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LHC in the precision era
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Figure 6: The Born-level distributions of (1/�) d�/dp``T for the combination of the electron-pair and muon-pair
channels, shown in six m`` regions for |y`` | < 2.4. The central panel of each plot shows the ratios of the values from
the individual channels to the combined values, where the error bars on the individual-channel measurements rep-
resent the total uncertainty uncorrelated between bins. The light-blue band represents the data statistical uncertainty
on the combined value and the dark-blue band represents the total uncertainty (statistical and systematic). The �2

per degree of freedom is given. The lower panel of each plot shows the pull, defined as the di↵erence between the
electron-pair and muon-pair values divided by the uncertainty on that di↵erence.

19

±1%

‣ LHC is delivering a wealth of very precise 
data: measurements at % level (or even 
smaller) are available for several processes 

‣ ~40 fb-1 delivered in 2016, ~50 fb-1 in 2017 

‣ Increase in statistics enables study of 
differential distributions in detail  

‣ Astonishing level of precision reached in e.g. 
Z transverse momentum: luminosity and 
other systematics are cancelled or reduced if 
results are normalized by fiducial cross 
section
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Transverse observables in colour-singlet production

Parameterized as

2

V(k) =
✓

kt
M

◆a
f (f)

for a single soft QCD emission k collinear to incoming leg. Independent of the rapidity of radiation.V → 0 for 
soft/collinear radiation. 

M ⇠ singlet scale

Inclusive observables (pT, φ*) probe directly the kinematics of the colour singlet 

‣ negligible sensitivity to multi-parton interactions 

‣ reduced sensitivity to non-perturbative effects 

‣ measured extremely precisely at experiments (sub-percent in Z differential)

Necessary to push perturbation theory to its limit

V(k1, . . . kn) = V(k1 + . . . + kn)

Transverse observables offer a particularly clean experimental and theoretical environment for 
precision physics



Rencontres de Moriond, March 22, 2018

 [GeV]XM
210 310

R
at

io

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

Gluon-Gluon, luminosity

NN3.0red
NN3.0red + 8 TeV

 = 1.30e+04 GeVS

G
en

er
at

ed
 w

ith
 A

PF
EL

 2
.7

.1
 W

eb

 [GeV]XM
210 310

R
at

io

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

Quark-Gluon, luminosity

NN3.0red
NN3.0red + 8 TeV

 = 1.30e+04 GeVS

G
en

er
at

ed
 w

ith
 A

PF
EL

 2
.7

.1
 W

eb

 [GeV]XM
210 310

R
at

io

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

Quark-Antiquark, luminosity

NN3.0red
NN3.0red + 8 TeV

 = 1.30e+04 GeVS

G
en

er
at

ed
 w

ith
 A

PF
EL

 2
.7

.1
 W

eb

Figure 18: Impact of the inclusion of pZT data taken at 8 TeV on various parton-parton

luminosities at LHC 13 TeV.

6 Phenomenological implications

Having derived a new global fit of PDFs with the 8 TeV pZT data included, it is interesting to

investigate the impact of these new measurements on quantities of phenomenological interest.

Parton luminosities directly show the impact of the inclusion of a given data set on the

computation of processes. A comparison of the 13 TeV parton-parton luminosities before

the pZT data, and after including the unnormalized 8 TeV data, is presented in Fig. 18. The

uncertainties significantly decrease in all three luminosities, while their central values remain

nearly the same as before.

Furthermore, we present below the 13 TeV predictions for both the gluon-fusion Higgs

production cross section and the VBF Higgs production cross section before and after the

inclusion of the pZT data in our global baseline fit. For the gluon-fusion production cross

section we set mH = 125 GeV and µR = µF = mH/2 and use the code ggHiggs v3.5 [78]

to compute the result through N3LO in QCD perturbation theory [79]. The result below

includes no charm or bottom quarks running in the loop, and no quark mass effects beyond

leading order. The impact on the Higgs production cross section uncertainties is significant.

The error on the gluon-fusion production cross section is reduced by 30%, following the

corresponding improvement in the gluon-gluon-luminosity observed in Fig. 18. The central

value is increased by only 1%, indicating consistency with the cross section obtained using the

previous global fit. For Higgs production in Vector Boson Fusion we compute the total cross

section to N3LO in QCD using the proVBFH-inclusive code [80] based on the computation

presented in [81, 82].

Table 11: Predictions for the Higgs cross sections in 13 TeV pp collisions before and after

inclusion of the pZT data in the global fits. The indicated errors are the PDF errors computed

according to the NNPDF prescription.

Before pZT data After pZT data

σgg→H [pb] 48.22± 0.89 (1.8%) 48.61± 0.61 (1.3%)

σVBF [pb] 3.92± 0.06 (1.5%) 3.96± 0.04 (1.0%)

– 28 –

[Boughezal et al.,1705.00343 ]

PDFStrong coupling

[NNPDF collab., 1802.03398]

‣ Implications both for SM measurements…

3

‣ …and BSM measurements (e.g. light Yukawa)
3

this direction were taken in [28, 29].
On the other hand, in the small-Q regime that will

be probed at future runs of the LHC, the distribution
is dominated by the gg ! hj channel. For small values
of Q the ln

�
p2T /m

2
Q

�
terms are of moderate size and

a good assessment of these e↵ects comes from the NLO
calculation of mass corrections in gg ! hj [52–54]. Fur-
thermore, achieving a perturbative uncertainty of a few
percent in the considered pT region would also require im-
proving the accuracy of the resummed ln (pT /mh) terms
beyond NNLL. Progress in this direction [46, 55] suggests
that this will be achieved in the near future. Incorporat-
ing higher-order corrections to the full SM process will
both reduce the theoretical uncertainties and improve the
sensitivity to Q.

Figure 1 illustrates the impact of the Yukawa modifi-
cation c on the normalised pT,h spectrum in inclusive
Higgs production. The results are divided by the SM
prediction and correspond to pp collisions at a centre-of-
mass energy (

p
s) of 8TeV,2 central choice of scales and

MSTW2008NNLO PDFs [56]. Notice that for pT,h & 50GeV,
the asymptotic behaviour (1) breaks down and conse-
quently the gQ ! hQ, QQ̄ ! hg channels control the
shape of the pT,h distributions.

We stress that for the pT,h distribution, non-
perturbative corrections are small and in the long run,
pT,h will be measured to lower values than pT,j . While
the latter currently gives comparable sensitivity, it is
mandatory to study pT,h to maximise the constraints on
Q in future LHC runs. Therefore, we use pT,h in the
rest of this letter.

Current constraints. At
p
s = 8TeV, the ATLAS

and CMS collaborations have measured the pT,h and pT,j

spectra in the h ! �� [57, 58], h ! ZZ⇤
! 4` [59, 60]

and h ! WW ⇤
! eµ⌫e⌫µ [61, 62] channels, using around

20 fb�1 of data in each case. To derive constraints on b
and c, we harness the normalised pT,h distribution in
inclusive Higgs production [63]. This spectrum is ob-
tained by ATLAS from a combination of h ! �� and
h ! ZZ⇤

! 4` decays, and represents at present the
most precise measurement of the di↵erential inclusive
Higgs cross section. In our �2 analysis, we include the
first seven bins in the range pT,h 2 [0, 100]GeV whose
experimental uncertainty is dominated by the statisti-
cal error. This data is then compared to the theoretical
predictions for the inclusive pT,h spectrum described in
the previous section. We assume that all the errors are
Gaussian in our fit. The bin-to-bin correlations in the
theoretical normalised distributions are obtained by as-

2
The ratio of the pT,h spectra to the SM prediction at

p
s =

13TeV is slightly harder than the
p
s = 8TeV counterpart, which

enhances the sensitivity to b and c at ongoing and upcoming

LHC runs as well as possible future hadron colliders at higher

energies.

×
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Figure 2: The ��2 = 2.3 and ��2 = 5.99 regions in the
c–b plane following from the combination of the ATLAS
measurements of the normalised pT,h distribution in the h !
�� and h ! ZZ⇤ ! 4` channels. The SM point is indicated
by the black cross.

suming that the bins of the unnormalised distributions
are uncorrelated and modelled by means of linear error
propagation. This accounts for the dominant correla-
tions in normalised spectra. For the data, we used the
correlation matrix of [63].
Figure 2 displays the ��2 = 2.3 and ��2 = 5.99

contours (corresponding to a 68% and 95% confidence
level (CL) for a Gaussian distribution) in the c–b
plane. We profile over b by means of the profile like-
lihood ratio [64] and obtain the following 95% CL bound

c 2 [�16, 18] (LHC Run I) . (2)

Our limit is significantly stronger than the bounds from
exclusive h ! J/ � decays [10], a recast of h !

bb̄ searches and the measurements of the total Higgs
width [2, 65], which read |c| . 429 [9], |c| . 234 and
|c| . 130 [13], respectively. It is however not competi-
tive with the bound |c| . 6.2 from a global analysis of
Higgs data [13], which introduces additional model de-
pendence.
Turning our attention to the allowed modifications of

the bottom Yukawa coupling, one observes that our pro-
posal leads to b 2 [�3, 15]. This limit is thus signifi-
cantly weaker than the constraints from the LHC Run I
measurements of pp ! W/Zh (h ! bb̄), pp ! tt̄h (h !

bb̄) and h ! bb̄ in vector boson fusion that already re-
strict the relative shifts in yb to around ±50% [1, 2].
Future prospects. As a result of the expected reduc-

tion of the statistical uncertainties for the pT,h spectrum
at the LHC, the proposed method will be limited by sys-
tematic uncertainties in the long run. Recent studies

[Bishara et al.,1606.09253] [Soreq et al, 1606.09621]
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Figure 1: The 1/�h · d�h/dyh (left) and 1/�h · d�h/dpT (right) normalized distributions at
p
s =

13 TeV collision energy for several values of up quark Yukawa couplings, ̄u = 0 (SM, blue), ̄u = 1

(orange), ̄u = 4 (green).

is under much better control than the absolute value of the cross section [52]. This is

illustrated in the top panels of Fig. 2, where we compare LO, NLO and NNLO theoretical

predictions for the normalized and unnormalized yh distributions at
p
s = 13 TeV collision

energy [53]. Similar cancellation of theoretical uncertainties is observed for normalized pT

distribution, illustrated in the bottom panels of Fig. 2, although the reduction of theoretical

uncertainties is not as dramatic as in the rapidity distribution. Normalized distribution also

help reduces many of the experimental uncertainties. For un-normalized distribution, the

total systematic uncertainties due to, e.g., luminosity and background estimates range from

4% to 12% [37]. However, most of the systematic uncertainties cancel in the normalized shape

distribution. The dominant experimental uncertainties for the shape of the distribution are

statistical ones, ranging from 23% to 75% [37], and can be improved with more data.

In this work we perform an initial study using the rapidity and pT distributions to con-

strain the light-quark Yukawa couplings. In the study we use Monte Carlo samples of events

on which we impose the experimental cuts in Section III. We generate the parton level,

pp ! h + n jets, including the SM gluon fusion (the background) and qq̄ and qg, q̄g fusion

(the signal) using MadGraph 5 [56] with LO CT14 parton distribution function (PDF) [57]

and Pythia 6.4 [58] for the showering, where q = u, d, s, c and n = 0, 1, 2. Events of di↵erent

multiplicities are matched using the MLM scheme [59]. Further re-weighting of the generated

tree-level event samples is necessary because of the large k-factor due to QCD corrections to

the Higgs production [60]. We re-weight the LO cross section of di↵erent jet multiplicities

5
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(a) (b)

Figure 5: Higgs transverse-momentum spectrum in the SM (black, solid) compared to simultaneous
variations of ct and cb for (a) 0GeV pT  400GeV and (b) 400GeV pT  800GeV. The lower
frame shows the ratio with respect to the SM prediction. The shaded band in the ratio indicates
the uncertainty due to scale variations. See text for more details.

(a) (b)

Figure 6: Higgs transverse-momentum spectrum in the SM (black, solid) compared to simultaneous
variations of ct, cg and cb for (a) 0GeV pT  400GeV and (b) 400GeV pT  800GeV. The
lower frame shows the ratio with respect to the SM prediction. The shaded band in the ratio
indicates the uncertainty due to scale variations. See text for more details.
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[Grazzini et al, 1612.00283]

Transverse observables at the LHC
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is spoiled as large logarithms appear at all orders in perturbation theory

4

Resummation of transverse observables

S(v) =
Z v

0
dV

ds

dV
⇠ aB

s [1 + as + a2
s + . . .]

ds

dv
⇠ 1

v
an

s Lk, k  2n � 1, L ⌘ ln v

In regions dominated by soft and collinear radiation, the perturbative expansion of the cumulative cross section

Resummation of enhanced terms to all orders in perturbation theory

NLO NNLOLO

NLL NNLLLL

Resummation usually performed in a conjugate space where the observable factorizes: log-enhanced 
contributions built starting from simpler blocks, then transform back to physical space

Not always possible/convenient: observables may not factorize at all, or need several nested transforms, 
making resummation cumbersome.  

ln S(v) = Â
n
{O(an

s Ln+1) +O(an
s Ln) +O(an

s Ln�1) + . . .}
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Resummation of transverse observables

Factorization of the observable is however not necessary: resummability of the observable can be 
translated into scaling properties of the observable in presence of multiple emissions: recursive Infrared 
and Collinear (rIRC) Safety [Banfi, Salam, Zanderighi, 0112156, 0304148, 0407286]

‣ Scaling properties of V are the same for any number of soft/collinear emissions.  
‣ Properties unchanged if one adds infinitely soft/collinear emission: the more soft/collinear, the less it 

contributes to the value of the observable. 

 ‘CAESAR/ARES’ approach: resummation of rIRC observables performed in direct space! 

“[…] when there are emissions on multiple widely separated scales, it should always be possible to remove the 
softer/more collinear ones without affecting the value of the observable"
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All-order cumulative cross section can be written as

(SCET: [Ebert, Tackmann ’16;Kang,Lee,Vaidya ’17])
[Monni, Re, Torrielli ’16,Bizon, Monni, Re, LR, Torrielli ’17]

S(v) =
Z

dFBV(FB)
•

Â
n=0

Z n

’
i=1

[dki]|M( p̃1, p̃2, k1, . . . kn)|2Q(v � V({ p̃}, k1, . . . kn))

all-order form factor

Possibile to do that by decomposing the squared amplitude in terms of n-particle correlated blocks: correlated 
blocks with n particles start contributing one logarithmic order higher than those with n-1 particles

•

Â
n=0

|M( p̃1,p̃2, k1, . . . , kn)|2 = |MB( p̃1, p̃2)|2

⇥
•

Â
n=0

1
n!

(
n

’
i=1

✓
|M(ki)|2 +

Z
[dka][dkb]|M̃(ka, kb)|2d(2)(~kta +~ktb �~kti)d(Yab � Yi)

+
Z
[dka][dkb][dkc]|M̃(ka, kb, kc)|2d(2)(~kta +~ktb +~ktc �~kti)d(Yabc � Yi) + . . .

◆ )

⌘ |MB( p̃1, p̃2)|2
•

Â
n=0

1
n!

n

’
i=1

|M(ki)|2inc

for inclusive 
observables

LL NLL

NNLL

e.g. [Dixon, Magnea, Sterman ’08]

Momentum space formulation

rIRC safety allows to 
‣ exponentiate unresolved radiation (smaller than fraction ε of the hardest emission kT1) 
divergences contained in V(ΦB) are cancelled at all orders  

‣ establish a well defined logarithmic counting

single-particle phase space

Born phase space

V(FB) !⇠ H

Z
dkt1
kt1

df1
2p

e
�R(ekt1)

Sudakov Radiator
Hard-virtual corrections

all-order real 
amplitude squared
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Result at NLL accuracy

parton luminosity at NLL reads

At higher logarithmic accuracy, it includes 
coefficient functions and hard-virtual corrections

The divergences cancel with the terms 
contained in the resolved real radiation

resolved emission

This formula can be evaluated by means of fast Monte Carlo methods
RadISH (Radiation off Initial State Hadrons)

dS(v)
dFB

=
Z dkt1

kt1

df1
2p

∂L

⇣
�e�R(kt1)LNLL(kt1)

⌘
eR0(kt1)

•

Â
n=0

1
n!

n+1

’
i=2

Z 1

e

dzi
zi

Z 2p

0

dfi
2p

R0(kt1)Q(v � V({ p̃}, k1, . . . , kn+1)

R0 =
d

d ln(M/kt1)
R= e�R0(kT1) ln 1

e

LNLL(kt1) = Â
c,c0

d|MB|2cc0

dFB
fc(kt1, x1) fc0(kt1, x2)

7

zi = kti/kt1

Integrands can be expanded 
about kTi~kT1 to the desired 
accuracy: more efficient

emission of n identical 
independent blocks 
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where we simplified the notation by using

R
0(kt1) =

X

`=1,2

R
0
`
(kt1). (3.15)

The dependence on the regulator ✏ cancels exactly in Eq. (3.14).
We can transform back to momentum space, thus abandoning the matrix notation used so far. We
define the derivatives of the parton densities by means of the DGLAP evolution equation

@f(µ, x)

@ lnµ
=

↵s(µ)

⇡

Z
1

x

dz

z
P̂ (z,↵s(µ))f(µ,

x

z
), (3.16)

where P̂ (z,↵s(µ)) is the regularised splitting function

P̂ (z,↵s(µ)) = P̂
(0)(z) +

↵s(µ)

2⇡
P̂

(1)(z) +

✓
↵s(µ)

2⇡

◆2

P̂
(2)(z) + . . . (3.17)

Including terms up to N3LL, we can therefore recast Eqs. (3.12), (2.47) as

d⌃(v)

d�B

=

Z
dkt1

kt1

d�1

2⇡
@L

⇣
�e

�R(kt1)LN3LL(kt1)
⌘Z

dZ[{R0
, ki}]⇥ (v � V ({p̃}, k1, . . . , kn+1))

+

Z
dkt1

kt1

d�1

2⇡
e
�R(kt1)

Z
dZ[{R0

, ki}]

Z
1

0

d⇣s

⇣s

d�s

2⇡

(✓
R

0(kt1)LNNLL(kt1)� @LLNNLL(kt1)

◆

⇥

✓
R

00(kt1) ln
1

⇣s
+

1

2
R

000(kt1) ln
2 1

⇣s

◆
�R

0(kt1)

✓
@LLNNLL(kt1)� 2

�0

⇡
↵
2

s
(kt1)P̂

(0)
⌦ LNLL(kt1) ln

1

⇣s

◆

+
↵
2
s
(kt1)

⇡2
P̂

(0)
⌦ P̂

(0)
⌦ LNLL(kt1)

)⇢
⇥ (v � V ({p̃}, k1, . . . , kn+1, ks))�⇥ (v � V ({p̃}, k1, . . . , kn+1))

�

+
1

2

Z
dkt1

kt1

d�1

2⇡
e
�R(kt1)

Z
dZ[{R0

, ki}]

Z
1

0

d⇣s1

⇣s1

d�s1

2⇡

Z
1

0

d⇣s2

⇣s2

d�s2

2⇡
R

0(kt1)

⇥

(
LNLL(kt1) (R

00(kt1))
2
ln

1

⇣s1
ln

1

⇣s2
� @LLNLL(kt1)R

00(kt1)

✓
ln

1

⇣s1
+ ln

1

⇣s2

◆

+
↵
2
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where we defined @L = d/dL.
Until now we have explicitly considered the case of flavour-conserving real emissions, for which we
derived Eq. (3.18). We now turn to the inclusion of the flavour-changing splitting kernels, that
enter purely in the hard-collinear limit and contribute to the DGLAP evolution. In order to include
an arbitrary number of these splittings, one is forced to relax the assumption of kt ordering that
we made in our discussion of Section 2.3.7 Indeed, if some soft radiation occurs after the flavour-
changing collinear emission has taken place, then it becomes quite cumbersome to determine the

7
We are grateful to A. Banfi for a discussion about this aspect.
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Result at N3LL accuracy

8

Result formally equivalent to the b-space formulation
[Parisi, Petronzio ’78; Collins, Soper, Sterman ’85; Li,Zhu ’16]
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Implementation: matching to fixed order
Cumulative cross section 
should reduce to the fixed 
order at large v 

! Sres pt ⌧ MB

! Sf.o. pt & MB

Additive matching Multiplicative matching

‣ perhaps more natural, simpler  
‣ numerically delicate in the very small pT limit 

as f.o. can be unstable

‣ N3LO constant terms (formally N4LL) can be 
included from fixed order 

‣ only viable solution to consistently match to the 
NNLO differential distribution 

‣ numerically more stable as the physical 
suppression at small v  cures potential instabilities 

S(v, fB) =
Z v

0
dv0

ds

dv0dfB

Sadd
matched(v) = Sres(v) + Sf.o.(v)� Sres,exp(v) Smult

matched(v) = Sres(v)
Sf.o.(v)

Sres,exp(v)

9

*version implemented 
slightly more involved

*
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Results at N3LL+NNLO

10

RadISH+NNLOJET, 13 TeV, mH = 125 GeV

µR = µF = mH/2, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations
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N3LL vs NNLL

‣ N3LL corrections moderate in size (~ 5% 
at low pT) and entirely contained in the 
NNLO+NNLL band 

‣ Reduction of the perturbative uncertainty 
by a factor of 2 for pT ≲ 10 GeV

n.b. thanks to multiplicative 
scheme, NNLO+NNLL follows 
resummation scaling at low pT

[Bizon et al, ongoing]
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Results at N3LL+NNLO

RadISH+NNLOJET, 13 TeV, mH = 125 GeV

µR = µF = mH/2, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations
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‣ effect of resummation starts to be 
increasingly important for pT  ≲ 40 GeV 

‣ Resummation effects are progressively 
less important above 50 GeV 

Impact of resummation

[Bizon et al, ongoing]
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Results at N3LL+NNLO

RadISH+NNLOJET, 13 TeV, mH = 125 GeV

µR = µF = mH/2, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations
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Results within fiducial cuts

‣ Effect of resummation starts to be 
increasingly important for pT  ≲ 40 GeV 

‣ Resummation effects are progressively 
less important above 50 GeV 

‣ Similar results for fiducial region

[Bizon et al, ongoing]
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Drell-Yan 

Drell-Yan: data vs theory and W mass extraction
I sensitive final state distributions: pT,`,mT , pT,miss

I measured using template fits to lepton observable. Modelling of pT,W and pT,Z is crucial
I fit predictions to Z data, apply to W

I using state-of-the-art pQCD predictions is not enough: doesn’t match precision of data.
[ATLAS 1701.07240]

I at the end, LO MC(!) are used: calibration (!tune) on Z data, obtain W template
distributions.

I certainly it’d be more appealing to use a more accurate TH prediction

12 / 17

‣ Template fits to lepton observables  

‣ Modelling of pT,W is crucial. Fit predictions to Z data, 
apply to W

Drell-Yan: data vs theory and W mass extraction
I sensitive final state distributions: pT,`,mT , pT,miss

I measured using template fits to lepton observable. Modelling of pT,W and pT,Z is crucial
I fit predictions to Z data, apply to W

I using state-of-the-art pQCD predictions is not enough: doesn’t match precision of data.
[ATLAS 1701.07240]

I at the end, LO MC(!) are used: calibration (!tune) on Z data, obtain W template
distributions.

I certainly it’d be more appealing to use a more accurate TH prediction

12 / 17

‣ State-of-the-art QCD prediction do not match the 
precision of the data 

‣ LO MC are used, tuned on Z data 

‣ Would be preferable to use more accurate 
theoretical predictions

11

Extreme precision is needed e.g. for W mass extraction
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Drell-Yan: pT,ll [Bizon et al, ongoing]
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‣ Matched results offer a good 
description of the data in the 
low-medium pT range, in all 
fiducial regions 

‣ Perturbative uncertainty at the 
few percent level, still does not 
match the precision of the data  

‣ Estimate of non-perturbative 
effects may start to be relevant

Comparison with ATLAS data @ 8 TeV [1512.02192]
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Drell-Yan: φ*

Our approach can be used for resumming other transverse 
observables; e.g φ* 

angle between electron and 
beam axis, in Z boson rest frame

[Bizon et al, ongoing]
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‣ Similar situation as pT, with 
perturbative uncertainty at the 
few percent level but with 
experimental errors at the sub-
percent level

Comparison with ATLAS data @ 8 TeV [1512.02192]

12

Prelim
inary 



Rencontres de Moriond, March 22, 2018

Conclusions
‣ New formalism for all-order resummation up to N3LL accuracy for inclusive, transverse 

observables. 

‣ Method formulated in momentum space, formally equivalent to the standard b-space 
formalism 

‣ Access to multi-differential information. As in parton showers, but with higher-order 
logarithms, and control on formal accuracy 

‣ Method allows for an efficient implementation in a computer code. Towards a single 
generator able to resum entire classes of observables at high accuracy.

13

Phenomenological results

‣ Results at NNLO+N3LL for Higgs and DY differential distributions 

‣ N3LL corrections moderate in size, but appreciable reduction of the perturbative uncertainty 

‣ Good description of the data in the fiducial distributions, with uncertainties at the few percent 
level
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Results at N3LL+NNLO

Multiplicative vs additive matching

[Bizon et al, ongoing]
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RadISH+NNLOJET, 13 TeV, mH = 125 GeV

µR = µF = mH/2, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations

 d
Σ

/d
 p

tH
 [

p
b

/G
e

V
]

N3LL+NLO (additive scheme)

N3LL+NLO (multiplicative scheme)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

ra
tio

 t
o

 r
e

la
tiv

e
 c

e
n

tr
a

l

pt
H [GeV]

 0.8

 1

 1.2

 10  20  30  40  50  60  70  80  90  100 110 120 130 140 150

Prelim
inary Smult

matched(v) =
Sres(v)
Sasym.

res


Sasym.

res
Sf.o.(v)

Sres,exp(v)

�
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Sasym.
res =

Z
dFB

with cuts

✓
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L!0
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Multiplicative scheme: normalization for the 
resummed prefactor to its asymptotic value 
for L → 0 

In the v ≫ Q/M limit no large spurious, 
higher-order, corrections arise and fixed-
order result is reproduced by construction
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Why? A naive logarithmic counting at small pT is not sensible, as one loses the correct power-suppressed 
scaling if only logarithms are retained: it’s not possible to reproduce a power behaviour with logs of pT/M

[Frixione, Nason, Ridolfi ’98] 

Necessary to establish a well defined logarithmic counting in momentum space in order 
to reproduce the correct behaviour of the observable at small pT

 (logarithms of b do not correspond to logarithms of pT)

Is it possible to obtain a formulation in momentum space?

Formulation in momentum space

Not possible to find a closed analytic expression in direct space which is both a) free of logarithmically 
subleading corrections and b) free of singularities at finite pT values
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Zeros in the small-pT region and b-space formulation
Two different mechanisms give a contribution in the small pT region

‣ configurations where the transverse momenta of the radiated 
partons is small (Sudakov limit)  

‣ configurations where pT tends to zero because of cancellations 
of non-zero transverse momenta of the emissions (azimuthal 
cancellations)

Exponential suppression

Power-law scaling at very small pT

For inclusive observables the vectorial nature of the cancellations can be handled via a Fourier transform  

coefficient functions

anomalous dimensions

hard-virtual corrections 

[Parisi, Petronzio ’78; Collins, Soper, Sterman ’85]

Power suppression

Sudakov peak 
region

pT → 0 limit

[Catani, Grazzini ’11][Catani et al. ’12,Gehrmann][Luebbert, Yang ‘14]

[Davies, Stirling ‘84] [De Florian, Grazzini ’01] [Becher, Neubert ‘10][Li, Zhu ’16][Vladimirov ’16]
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Logarithmic counting

Necessary to establish a well defined logarithmic counting: possibile to do that by decomposing the squared 
amplitude in terms of n-particle correlated blocks (nPC)

e.g. pp → H + emission of up to 2 (soft) gluons O(αs2)  

outgoing partons 2
x

�

Analogue structure with n gluon emissions

Logarithmic counting defined in terms of nPC blocks (owing to rIRC safety of the observable)

+

+ perm
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|M(p1, p2, k1, k2)|2 =
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Resolved and unresolved emissions
For inclusive observables (such as Higgs pT)

1PC 2PC

3PC
Introduction of a resolution scale εkT1

… kT1
εkT1

unresolved emission resolved emission
can be integrated inclusively to 
cancel the divergences of the 
virtuals (rIRC): exponential factor

Sudakov form factor
e�R(�kt1) ε dependence cancels 

against the resolved 
real corrections

treated exclusively: for 
inclusive observables can 
be parametrised exactly as 
a Sudakov unintegrated 
in kt and azimuthal angle

NB: kT ordering

|M(p1, p2, k1, . . . ,kn)|2 = |MB(p1, p2)|2
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Momentum space formulation
Result can be expressed as

Result valid for all 
inclusive observables 
(e.g. pT, φ*)

unresolved  
emission + virtual 
corrections

resolved 
emission

DGLAP anomalous dimensions
RG evolution of coefficient functions

Formulation equivalent to b-space result (up to a scheme change in the anomalous dimensions)
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Resummation in momentum space

In previous formula, resummation of logarithms of kT,i/M

kTi/kT1 ~ O(1) 

Integrands can be expanded about kTi~kT1 to the desired accuracy: more efficient(everywhere in the resolved phase 
space, due to rIRC safety) 

Sudakov region: kT1~ pT
ln(M/pT) resummed at 
the desired accuracy

+ additional subleading terms 
that cannot be neglected

azimuthal region: kTi~kT1
correct scaling of the 
cumulant O(pT2)

correct description of the 
kinematics after expansion kTi~kT1 

dσ
/d

p T

pT

subleading logarithms in pT  
free of singularity at low pT values

(power-law scaling)

Formulation in Mellin space already implementable. However, it is convenient to perform the evaluation 
entirely in momentum space
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Checks and remarks

‣ b-space formulation reproduced analytically at the resummed level 

‣ correct scaling at small pT computed analytically 

‣ numerical checks down to very low pT against b-space codes (HqT, CuTe)  

‣ check that the FO expansion of the final expression in momentum space up to O(α5) yields the 
corresponding expansion in b-space (CSS) 

‣ expansion checked against MCFM up to O(α4)

[Grazzini et al.][Becher et al.]

[Campbell et al.]


