and to Section 4.2 of the

same article for the procedure used to expand them at a fixed perturbative order.

3. Asymptotic limits of the joint-resummation formula

In this section we perform the asymptotic limits of eq. (12), and verify that it reproduces the NNLL results for pH

t

and jet-veto resummation, respectively. We start by taking the limit pJ,v

t ∼ mH ≫ pH

t . Using the fact that

SNNLL ∼
pJ,v

t ∼mH≫ pH

t

RNNLL(L) , (45)

and observing that eqs. (28), (29) vanish since both Θ functions are satisfied, we obtain

dσ(pJ,v

t )

dyHd2$pH

t

≃ M2
gg→H
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(αs(b0/b))Cν2,ga2

(αs(b0/b)),
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