Higgs and Drell-Yan transverse observables at $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$

Luca Rottoli

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Monni, Re, Torrielli '16; Bizon, Monni, Re, LR, Torrielli '17; Bizon et al, in preparation

LHC in the precision era

- LHC is delivering a wealth of very precise data: measurements at \% level (or even smaller) are available for several processes
- $\sim 40 \mathrm{fb}^{-1}$ delivered in 2016, $\sim 50 \mathrm{fb}^{-1}$ in 2017
- Increase in statistics enables study of differential distributions in detail
- Astonishing level of precision reached in e.g. Z transverse momentum: luminosity and other systematics are cancelled or reduced if results are normalized by fiducial cross section

Transverse observables in colour-singlet production

Transverse observables offer a particularly clean experimental and theoretical environment for precision physics

Parameterized as

$$
V(k)=\left(\frac{k_{t}}{M}\right)^{a} f(\phi) \quad M \sim \text { singlet scale }
$$

for a single soft QCD emission k collinear to incoming leg. Independent of the rapidity of radiation.V $\rightarrow 0$ for soft/collinear radiation.

Inclusive observables $\left(p_{T}, \varphi^{*}\right)$ probe directly the kinematics of the colour singlet

$$
V\left(k_{1}, \ldots k_{n}\right)=V\left(k_{1}+\ldots+k_{n}\right)
$$

- negligible sensitivity to multi-parton interactions
- reduced sensitivity to non-perturbative effects
- measured extremely precisely at experiments (sub-percent in Z differential)

Necessary to push perturbation theory to its limit

Transverse observables at the LHC

- Implications both for SM measurements...

Strong coupling

PDF

[Boughezal et al.,1705.00343]
[NNPDF collab., 1802.03398]

-and BSM measurements (e.g. light Yukawa)

[Bishara et al.,1606.09253]

[Grazzini et al, 1612.00283]

[Soreq et al, 1606.09621]

Resummation of transverse observables

In regions dominated by soft and collinear radiation, the perturbative expansion of the cumulative cross section

$$
\Sigma(v)=\int_{0}^{v} d V \frac{d \sigma}{d V} \sim \alpha_{s}^{\mathrm{B}}\left[1+\alpha_{s}+\alpha_{s}^{2}+\ldots\right]
$$

is spoiled as large logarithms appear at all orders in perturbation theory

$$
\frac{d \sigma}{d v} \sim \frac{1}{v} \alpha_{s}^{n} L^{k}, \quad k \leq 2 n-1, \quad L \equiv \ln v
$$

Resummation of enhanced terms to all orders in perturbation theory

$$
\begin{gathered}
\ln \Sigma(v)=\sum_{n}\left\{\underset{\mathrm{O}\left(\alpha_{s}^{n} L^{n+1}\right)}{\operatorname{LL}} \underset{\text { NLL }}{\mathcal{O}\left(\alpha_{s}^{n} L^{n}\right)}+\underset{\mathrm{O}}{\mathcal{O}\left(\alpha_{s}^{n} L^{n-1}\right)}+\ldots\right\} \\
\text { NNLL }
\end{gathered}
$$

Resummation usually performed in a conjugate space where the observable factorizes: log-enhanced contributions built starting from simpler blocks, then transform back to physical space

Not always possible/convenient: observables may not factorize at all, or need several nested transforms, making resummation cumbersome.

Resummation of transverse observables

Factorization of the observable is however not necessary: resummability of the observable can be translated into scaling properties of the observable in presence of multiple emissions: recursive Infrared and Collinear (rIRC) Safety
[Banfi, Salam, Zanderighi, 0112156, 0304148, 0407286]
"[. . .] when there are emissions on multiple widely separated scales, it should always be possible to remove the softer/more collinear ones without affecting the value of the observable"

- Scaling properties of V are the same for any number of soft/collinear emissions.
- Properties unchanged if one adds infinitely soft/collinear emission: the more soft/collinear, the less it contributes to the value of the observable.
'CAESAR/ARES' approach: resummation of rIRC observables performed in direct space!

Momentum space formulation

[Monni, Re, Torrielli '16,Bizon, Monni, Re, LR, Torrielli '17] (SCET: [Ebert, Tackmann ${ }^{\text {'16; Kang, Lee, Vaidya '17]) }}$

All-order cumulative cross section can be written as
single-particle phase space

rIRC safety allows to

- exponentiate unresolved radiation (smaller than fraction ε of the hardest emission $k_{T_{1}}$) divergences contained in $V\left(\Phi_{B}\right)$ are cancelled at all orders

$$
\text { Hard-virtual corrections } \xrightarrow[\mathcal{V}\left(\Phi_{B}\right) \rightarrow \sim]{\sim} \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(\widehat{\epsilon} \kappa_{t 1}\right)} \text { Sudakov Radiator }
$$

- establish a well defined logarithmic counting

Possibile to do that by decomposing the squared amplitude in terms of n-particle correlated blocks: correlated blocks with n particles start contributing one logarithmic order higher than those with $n-1$ particles

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \\
& \quad \times \sum_{n=0}^{\infty} \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\begin{array}{ll}
\left(\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right) \quad\right. \text { fNLL } \\
\left.\left.\quad+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right)\right\} & \text { observables }
\end{array}\right.\right. \\
& \quad \equiv\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n}\left|M\left(k_{i}\right)\right|_{\text {inc }}^{2} \\
& \quad \text { Rencontres de Moriond, March 22, } 2018
\end{aligned}
$$

Result at NLL accuracy

Integrands can be expanded

 about $k_{T i} \sim k_{T 1}$ to the desired

This formula can be evaluated by means of fast Monte Carlo methods
RadISH (Radiation off Initial State Hadrons)

Result at N3 ${ }^{3}$ LL accuracy

$$
\left.\begin{array}{l}
\frac{d \Sigma(v)}{d \Phi_{B}}=\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} \partial_{L}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{N}^{3} \mathrm{LL}}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right) \\
+\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s}}{\zeta_{s}} \frac{d \phi_{s}}{2 \pi}\left\{\left(R^{\prime}\left(k_{t 1}\right) \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)\right)\right. \\
\times\left(R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}+\frac{1}{2} R^{\prime \prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\zeta_{s}}\right)-R^{\prime}\left(k_{t 1}\right)\left(\partial_{L} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-2 \frac{\beta_{0}}{\pi} \alpha_{s}^{2}\left(k_{t 1}\right) \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}\right) \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\}\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\} \\
+\frac{1}{2} \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s 1}}{\zeta_{s 1}} \frac{d \phi_{s 1}}{2 \pi} \int_{0}^{1} \frac{d \zeta_{s 2}}{\zeta_{s 2}} \frac{d \phi_{s 2}}{2 \pi} R^{\prime}\left(k_{t 1}\right) \\
\times\left\{\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\left(R^{\prime \prime}\left(k_{t 1}\right)\right)^{2} \ln \frac{1}{\zeta_{s 1}} \ln \frac{1}{\zeta_{s 2}}-\partial_{L} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) R^{\prime \prime}\left(k_{t 1}\right)\left(\ln \frac{1}{\zeta_{s 1}}+\ln \frac{1}{\zeta_{s 2}}\right)\right. \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\} \\
\times\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}, k_{s 2}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}\right)\right)-\right. \\
\left.\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 2}\right)\right)+\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}+\mathcal{O}\left(\alpha_{s}^{n} \ln 2 n-6\right. \tag{3.18}\\
v
\end{array}\right), \quad \text { (3.18)},
$$

Result formally equivalent to the b-space formulation

Implementation: matching to fixed order

$$
\Sigma\left(v, \phi_{B}\right)=\int_{0}^{v} d v^{\prime} \frac{d \sigma}{d v^{\prime} d \phi_{B}}
$$

Cumulative cross section
should reduce to the fixed order at large v

$$
\begin{array}{lc}
\rightarrow \Sigma_{\text {res }} & p_{t} \ll M_{B} \\
\rightarrow \Sigma_{\text {f.o. }} & p_{t} \gtrsim M_{B}
\end{array}
$$

Additive matching

$\Sigma_{\text {matched }}^{\text {add }}(v)=\Sigma_{\text {res }}(v)+\Sigma_{\text {f.o. }}(v)-\Sigma_{\text {res,exp }}(v) \quad \Sigma_{\text {matched }}^{\text {mult }}(v)=\Sigma_{\text {res }}(v) \frac{\Sigma_{\text {f.o. }}(v)}{\Sigma_{\text {res,exp }}(v)}$

- perhaps more natural, simpler
- numerically delicate in the very small p_{T} limit as f.o. can be unstable
- $\mathrm{N}^{2} L 0$ constant terms (formally $\mathrm{N}^{4} L \mathrm{~L}$) can be included from fixed order
- only viable solution to consistently match to the NNLO differential distribution
- numerically more stable as the physical suppression at small v cures potential instabilities

Implementation: matching to fixed order

$$
\Sigma\left(v, \phi_{B}\right)=\int_{0}^{v} d v^{\prime} \frac{d \sigma}{d v^{\prime} d \phi_{B}}
$$

Cumulative cross section

$$
\begin{array}{ll}
\rightarrow \Sigma_{\text {res }} & p_{t} \ll M_{B} \\
\rightarrow \Sigma_{\text {f.o. }} & p_{t} \gtrsim M_{B}
\end{array}
$$

Additive matching

$\Sigma_{\text {matched }}^{\text {add }}(v)=\Sigma_{\text {res }}(v)+\Sigma_{\text {f.o. }}(v)-\Sigma_{\text {res,exp }}(v)$

- perhaps more natural, simpler
- numerically delicate in the very small p_{T} limit as f.o. can be unstable

Multiplicative matching *

$$
\Sigma_{\text {matched }}^{\text {mult }}(v)=\Sigma_{\text {res }}(v) \frac{\Sigma_{\text {f.o. }}(v)}{\Sigma_{\text {res,exp }}(v)}
$$

- $\mathrm{N}^{3} \mathrm{~L} 0$ constant terms (formally $\mathrm{N}^{4} \mathrm{LL}$) can be included from fixed order
- only viable solution to consistently match to the NNLO differential distribution
- numerically more stable as the physical suppression at small v cures potential instabilities

Higgs p_{T}

N3LL vs NNLL

- N_{3} LL corrections moderate in size (~5\% at low p_{T}) and entirely contained in the NNLO+NNLL band
- Reduction of the perturbative uncertainty by a factor of 2 for $p_{T} \leqslant 10 \mathrm{GeV}$
n.b. thanks to multiplicative scheme, NNLO+NNLL follows resummation scaling at low p_{T}

Impact of resummation

- effect of resummation starts to be increasingly important for $p_{T} \approx 40 \mathrm{GeV}$
- Resummation effects are progressively less important above 50 GeV

Results within fiducial cuts

- Effect of resummation starts to be increasingly important for $p_{T} \approx 40 \mathrm{GeV}$
- Resummation effects are progressively less important above 50 GeV
- Similar results for fiducial region

Drell-Yan $p_{T, l l}$ and φ^{*}

Drell-Yan

- State-of-the-art QCD prediction do not match the precision of the data
- LO MC are used, tuned on Z data
- Would be preferable to use more accurate theoretical predictions

Extreme precision is needed e.g. for W mass extraction

- Template fits to lepton observables
- Modelling of $p_{T, w}$ is crucial. Fit predictions to Z data, apply to W

Comparison with ATLAS data @ 8 TeV [1512.02192]

- Matched results offer a good description of the data in the low-medium p_{T} range, in all fiducial regions
- Perturbative uncertainty at the few percent level, still does not match the precision of the data
- Estimate of non-perturbative effects may start to be relevant

Drell-Yan: φ^{\star}

Our approach can be used for resumming other transverse observables; e.g φ^{*}

Comparison with ATLAS data @ 8 TeV [1512.02192]

$$
\phi^{*}=\tan \left(\frac{\pi-\Delta \phi}{2}\right) \sin \theta^{*} \quad \phi^{*} \sim \frac{p_{T}}{2 M}
$$

angle between electron and beam axis, in Z boson rest frame

- Similar situation as p_{T}, with perturbative uncertainty at the few percent level but with experimental errors at the subpercent level

Conclusions

- New formalism for all-order resummation up to N3LL accuracy for inclusive, transverse observables.
- Method formulated in momentum space, formally equivalent to the standard b-space formalism
- Access to multi-differential information. As in parton showers, but with higher-order logarithms, and control on formal accuracy
- Method allows for an efficient implementation in a computer code. Towards a single generator able to resum entire classes of observables at high accuracy.

Phenomenological results

- Results at NNLO+N3LL for Higgs and DY differential distributions
- N3LL corrections moderate in size, but appreciable reduction of the perturbative uncertainty
- Good description of the data in the fiducial distributions, with uncertainties at the few percent level

Backup

Multiplicative vs additive matching

Multiplicative scheme: normalization for the resummed prefactor to its asymptotic value for $L \rightarrow 0$

$$
\begin{aligned}
\Sigma_{\text {matched }}^{\text {mult }}(v) & =\frac{\Sigma_{\text {res }}(v)}{\Sigma_{\text {res }}^{\text {asym. }}}\left[\Sigma_{\text {res }}^{\text {asym. }} \frac{\Sigma_{\text {f.o. }}(v)}{\Sigma_{\text {res, exp }}(v)}\right]_{\exp } \\
\Sigma_{\text {res }}^{\text {asym. }} & =\int \underset{\text { with cuts }}{ } d \Phi_{B}\left(\lim _{L \rightarrow 0} \mathcal{L}\right)
\end{aligned}
$$

In the $v \gg Q / M$ limit no large spurious, higher-order, corrections arise and fixedorder result is reproduced by construction

Formulation in momentum space

Is it possible to obtain a formulation in momentum space?
Not possible to find a closed analytic expression in direct space which is both a) free of logarithmically subleading corrections and b) free of singularities at finite p_{T} values
[Frixione, Nason, Ridolff '98]

Why? A naive logarithmic counting at small p_{T} is not sensible, as one loses the correct power-suppressed scaling if only logarithms are retained: it's not possible to reproduce a power behaviour with logs of p_{T} / M (logarithms of b do not correspond to logarithms of p_{T})

Necessary to establish a well defined logarithmic counting in momentum space in order to reproduce the correct behaviour of the observable at small p_{T}

Zeros in the small- p_{T} region and b-space formulation

Two different mechanisms give a contribution in the small p_{T} region

- configurations where the transverse momenta of the radiated Exponential suppression partons is small (Sudakov limit)
- configurations where p_{T} tends to zero because of cancellations of non-zero transverse momenta of the emissions (azimuthal

Sudakov peak region

Power suppression
$p_{T} \rightarrow 0$ limit cancellations)

Power--aw scaling at very small p_{T}

For inclusive observables the vectorial nature of the cancellations can be handled via a Fourier transform
[Parisi, Petronzio '78; Collins, Soper, Sterman '85]
[Catani, Grazzini '11][Catani et al. '12,Gehrmann][Luebbert, Yang'14]

$$
\begin{aligned}
& \text { coefficient functions } \\
& \frac{d^{2} \Sigma(v)}{d \Phi_{B} d p_{t}}=\sum_{c_{1}, c_{2}} \frac{\left.d\left|M_{B}\right|\right|_{c_{1} c_{2}} ^{2}}{d \Phi_{B}} \int b d b p_{t} J_{0}\left(p_{t} b\right) \mathbf{f}^{T}\left(b_{0} / b\right) \mathbf{C}_{N_{1}}{ }^{\text {coefficient functions }}\left(\alpha_{s}\left(b_{0} / b\right)\right) H_{\mathrm{CSS}}(M) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(b_{0} / b\right)\right) \mathbf{f}\left(b_{0} / b\right) \\
& \times \exp \left\{-\sum_{\ell=1}^{2} \int_{0}^{M} \frac{d k_{t}}{k_{t}} \mathbf{R}_{\mathrm{CSS}, \ell}^{\prime}\left(k_{t}\right) \Theta\left(k_{t}-\frac{b_{0}}{b}\right)\right\} \\
& R_{\mathrm{CSS}}(b)=\sum_{l=1}^{2} \int_{b 0 / b}^{M} \frac{d k_{T}}{k_{T}} R_{\mathrm{CSS}, l}^{\prime}\left(k_{T}\right)=\sum_{l=1}^{2} \int_{b_{0} / b}^{M} \frac{d k_{T}}{k_{T}}\left(A_{\mathrm{CSS}, \ell}\left(\alpha_{S}\left(k_{T}\right)\right) \ln \frac{M^{2}}{k_{T}^{2}}+B_{\mathrm{CSS}, \ell}\left(\alpha_{s}\left(k_{T}\right)\right)\right) \\
& \text { [Davies, Stirling '84] [De Florian, Grazzini '01] [Becher, Neubert'10][Li, Zhu '16][Vladimirov '16] }
\end{aligned}
$$

Logarithmic counting

Necessary to establish a well defined logarithmic counting: possibile to do that by decomposing the squared amplitude in terms of n-particle correlated blocks (nPC)
e.g. $p p \rightarrow H+$ emission of up to 2 (soft) gluons $\mathrm{O}\left(\mathrm{a}_{5}^{2}\right)$
outgoing partons
$\left|M\left(p_{1}, p_{2}, k_{1}, k_{2}\right)\right|^{2}=$

only gluons for simplicity
Analogue structure with n gluon emission

Logarithmic counting defined in terms of nPC blocks (owing to rIRC safety of the observable)

Resolved and unresolved emissions

For inclusive observables (such as Higgs p_{T})

$$
V\left(\{\hat{p}\}, k_{1}, \ldots k_{n}\right)=V\left(\{\hat{p}\}, k_{1}+\ldots+k_{n}\right)
$$

$$
\begin{aligned}
\left|M\left(p_{1}, p_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} & =\left|M_{B}\left(p_{1}, p_{2}\right)\right|^{2} \\
\times & \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right. \\
& \left.\left.+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right)\right\}
\end{aligned}
$$

Introduction of a resolution scale $\varepsilon_{\mathrm{K}_{1}}$

unresolved emission
can be integrated inclusively to
cancel the divergences of the virtuals (rIRC): exponential factor
$e^{-R\left(\varepsilon k_{t 1}\right)} \quad \varepsilon$ dependence cancels
Sudakov form factor
resolved emission
treated exclusively: for inclusive observables can be parametrised exactly as a Sudakov unintegrated in k_{t} and azimuthal angle

Momentum space formulation

Result can be expressed as

$$
\frac{d \Sigma(v)}{d \Phi_{B}}=\int_{\mathcal{C}_{1}} \frac{d N_{1}}{2 \pi i} \int_{\mathcal{C}_{2}} \frac{d N_{2}}{2 \pi i} x_{1}^{-N_{1}} x_{2}^{-N_{2}} \sum_{\mathcal{C}_{1}, \mathcal{C}_{2}} \frac{d\left|M_{B}\right|_{\mathcal{C}_{1} c_{2}}^{2}}{d \mathbf{f}_{N_{1}}^{T}}\left(\mu_{0}\right) \hat{\mathbf{\Sigma}}_{N_{1}, N_{2}, \mathcal{N}_{2}}^{c_{2}}(v) \mathbf{f}_{N_{2}}\left(\mu_{0}\right) \quad \begin{aligned}
& \text { DGLAP anomalous dimensions } \\
& \text { RG evolution of coefficient functions }
\end{aligned}
$$

$$
\hat{\mathbf{E}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(v)=\left[\mathbf{C}_{N_{1}}^{c_{1} T}\left(\alpha_{s}\left(\mu_{0}\right)\right) H\left(\mu_{R}\right) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(\mu_{0}\right)\right)\right] \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi}
$$

Result valid for all unresolved
inclusive observables emission + virtual (e.g. $p_{T,} \varphi^{*}$)

corrections

$$
\begin{aligned}
& \sum_{\ell_{1}=1}\left(\mathbf{R}_{\ell_{1}}^{\prime}\left(k_{t 1}\right)+\frac{\alpha_{s}\left(k_{t 1}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t 1}\right)\right)+\boldsymbol{\Gamma}_{N_{\ell_{1}}}^{(C)}\left(\alpha_{s}\left(k_{t 1}\right)\right)\right) \\
& \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \sum_{\ell_{i}=1}^{2}\left(\mathbf{R}_{\ell_{i}}^{\prime}\left(k_{t i}\right)+\frac{\alpha_{s}\left(k_{t i}\right)}{\pi} \boldsymbol{\Gamma}_{\Lambda_{\ell_{i}}}\left(\alpha_{s}\left(k_{t i}\right)+\boldsymbol{\Gamma}_{N_{\ell_{i}}}^{(C)}\left(\alpha_{s}\left(k_{t i}\right)\right)\right.\right. \\
& \quad \times \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right.
\end{aligned}
$$

Formulation equivalent to \boldsymbol{b}-space result (up to a scheme change in the anomalous dimensions)

$$
\begin{aligned}
\frac{d^{2} \Sigma(v)}{d \Phi_{B} d p_{t}} & =\sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}} \int b d b p_{t} J_{0}\left(p_{t} b\right) \mathbf{f}^{T}\left(b_{0} / b\right) \mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}\left(b_{0} / b\right)\right) H(M) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(b_{0} / b\right)\right) \mathbf{f}\left(b_{0} / b\right) \\
& \times \exp \left\{-\sum_{\ell=1}^{2} \int_{0}^{M} \frac{d k_{t}}{k_{t}} \mathbf{R}_{\ell}^{\prime}\left(k_{t}\right)\left(1-J_{0}\left(b k_{t}\right)\right)\right\}
\end{aligned}
$$

Resummation in momentum space

Formulation in Mellin space already implementable. However, it is convenient to perform the evaluation entirely in momentum space
In previous formula, resummation of logarithms of $k_{T, i} / M$

$$
k_{\pi i} k_{T 1} \sim 0(1)
$$

subleading logarithms in p_{T}
free of singularity at low p_{T} values
(power-law scaling)
(everywhere in the resolved phase Integrands can be expanded about $\mathrm{k}_{\mathrm{T}_{\mathrm{i}}} \sim \mathrm{k}_{\mathrm{T}_{1}}$ to the desired accuracy: more efficient space, due to rIRC safety)

Sudakov region: $k_{T 1} \sim p_{T}$
azimuthal region: $k_{i} \sim k_{T 1}$

$\ln \left(M / p_{T}\right)$ resummed at + additional subleading terms the desired accuracy
correct description of the correct scaling of the kinematics after expansion $k_{T i} \sim k_{T 1}$ cumulant $\mathbf{O}\left(\boldsymbol{p}_{T^{2}}\right)$

Checks and remarks

- b-space formulation reproduced analytically at the resummed level
- correct scaling at small p_{T} computed analytically
- numerical checks down to very low pt against b-space codes (HqT, CuTe) [Grazzini e tal.|[Becheret al.]
- check that the FO expansion of the final expression in momentum space up to $0\left(a^{5}\right)$ yields the corresponding expansion in b-space (CSS)
- expansion checked against MCFM up to $O\left(a^{4}\right)$ [campbell etal.]

