

The quartic Higgs self-coupling at future hadron colliders

Luca Rottoli

University of Milan-Bicocca

Based on 1810.04665 with W. Bizon and U. Haisch

The Standard Model (SM) Higgs potential

$$V_{\rm SM} = \frac{m_h^2}{2}h^2 + \lambda_{\rm SM}vh^3 + \frac{\gamma_{\rm SM}}{4}h^4 \qquad \qquad \lambda_{\rm SM} = \gamma_{\rm SM} = \frac{m_H^2}{2v^2} \sim 0.13$$

 $v \simeq 246 \,\text{GeV}$ discovery of the *W* and *Z* bosons

 $m_H \simeq 125 \,\text{GeV}$ discovery of the Higgs boson at the LHC

essentially untested

 $\lambda_{\rm SM}, \gamma_{\rm SM}$

The Standard Model (SM) Higgs potential

 $v \simeq 246 \,\text{GeV}$ discovery of the *W* and *Z* bosons

 $m_H \simeq 125 \,\text{GeV}$ discovery of the Higgs boson at the LHC

essentially untested

 $\lambda_{\rm SM}, \gamma_{\rm SM}$

Higgs production at hadron colliders

Multi-higgs production rate are small in the SM

LHC: *O*(1) determinations of the cubic Higgs self-coupling HE-LHC: prospects of extracting the cubic Higgs self-coupling with *O*(20%) FCC-pp: weak bounds on the quartic self-coupling by measuring *hhh* production

Higgs production at hadron colliders

Multi-higgs production rate are small in the SM

LHC: *O*(1) determinations of the cubic Higgs self-coupling HE-LHC: prospects of extracting the cubic Higgs self-coupling with O(20%) FCC-pp: weak bounds on the quartic self-coupling by measuring *hhh* production

> Indirect constraints on the quartic Higgs self-coupling from double-Higgs production measurements

Idea already explored in the literature to constrain the trilinear coupling

Higgs Couplings 2018, Tokyo, 29 November 2018

Talk by Davide Pagani

SM effective field theory (EFT)

$$V \supset \kappa_3 \lambda v h^3 + \kappa_4 \frac{\lambda}{4} h^4$$
 $\kappa_3, \kappa_4 \neq 1$ if physics beyond SM is present

Consider operators of dimension 6 and 8 in the SMEFT

$$\mathscr{L}_{\text{SMEFT}} \supset \mathscr{O}_6 + \mathscr{O}_8 = -\frac{\bar{c}_6}{v^2} \left| H \right|^6 - \frac{\bar{c}_8}{v^4} \left| H \right|^8$$

$$\kappa_3 = 1 + \Delta \kappa_3 = 1 + \bar{c}_6 + 2\bar{c}_8 \qquad \kappa_4 = 1 + \Delta \kappa_4 = 1 + 6\bar{c}_6 + 16\bar{c}_8$$

No assumption about the actual size of \bar{c}_6 and \bar{c}_8 : cubic and quartic Higgs selfcouplings can deviate independently from the SM predictions

If O_6 is the only numerically relevant operator, strong correlation

$$\Delta \kappa_4 = 6 \Delta \kappa_3$$

Anatomy of double-Higgs production

Double-Higgs production now know at NLO QCD with mass dependence [1604.06447,1608.04798,1703.09252] [1811.05692] NNLO QCD with mass dependence at NLO QCD [1803.02463]

Two-loop form factor (1)

Two-loop integrals evaluated numerically using pySecDec package [1204.4152,1502.06595,1703.09692]

Higgs Couplings 2018, Tokyo, 29 November 2018

[1802.07616,1803.04359]

Two-loop form factor (2)

Function g(s) can be calculated analytically

Higgs Couplings 2018, Tokyo, 29 November 2018

Results for double- and triple-Higgs production

Double-Higgs production: numerical results obtained using a customized version of POWHEG-BOX of the NLO QCD calculation [1604.06447,1608.04798,1703.09252]

 $b\bar{b}\gamma\gamma$ final state:

estimated total uncertainty (th+exp)

15% (HE-LHC, 15 ab⁻¹), 5% (FCC-pp, 30 ab⁻¹)

Triple-Higgs production: numerical results obtained using MadGraph5_amc@NLO; NLO QCD corrections obtained applying an overall normalization [1408.6542]

<i>b̄bb̄bγγ</i> final state:	simulations of relevant backgrounds ($b\bar{b}b\bar{b}\gamma\gamma$, $hhb\bar{b}$) within selection cuts [1508.06524][1606.09408]
	HE-LHC, 15 ab ⁻¹ : exclusion of triple-Higgs production cross-section 11 x (SM value)
	FCC-pp, 30 ab ⁻¹ : exclusion of triple-Higgs production cross-section 2 x (SM value)

Inclusive double- and triple-Higgs production

Red and green areas: limits from measurements of **double-Higgs** and **triple-Higgs** production

Yellow region $\Delta \chi^2 = 5.99$ (95% CL for a gaussian distribution)

 $\kappa_4 \in [-5, 14]$ in agreement with [1606.09408]

large modifications due to O_6 only or both O_6 , O_8 Higgs Couplings 2018, Tokyo, 29 November 2018

 $\kappa_4 \in [-21, 29]$

Differential distributions in double-Higgs production

Precise measurement of differential distributions may resolve ambiguities or flat directions

 $\kappa_{3} = 1.1, \quad \kappa_{4} = 0 \\ \kappa_{3} = 1, \quad \kappa_{4} = 40 \end{cases} \quad \begin{array}{l} \text{double-Higgs} \\ \text{production rate} \\ \text{decreases by ~10\%} \end{array}$

Shape analysis performed with POWHEG-BOX+Pythia8 to include parton shower effects

No background estimate, CL curves mimic more sophisticated analysis which include simulation of all relevant backgrounds [1802.04319]

Differential distribution fit

Degeneracy observed in the triple-Higgs production case now absent Bounds weaker than triple-Higgs production measurements

$$\kappa_4 \in [-21, 29]$$
 $\kappa_4 \in [-27, 25]$

Global fit

Combined constraints using hh differential distributions and inclusive hhh production

 $\kappa_3 = 1$ $\kappa_4 \in [-20, 29]$

Profiling over $\kappa_3 \quad \kappa_4 \in [-17,25]$

$$\kappa_3 = 1$$
 $\kappa_4 \in [-5,13]$
Profiling over κ_3 $\kappa_4 \in [-4,12]$

Recapitulation

- We studied indirect constraints on the quartic Higgs self-coupling in double-Higgs production measurement at future colliders
- Differential measurements in $pp \rightarrow hh$ channel alone expected to lead to somewhat weaker determinations of quartic Higgs self-coupling than inclusive $pp \rightarrow hhh$ production
- Combined measurements of differential distributions in double-Higgs production and inclusive triple-Higgs production: $\kappa_4 \in [-17,25]$ (HE-LHC), $\kappa_4 \in [-4,12]$ (FCC-pp)
- Results can be compared to hypothetical constraints from HE e^+e^- machines: ILC-500 ($\kappa_4 \in [-11,13]$), ILC-3000 ($\kappa_4 \in [-5,7]$), finding comparable potential for FCC-pp and ILC-3000 [1802.07616][1803.04359]