Recent developments in resummation

Luca Rottoli

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

QCD beyond fixed order

Perturbative QCD at fixed order

$$
\begin{gathered}
\tilde{\sigma}=1+\alpha_{s} \tilde{\sigma}_{1}+\alpha_{s}^{2} \tilde{\sigma}_{2}+\alpha_{s}^{3} \tilde{\sigma}_{3}+\ldots \\
\text { LO NLO NNLO N }{ }^{3} \text { LO }
\end{gathered}
$$

NLO now standard and largely automated
NNLO available for an increasing number of processes
N^{3} LO Higgs production in gluon fusion and VBF

QCD beyond fixed order

Perturbative QCD at fixed order

$$
\tilde{\sigma}=1+\alpha_{s} \tilde{\sigma}_{1}+\alpha_{s}^{2} \tilde{\sigma}_{2}+\alpha_{s}^{3} \tilde{\sigma}_{3}+\ldots
$$

LO NLO NNLO N3LO
NLO now standard and largely automated
NNLO available for an increasing number of processes
\mathbf{N}^{3} LO Higgs production in gluon fusion and VBF
(hadron-collider processes)

Assumption: perturbative coefficients $\tilde{\sigma}_{n}$ are well behaved (renormalon ambiguity)

Many observables studied at the LHC depend on more than one scale; single or double logs of the ratio of those scales at all orders in perturbation theory

$$
\left(\alpha_{s} \ln R\right)^{n} \quad\left(\alpha_{s} \ln ^{2} R\right)^{n}
$$

If the logarithms are large the convergence of the series is spoiled

QCD beyond fixed order

Perturbative QCD at fixed order

NLO now standard and largely automated
*N'O avaitable for an increasing mumber of processes

Fixed order predictions no longer reliable: all order resummation of the perturbative series mandatory

Many observables studied at the LHC depend on more than one scale; single or double logs of the ratio of those scales at all orders in perturbation theory

If the logarithms are large the convergence of the series is spoiled

Resum what?

Example: transverse momentum distribution in Higgs production

p_{t}

Resum what?

Example: transverse momentum distribution in Higgs production

Resum what?

Example: transverse momentum distribution in Higgs production

Resum what?

Example: transverse momentum distribution in Higgs production

Resum what?

Example: transverse momentum distribution in Higgs production

p_{t}

It's not a bug, it's a feature

Real emission diagrams singular for soft/collinear emission. Singularities are cancelled by virtual counterparts for IRC safe observables
Consider processes where real radiation is constrained in a corner of the phase space, (exclusive boundary of the phase space, restrictive cuts)

$$
\begin{aligned}
& \tilde{\sigma}_{1}(v) \sim \underbrace{\sim}_{\text {ebele }} \stackrel{\int_{\theta} \frac{d \theta}{\theta} \frac{d E}{E} \Theta(v-E \theta / Q)}{\longleftrightarrow} \\
& \sim-\int \frac{d E}{E} \frac{d \theta}{\theta} \Theta(E \theta / Q-v) \sim-\frac{1}{2} \ln ^{2}{ }^{v} \begin{array}{l}
\text { Sudakov } \\
\text { logarithms }
\end{array} \\
& v \rightarrow 0 \text { observable can } \\
& \text { become negative even in } \\
& \text { the perturbative regime }
\end{aligned}
$$

Double logarithms leftovers of the real-virtual cancellation of IRC divergences
Single logarithms appear also when exchanged gluon is soft (no collinear contribution). High-energy resummation of $\alpha_{s} \ln \mathrm{~m}^{2} / s$
Large phase space for emission of a cascade of partons with a very large fraction of the parent parton's longitudinal momentum

NB double logs in ggH in the heavy-top approximation

Making pQCD great again: all-order resummation

Soft-collinear emission of two gluons

Two propagators nearly on shell, 4 divergences. Diagrams can potentially give $\alpha_{s}^{2} \ln ^{4} v$

All order structure

$$
\tilde{\sigma}(v)=\sum_{n=0}^{\infty} \alpha_{s}^{n} \sum_{m=1}^{2 n} c_{n m} L^{m}+\ldots \quad L=\ln (v)
$$

Origin of the logs is simple. Resum them to all orders by reorganizing the series

$$
\tilde{\sigma}(v)=f_{1}\left(\alpha_{s} L^{2}\right)+\frac{1}{L} f_{2}\left(\alpha_{s} L^{2}\right)+\ldots
$$

Leading logarithmic (LL) resummation of the perturbative series
Accurate for $L \sim 1 / \sqrt{\alpha_{s}}$

All-order resummation

$$
\tilde{\sigma}(v)=f_{1}\left(\alpha_{s} L^{2}\right)+\frac{1}{L} f_{2}\left(\alpha_{s} L^{2}\right)+\ldots
$$

"It's the sum that makes the total"*

All-order resummation: exponentiation

Independent emissions $k_{1}, \ldots k_{n}$ (plus corresponding virtual contributions) in the soft and collinear limit (eikonal approximation)

$$
d \Phi_{n}\left|\mathscr{M}\left(k_{1}, \ldots k_{n}\right)\right|^{2} \rightarrow \frac{1}{n!} \alpha_{s}^{n} \prod_{i=1}^{n} \frac{d E_{i}}{E_{i}} \frac{d \theta_{i}}{\theta_{i}}
$$

Calculate observable with arbitrary number of emissions: exponentiation
[Sudakov '54]

$$
\tilde{\sigma} \simeq \sum_{n=0}^{\infty} \frac{1}{n!} \alpha_{s}^{n} \prod_{i=1}^{n} \int \frac{d E_{i}}{E_{i}} \frac{d \theta_{i}}{\theta_{i}} \Theta\left(E_{i} \theta_{i} / Q-v\right) \simeq e^{-\alpha_{S} L^{2}}
$$

Sudakov suppression Price for constraining real radiation
Exponentiated form allows for a more powerful reorganization

$$
\tilde{\sigma}(v)=\exp \left[\begin{array}{cc}
\sum_{n}\left(\mathcal{O}\left(\alpha_{s}^{n} L^{n+1}\right)+\mathcal{O}\left(\alpha_{s}^{n} L^{n}\right)+\mathcal{O}\left(\alpha_{s}^{n} L^{n-1}\right)+\ldots\right) \\
\text { LL } & \text { NLL } \\
\text { NNLL }
\end{array}\right]
$$

Region of applicability now valid up to $L \sim 1 / \alpha_{s}$, successive terms suppressed by α_{s} Exponentiation not always possible, e.g. Jade Jet Resolution [Brown, Stirling '90] or jet mass pruning (convolution of two exponentials) [Dasgupta, Marzani, Salam '13]

All-order resummation: (re)-factorization

Phase-space constraints do not usually factorize in direct space

$$
\tilde{\sigma}(v) \sim \int \prod_{i}^{n}\left[d k_{i}\right], M\left(k_{1}, \ldots, k_{n}\right) \Theta_{\mathrm{PS}}\left(v-V\left(k_{1}, \ldots k_{n}\right)\right)
$$

Solution: move to conjugate space where phase space factorization is manifest

two-dimensional momentum conservation
Exponentiation in conjugate space; inverse transform to move back to direct space
Extremely successful approach

- Catani, Trentadue, Mangano, Marchesini, Webber, Nason, Dokshitzer...

Emphasis on properties of QCD matrix elements and QCD radiation

- Collins, Soper, Sterman, Laenen, Magnea...
- Manohar, Bauer, Stewart, Becher, Neubert.... + many others!

Factorization properties in the singular region and associated RGE
(factorization \rightarrow evolution \rightarrow resummation)

SCET vs. dQCD not an issue [Sterman et al. '13, '14][Bonvini, Forte, Ghezzi, Ridolfi, LR '12, '13, '14] [Becher, Neubert et al. '08, '11, 14]
QCD@LHC2018, Dresden, 31 August 2018

All-order resummation: (re)-factorization

Phase-space constraints do not usually factorize in direct space

$$
\tilde{\sigma}(v) \sim \int \prod_{i}^{n}\left[d k_{i}\right], M\left(k_{1}, \ldots, k_{n}\right) \Theta_{\mathrm{PS}}\left(v-V\left(k_{1}, \ldots k_{n}\right)\right)
$$

Solution: move to conjugate space where phase space factorization is manifest
$\underset{\text { IParis, , Petronzio '79; Collins, Soper, Sterman'85] }}{\text { e.g. } p_{t} \text { resummation }} \delta^{(2)}\left(\vec{p}_{t}-\sum_{i=1}^{n} \vec{k}_{t, i}\right)=\int d^{2} b \frac{1}{4 \pi^{2}} e^{i \vec{b} \cdot \vec{p}_{t}} \prod_{i=1}^{n} e^{-i \vec{b} \cdot \vec{k}_{t, i}}$ two-dimensional momentum conservation
Exponentiation in conjugate space; inverse transform to move back to direct space Extremely successful approach

Limitation: it is process-dependent, and must be performed manually and analytically for each observable (error prone)

All-order resummation: (re)-factorization

Is it possible to achieve resummation without the need to establish factorization properties on a case-by-case basis?

All-order resummation: (re)-factorization

Is it possible to achieve resummation without the need to establish factorization properties on a case-by-case basis?

Yes

CAESAR/ARES approach: towards automated resummation

Translate the resummability of the observable into properties of the observable in the presence of multiple radiation: recursive infrared and collinear (rIRC) safety
[Banfi, Salam, Zanderighi '01, '03, '04]
Existence of a resolution scale q_{0}, independent of the observable, such that emissions below q_{0} (unresolved) do not contribute significantly to the observable's value.

$$
\tilde{\sigma}(v) \sim \int d\left[k_{1} e^{-R\left(q_{0} v\left(k_{1}\right)\right)} \xrightarrow{\text { Unresolved emission can be treated as totally uncorrelated }} \rightarrow\right. \text { exponentiation }
$$

$$
\times\left(\sum_{m=0}^{\infty} \frac{1}{m!} \prod_{i=2}^{m+1}\left[d k_{i}\right]\left|\mathscr{M}\left(k_{i}\right)\right|^{2} \Theta\left(V\left(k_{i}\right)-q_{0} V\left(k_{1}\right)\right) \Theta\left(v-V\left(k_{1}, \ldots, k_{m+1}\right)\right)\right)
$$

Resolved emission treated exclusively with Monte Carlo methods

Method entirely formulated in direct space

- Generic structure of rIRC safe observables known at NNLL [Banfi, Monni, McAslan, Zanderighi '14, 16]
- Event shapes at hadron colliders
[Banfi, Salam, Zanderighi '10]
- Observables with azimuthal cancellation (e.g. p_{t})
[(Bizon), Monni, Re, (LR), Torrielli '16, '17]
- rIRC safe jet observables at NNLL

Some recent results

Resummation ca. 2018

Hep :: HepNames :: Institutions :: Conferences :: Jobs :: Experiments :: Journals :: Help

find t resummation and date >2017	Brief format	*	Search	Easy Search Advanced Search
find ${ }^{\text {P Phys.Rev.Lett. } 105 " \text { : }}$: more				
Sort by:	Display results:			

1. Threshold and jet radius joint resummation for single-inclusive jet production

Sven-Olaf Moch, Engin Eren, Katerina Lipka, Xiaohui Liu, Felix Ringer. Aug 14, 2018.8 pp.
DESY 18-135
Conference: C18-04-29.1
e-Print: arXiv: 1808.04574 [hep-ph] | PDF
References | BibTeX I LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
Detailed record
2. Gradient resummation for nonlinear chiral transport: an insight from holography

Yanyan Bu (Harbin Inst. Tech.), Tuna Demircik, Michael Lublinsky (Ben Gurion U. of Negev). Jul 30, 2018.44 pp.
e-Print: arXiv: 1807.11908 [hep-th] | PDF
References | BibTeX \mid LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
Detailed record
3. Long distance behavior of
$O(N)$-model correlators in de Sitter space and the resummation of secular terms
(iana López Nacir (Buenos Aires U.), Francsco D. Mazziteli (Baiseiro Inst., San Carlos de Bariloche \& Centro Atomico Bariloche), Leonardo G. Trombetta (Pisa, Scuola Normale Superiore \& INFN, Pisa). Jul $16,2018.29$ pp Print: arXiv: 1807.05964 [hep-th] |'PDF
$\frac{\text { References | BibTeX } \mid \text { LaTeX(US) | LaTeX(EU) | Harvmac | EndNote }}{\text { ADS Abstract Service }}$
tailed record
4. Resummation in QFT with Meijer G-functions

Oleg Antipin, Alessio Maiezza (Boskovic Inst., Zagreb), Juan Carlos Vasquez (CCTVal, Valparaiso). Jul 13, 2018. 22 pp.
e-Print: arXiv: 1807.05060 [hep-th] | PDF
$\frac{\text { References | BibTeX } \mid \text { LaTeX(US) } \mid \text { LaTeX(EU) } \mid \text { Harvmac I EndNote }}{\text { ADS Abstract Service }}$
Detailed record - Cited by 1 record
5. Threshold resummation in rapidity for colorless particle production at LHC

Pulak Banerjee (IMSc, Chennai), Goutam Das (DESY), Prasanna K. Dhani, V. Ravindran (HBNI, Mumbai). Jul 12, 2018. 8 pp.
DESY 18-115, DESY-18-115
Conference: C18-04-29.1
e-Print: arXiv: 1807.04583 [hep-ph] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service
Detailed record
6. Soft gluon resummation for Higgs boson pair production including finite
M_{t} effects
Duniel De Florian (ICAS, UNSAM, Buenos Aires), Javier Mazzitelli (Zurich U.). Jul 10, 2018. 16 pp.
ZU-TH-26-18, ICAS-35-18
e-Print: arXiv: 1807.03704 [hep-ph] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service

Disclaimer \& apology

35 records found 1-25 jump to record:
Search took 0.97 second
Threshold and jet radius joint resummation for single-inclusive jet production
DESY 18-135 , Engin Eren, Katerina Lipka, Xlaohufltu, Fellix Ringer. Aug 14, 2018. 8 pp
Conference: C18-04-29.1
2. Gradient resummation for nonlinear chiral transport: an insight frop/feraloul a selection of topics
3. Long distance behavior of
$O(N)$-model correlators in de Sitter space and the resummation of secular ternis
not a comprehensive review or set of references
4. Resummation in QFT with Meijer G-functions
e-Print: arXiv:1807.05060 [hep-th] | PDF
5. Threshold resummation in rapidity for colorless particle production at LHC

Pulak Banerjee (IMSc, Chennai), Goutam Das (DESY), Prasanna K. Dhani, V. Ravindran (HBNI, Mumbai). Jul 12, 2018. 8 pp.
DESY 18-115. DESY-18-115
Conference: C $188-04-29.11$
e-Print: aryiv: 1807.04583 [hep-ph] | PDF
References | BibTeX I LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service
6. Soft gluon resummation for Higgs boson pair production including finite
M_{t} effects
Daniel De Florian (ICAS UNSAM Buenos Aires), Javier Mazzitelli (Zurich U), Jul $10,2018.16$ pn
ZU-TH 26/18, ICAS 35/18, ZU-TH-26-18, ICAS-35-18
e-Print: arXiv:1807.03704 [hep-ph] | PDF
References I BibTeX | LaTeX
ADS Abstract Service
Detailed record - - ited by 1 record

Resummation for transverse observables

Resummation for transverse observables at the LHC

If the scale for $\mathrm{NP} \Lambda_{\mathrm{NP}}$ is a few TeV , rough estimate of deviations from the SM behaviour gives $\delta \sim Q^{2} / \Lambda_{\mathrm{NP}}^{2} \longrightarrow$ Bulk: $Q^{2} \sim 0.1 \mathrm{TeV} \boldsymbol{\delta} \sim 1-5 \%$

This level of precision is within reach at the (HL)-LHC (e.g. astonishing precision in Z transverse observables)

Very accurate theoretical predictions needed for transverse distributions

Besides implications for indirect constraints on BSM physics, important implications for extraction of SM parameters (strong coupling and PDF determination, W mass...)

Fixed-order predictions now available at NNLO (in the EFT for Higgs production)
[Boughezal et al. '15][Caola et al. '15][Chen et al. '16]
All ingredients to perform resummation at \mathbf{N}^{3} LL accuracy are now available
[Catani et al. '11, '12][Gehrmann et al. '14][Li, Zhu '16][Moch et al. '18]

Drell-Yan transverse observables at $\mathbf{N}^{3} L L+N N L O$

[Bizon, Monni, Re, LR, Torrielli + NNLOJET '18]
Momentum-space resummation approach

Comparison with ATLAS data @ 8 TeV [1512.02192]

- Good description of the data in all fiducial regions
- Perturbative uncertainty at the few percent level, still does not match the precision of the data

Approach can be used for resumming other transverse obs. e.g

- Similar situation as p_{t}, with perturbative uncertainty at the few percent level but with experimental errors at the sub-percent level
- Estimate of non-perturbative effects and of quark mass effects may start to be relevant

Drell-Yan transverse observables at N3LL+NNLO

Combined QCD+QED transverse momentum resummation
 [Cieri, Ferrera, Sborlini '18]

QED contribution corresponds to an $\mathcal{O}\left(\alpha / \alpha_{s}\right)$ correction to the QCD result
All order resummation of QED emissions can have non-negligible impact on pure QCD resummed results
Formulation of combined resummation obtained as an extension of the b-space formalism [Catani et al. '00]

$$
\frac{d \hat{\sigma}}{d p_{t}^{2}} \simeq \frac{M^{2}}{\hat{s}} \int_{0}^{\infty} d b \frac{b}{2} J\left(b p_{t}\right) \exp \mathscr{G}\left(\alpha_{s}, L\right) \quad \rightarrow \frac{d \hat{\sigma}}{d p_{t}^{2}} \simeq \frac{M^{2}}{\hat{s}} \int_{0}^{\infty} d b \frac{b}{2} J\left(b p_{t}\right) \exp \mathscr{G}\left(\alpha_{s}, \alpha, L\right)
$$

Contains pure QCD resummation

Contains pure QCD and QED resummation and mixed QCD+QED corrections

- Effects at (LO+NLL) ${ }_{\text {qed }}$ on the (NLO+NNLL) QCD distribution at the 0.5-1\% level
- Perturbative uncertainties dominated by resummation scale dependence at $(\mathrm{LO}+\mathrm{NLL})_{\text {QED }}$

Higgs transverse momentum at $\mathbf{N}^{3} L L+N N L O$

Probably the most studied distribution, known until recently up to NNLL+NLO

Accurate description of the spectrum at small p_{t} requires transverse momentum resummation.

- bound on light Yukawa coupling
- sensitivity to high-dimensional operators

[Bishara et al. '16]

Higgs transverse momentum at ${ }^{3}{ }^{3} L L+N N L O$

[Bizon, Monni, Re, LR, Torrielli + NNLOJET '17, '18]

- Resummation performed directly in momentum space
- Multiplicative matching allows to recover $\mathrm{N}^{3} \mathrm{LO}$ constant terms from the fixed-order (for inclusive distr.)
- Results for fiducial region within experimental cuts

Wojtek's talk

[Chen et al. '18]

- Resummation performed in b space within a SCET approach
- Additive matching
- Effects relevant for $p_{t}^{h} \lesssim 40 \mathrm{GeV}$

Heavy-quark mass effects start to be relevant at this level of precision
[Lindert et al., '17][Caola et al., '18] Stefano's talk

Higgs transverse momentum at \mathbf{N}^{3} LL+NNLO

Numerical Resummation

SCET

Two separate worlds?

Numerical resummation in SCET

Resummation in SCET

Factorization of relevant modes is assumed at the level of the Lagrangian

$$
\mathscr{L}_{\mathrm{SCET}}=\mathscr{L}_{s}+\sum \mathscr{L}_{n_{i}}
$$

General observables mix soft and collinear modes in their definition. If (re)factorization theorem for the observables exist then

$$
\Sigma(v, Q)=H\left(\mu, \mu_{H}\right) J\left(\mu, \mu_{J}\right) \otimes J\left(\mu, \mu_{J}\right) \otimes S\left(\mu, \mu_{S}\right)
$$

Each contribution depends on a single scale: log dependence tied to the dependence on the renormalization scale. Logarithms resummed solving associated RGEs

$$
\mu \frac{d}{d \mu} F\left(\mu, \mu_{F}\right)=\gamma_{F}\left(\mu, \mu_{F}\right) \otimes F\left(\mu, \mu_{F}\right) \quad \rightarrow \quad F\left(\mu, \mu_{F}\right)=U\left(\mu, \mu_{F}\right) \otimes F\left(\mu_{F}, \mu_{F}\right)
$$

Pros

1. Systematic way to go to higher orders (more loops in anomalous dimensions)

Cons:

1. Does not work if factorization theorem does not exist
2. Purely analytical calculation (numerical techniques for parts exist) Rudis talk

Numerical resummation

Based on rIRC properties of the observable. For rIRC safe observables

$$
\begin{aligned}
\Sigma(v) & \sim \int d\left[k_{1}\right] e^{\left.-R\left(q_{0}\right)\left(k_{1}\right)\right)} \\
& \times\left(\sum_{m=0}^{\infty} \frac{1}{m!} \int \prod_{i=2}^{m+1}\left[d k_{i}\right]\left|\cdot M\left(k_{i}\right)\right|^{2} \Theta\left(V\left(k_{i}\right)-q_{0} V\left(k_{1}\right)\right) \Theta\left(v-V\left(k_{1}, \ldots, k_{m+1}\right)\right)\right) \\
& \sim \Sigma_{s}\left(v_{s}\right) \mathscr{F}\left(v, v_{s}\right) . \quad \begin{array}{l}
\text { 'Transfer function' is } \\
\text { calculated numerically }
\end{array}
\end{aligned}
$$

'Simple' observable: Can be computed analytically

and shares the same LL structure of $\Sigma(v)$

Pros

1. Works for any rIRC safe observable
2. Everything done numerically except for analytical resummation for simple observable.

Cons

1. Gets rapidly non trivial at higher orders

Pros and Cons for both: numerical resummation being more generic and SCET more systematic

SCET

Numerical resummation
(coherent branching formalism)

Only works for observables for which factorization theorem exists

Purely analytical calculations (although numerical techniques for parts exist)

Very systematic way to go to higher orders (more loops in anomalous dimensions)

Works for any observable (that is rIRC safe)

Only need analytical resummation for simple observable. Everything else done numerically

Somewhat of an art to go to higher orders (need to know exactly what was and was not included before)

Combine the best of the two worlds by overcoming the need of factorization theorem and systematically perform numerical resummation within SCET

Numerical resummation in SCET

[Bauer, Monni '18]
Steps:

1. Write most generic expression for observable to be resummed using separation of modes in the SCET Lagrangian [Bauer et al. '08]
2. Identify simple observables for which factorization can be derived in SCET in a very simple manner

$$
\Sigma_{s}=H_{s} J_{s} J_{s} S_{s}
$$

3. Perform resummation of the simple observable solving RGEs
4. Compute numerically relation between simple observable and full observable

Result: numerical vs. analytical computations for thrust

PDFs with small-x resummation

Small-x (high energy) resummation

Relevant at high energy $x=Q^{2} / s, \quad Q^{2} \ll s$
Small-x logs in general affect both DGLAP evolution and coefficient functions
Predictions computed using the k_{t}-factorization formalism [Catani, Ciafaloni, Hautmann '90, '91]
Resummation achieved by combining DGLAP and BFKL evolution

$$
\begin{aligned}
\frac{d}{d(1 / x)} G(x, M) & =\chi\left(\alpha_{s}, M\right) G(x, M) \\
\frac{d}{d Q^{2}} G\left(N, Q^{2}\right) & =\gamma\left(\alpha_{s}, N\right) G\left(N, Q^{2}\right),
\end{aligned}
$$

BFKL: evolution for Mellin M moments of parton densities

DGLAP: evolution for Mellin N moments of parton densities
Mellin transform maps logs into poles

$$
\begin{aligned}
& \ln ^{k}\left(Q^{2} / \mu^{2}\right) \rightarrow 1 / M^{k+1} \\
& \ln ^{k}(1 / x) \rightarrow 1 / N^{k+1}
\end{aligned}
$$

A subject with a long history...

Small-x (high energy) resummation

...but number of phenomenological applications very limited

Small-x resummation is a HELL of a challenge!

The new wave
ABF approach recently revived and improved to allow for phenomenological applications

- New formalism for coefficient functions
[Bonvini, Marzani, Peraro '16]
- Matching to NNLO and further improvement aimed at producing PDFs with resummation (heavy quarks, VFNS, ...)
- Public code (aptly named HELL)

[Bonvini, Marzani, Muselli '17]
+also recent work using EFT approach [Rothstein and Stewart '16]

Parton distribution functions with small-x resummation

[Ball, Bertone, Bonvini, Marzani, Rojo, LR '17]
All ingredients available to produce a consistent DIS-only fit with small-x resummation

To make the fit competitive with global fits, cuts applied to hadronic data

- Improvement on the description of the PDFs at small x (better perturbative behaviour)
- Improved description of HERA data at small-x (emergence of BFKL dynamics)
- Effects at the LHC should be visible, either at low invariant masses or at high rapidities

Similar analysis (DIS only dataset) performed by xFitter collaboration Sashas talk

What about large- x ?

The large- x region

Effect on PDFs small (especially at NNLO+NNLL) and often below the level of PDF uncertainty

The large- x region

Effect on PDFs small (especially at NNLO+NNLL) and often below the level of PDF uncertainty

Main limitation: lack of constraint due to limited dataset (no resummed calculation available)

No jet data, gluon poorly constrained

PDF datasets span a large region in the (x, Q^{2}) plane and require accurate description both at low and at large $x \sim Q^{2} / s$

Description in the large- x region might require consistent resummation of large- x (threshold) logs $L=\ln (1-x)$ which enhance the coefficient functions $(\overline{M S}$ scheme)

First (almost) global fit performed using a DIS+DY+(inclusive) top dataset [Bonvini et al. '14]

May be relevant for high-mass resonance searches

Threshold resummation for single-inclusive jet production

[Liu, Moch, Ringer, Eren, Lipka '17, '18]
Calculations were available at NLL, but no numerical implementation [Florian, Vogelsang '07]
Complete jet kinematics must be taken into account for meaningful predictions
Resummation is performed in a SCET approach at NLL accuracy

- combined resummation of threshold and small- R (single) logarithms, differential in jet p_{t} and rapidity
- resummation in direct space avoid intricacies related to use of Mellin transform
- extension of the formalism to NNLL possible

- Improved agreement with data with respect to NLO (resummed predictions tend to somewhat overshoot the data at larger value of R)
- Reduction of scale uncertainty
- Overall better agreement wrt NLO if NLO+NLL predictions are computed using resummed PDF
- Interesting to use these predictions for future extractions of PDFs with threshold resummation

QCD@LHC2018, Dresden, 31 August 2018

Combining resummations

Combining resummations

Previous result is an example of a combined (or joint) resummation: simultaneous resummation of threshold logarithms and small-R logarithms
n.b. sometimes joint resummation is used to refer to simultaneous resummation of two different observables, e.g. two angularities [Larkoski, Moult, Neill' '14] [Procura et al '18] Results for combined resummation existed, e.g. combined transverse momentum and threshold resummation [Li' '98][Laenen et al. 'o00][Kulesza et al. '00.، '03][Fuks et al. '07, '11][Laenen, Banfi' ${ }^{\prime} 5$]

Combining resummations

Previous result is an example of a combined (or joint) resummation: simultaneous resummation of threshold logarithms and small-R logarithms
n.b. sometimes joint resummation is used to refer to simultaneous resummation of two different observables, e.g. two angularities [Larkoski, Moult, Neill '14] [Procura et al '18]
Results for combined resummation existed, e.g. combined transverse momentum and threshold resummation [Li' '98][Laenen et al. 'o00][Kulesza et al. '002. '03][Fuks et al. '07, '11][Laenen, Banfi' ${ }^{\prime} 5$]

Recently, revived interest in combined resummation, various new results (list not exhaustive)
see also [Procura, Waalewijn, Zeune '15][Li, Neill, Zhu '16]

transverse momentum resummation

[Lustermans et al. '16]
[Muselli et al '17] [Marzani, Theuves '17]

threshold resummation

Combining resummations

Previous result is an example of a combined (or joint) resummation: simultaneous resummation of threshold logarithms and small-R logarithms
n.b. sometimes joint resummation is used to refer to simultaneous resummation of two different observables, e.g. two angularities [Larkoski, Moult, Neill '14] [Procura et al '18]
Results for combined resummation existed, e.g. combined transverse momentum and threshold resummation [Li' '98][Laenen et al. 'o00][Kulesza et al. '002. '03][Fuks et al. '07, '11][Laenen, Banfi' ${ }^{\prime} 5$]

Recently, revived interest in combined resummation, various new results (list not exhaustive)
see also [Procura, Waalewijn, Zeune '15][Li, Neill, Zhu '16]

transverse momentum resummation

[Marzani '15][Muselli, Forte '15]
high-energy resummation
threshold resummation

Combining resummations

Previous result is an example of a combined (or joint) resummation: simultaneous resummation of threshold logarithms and small-R logarithms
n.b. sometimes joint resummation is used to refer to simultaneous resummation of two different observables, e.g. two angularities [Larkoski, Moult, Neill '14] [Procura et al '18]
Results for combined resummation existed, e.g. combined transverse momentum and threshold resummation [Li' '98][Laenen et al. 'o00][Kulesza et al. '002. '03][Fuks et al. '07, '11][Laenen, Banfi' ${ }^{\prime} 5$]

Recently, revived interest in combined resummation, various new results (list not exhaustive)
see also [Procura, Waalewijn, Zeune '15][Li, Neill, Zhu '16]
transverse momentum resummation

high-energy resummation

[Bonvini, Marzani '18]

threshold resummation

Double resummation for Higgs production Simoneś talk

[Bonvini, Marzani '18]
To match the two resummation, look at the analytical structure of the coefficient functions in Mellin space [Ball et al. '14]
Double resummed coefficient functions should respect singularity structure order-by -order

$$
C\left(N, \alpha_{s}\right)=C^{\mathrm{fo}}\left(N, \alpha_{s}\right)+\Delta C^{\text {large-x }}\left(N, \alpha_{s}\right)+\Delta C^{\mathrm{small}-x}\left(N, \alpha_{s}\right)
$$

In principle, should use double-resummed PDFs. Effect of threshold resummation on gluon PDFs is small \longrightarrow use PDFs with small-x resummation

Results for Higgs production: small ($\sim 2 \%$) correction to $\mathrm{N}^{3} \mathrm{LO}$ at current LHC energies

Due to small-x effects impact grows at larger collider energies ($\sim 5 \%$ at $27 \mathrm{TeV}, \sim 10 \%$ at 100 TeV) Method presented rather general: can be applied to a variety of processes currently studied at the LHC (DY, heavy quarks, differential in rapidity)

Summary \& outlook

I presented a personal overview of some recent results in resummation

- Large logarithmic corrections are a feature of QCD
- Resummed calculations needed for accurate predictions
- Compelling connections between different approaches open up the possibility of achieving systematically resummation for a wider class of observables
- Progress towards fully consistent, exclusive, combined resummation
- Advances in analytical and automated resummation can be used to assess and improve the formal accuracy of parton showers [Hoche, Reichelt, Siegert '17]

Daniel's and Frédéric's talks [Dasgupta,Dreyer,Hamilton,Monni,Salam '18]
Many topics I could not cover

- Resummation in jet substructures Felix's talk • Next-to-leading power Leonardo's talk
- Resummation in $e^{+} e^{-}$and heavyions collisions
- Non-global logs, factorizationbreaking effects Dingyu's and
- $t \bar{t}, t \bar{t} H$ \& BSM processes $\begin{aligned} & \text { Stefano's, Jan's and } \\ & \text { Anna's talks }\end{aligned}$
- EW Sudakovs Jonas' talk

Matthew's talk

Resummation just scratches the surface of QCD. But it makes a mark. George Sterman, CTEQ school 2006

