REINVENT

The quartic Higgs self-coupling at future hadron colliders

Luca Rottoli

University of Milan-Bicocca

zpegis stui
BICOCCA

Based on 1810.04665 with W. Bizon and U. Haisch + ongoing work

The Standard Model (SM) Higgs potential

$$
V_{\mathrm{SM}}=\frac{m_{h}^{2}}{2} h^{2}+\lambda_{\mathrm{SM}} v h^{3}+\frac{\gamma_{\mathrm{SM}}}{4} h^{4} \quad \quad \lambda_{\mathrm{SM}}=\gamma_{\mathrm{SM}}=\frac{m_{H}^{2}}{2 v^{2}} \sim 0.13
$$

$$
v \simeq 246 \mathrm{GeV} \quad \text { discovery of the } W \text { and } Z \text { bosons }
$$

$m_{H} \simeq 125 \mathrm{GeV}$
$\lambda_{\mathrm{SM}}, \gamma_{\mathrm{SM}}$
discovery of the Higgs boson at the LHC
essentially untested

The Standard Model (SM) Higgs potential

$$
\begin{gathered}
V_{\mathrm{SM}}=\frac{m_{h}^{2}}{2} h^{2}+\lambda_{\mathrm{SM}} v h^{3}+\underbrace{\gamma_{\mathrm{SM}}}_{\begin{array}{c}
\text { producle-Higgs } \\
\text { triple-Higgs } \\
\text { production }
\end{array}} h^{4} \quad \lambda_{\mathrm{SM}}=\gamma_{\mathrm{SM}}=\frac{m_{H}^{2}}{2 v^{2}} \sim 0.13 \\
v \simeq 246 \mathrm{GeV} \\
\text { discovery of the } W \text { and } Z \text { bosons } \\
m_{H} \simeq 125 \mathrm{GeV} \\
\lambda_{\mathrm{SM}}, \gamma_{\mathrm{SM}}
\end{gathered} \quad \text { discovery of the Higgs boson at the LHC }
$$

Higgs production at hadron colliders

Multi-higgs production rate are small in the SM
LHC: $O(1)$ determinations of the cubic Higgs self-coupling
HE-LHC: prospects of extracting the cubic Higgs self-coupling with $O(20 \%)$
FCC-pp: weak bounds on the quartic self-coupling by measuring hhh production

Higgs production at hadron colliders

Multi-higgs production rate are small in the SM
LHC: $O(1)$ determinations of the cubic Higgs self-coupling
HE-LHC: prospects of extracting the cubic Higgs self-coupling with $\mathrm{O}(20 \%)$
FCC-pp: weak bounds on the quartic self-coupling by measuring hhh production

Indirect constraints on the quartic Higgs self-coupling from double-Higgs production measurements

SM effective field theory (EFT)

$$
V \supset \kappa_{3} \lambda \nu h^{3}+\kappa_{4} \frac{\lambda}{4} h^{4}
$$

$$
\kappa_{3}, \kappa_{4} \neq 1 \quad \text { if physics beyond } \mathrm{SM} \text { is present }
$$

Consider operators of dimension 6 and 8 in the SMEFT

$$
\begin{gathered}
\mathscr{L}_{\text {SMEFT }} \supset \mathcal{O}_{6}+\mathcal{O}_{8}=-\frac{\bar{c}_{6}}{v^{2}}|H|^{6}-\frac{\bar{c}_{8}}{v^{4}}|H|^{8} \\
\kappa_{3}=1+\Delta \kappa_{3}=1+\bar{c}_{6}+2 \bar{c}_{8} \quad \kappa_{4}=1+\Delta \kappa_{4}=1+6 \bar{c}_{6}+16 \bar{c}_{8}
\end{gathered}
$$

No assumption about the actual size of \bar{c}_{6} and \bar{c}_{8} : cubic and quartic Higgs selfcouplings can deviate independently from the SM predictions
If O_{6} is the only numerically relevant operator, strong correlation

$$
\Delta \kappa_{4}=6 \Delta \kappa_{3}
$$

n.b. even if κ_{3}, κ_{4} are treated as free parameters, processes such as $g g \rightarrow h$ or loop corrections to $e^{+} e^{-\rightarrow h} h Z$ can still be calculated consistently as long as the SMEFT is used to perform the computations

Anatomy of double-Higgs production

$$
\begin{gathered}
\mathscr{A}(g g \rightarrow h h)=\delta^{a_{1} a_{2}} \epsilon_{1}^{\mu}\left(p_{1}\right) \epsilon_{2}^{\nu}\left(p_{2}\right)\left(\sum_{m=1}^{2} T_{m \mu \nu} \mathscr{F}_{m}\right) \quad \text { [Glover, der Bid 1988] } \\
T_{1 \mu \nu}=\eta_{\mu \nu}-\frac{p_{1 \nu} p_{2 \mu}}{p_{1} \cdot p_{2}} \quad T_{2 \mu \nu}=\eta_{\mu \nu}+\frac{1}{p_{T}^{2}\left(p_{1} \cdot p_{2}\right)}\left(m_{h}^{2} p_{1 \nu} p_{2 \mu}-2\left(p_{1} \cdot p_{3}\right) p_{2 \mu} p_{3 \nu}\right. \\
\left.-2\left(p_{2} \cdot p_{3}\right) p_{1 \nu} p_{3 \mu}+2\left(p_{1} \cdot p_{2}\right) p_{3 \mu} p_{3 \nu}\right) \\
\sigma_{\mathrm{LO}}=\sigma_{0} \int d t\left(\left|\mathscr{F}_{1}\right|^{2}+\left|\mathscr{F}_{2}\right|^{2}\right)
\end{gathered}
$$

Double-Higgs production now know at NLO QCD with mass dependence [1604.06447,1608.04798,1703.09252] [1811.05692]
NNLO QCD with mass dependence at NLO

The quartic Higgs self-coupling in double-Higgs production

We calculate the relevant EW two-loop amplitudes and we combine them with the exact $\mathcal{O}\left(\alpha_{s}^{2}\right)$ matrix elements

Total cross-section and differential distributions for double-Higgs production at NLO QCD, including arbitrary modifications of the cubic and quartic self-couplings

Final combination using constraints of the Higgs self-coupling in hhh production at HE-LHC and FCC-pp to study synergy and complementarity of the two approaches

Two-loop form factor (1)

$$
\Delta \mathscr{F}_{1}^{\kappa_{4}}=\frac{\alpha_{s}}{4 \pi} \frac{\lambda \kappa_{4}}{(4 \pi)^{2}} y_{t}^{2} f(\hat{s}) \quad \Delta \mathscr{F}_{2}^{\kappa_{4}}=0
$$

Two-loop integrals evaluated numerically using pySecDec package
[1204.4152,1502.06595,1703.09692]

Checks

- For all calculated phase-space points, double and single $1 / \epsilon$ poles cancel at the per-myriad accuracy
- Numerical check vs. (analytical) systematic expansion of the two-loop form factors in the large m_{t} limit

Two-loop form factor (1)

- Correction depends only on \hat{S}
- Correction to the spin-2 form factor is zero

Two-loop form factor (2)

$$
\Delta \mathscr{F}_{1}^{\kappa_{3} \kappa_{4}}=\frac{\alpha_{s}}{4 \pi} \lambda \kappa_{3} \frac{\lambda \kappa_{4}}{(4 \pi)^{2}} g(\hat{s}) \quad \Delta \mathscr{F}_{2}^{\kappa_{3} \kappa_{4}}=0
$$

Function $g(s)$ can be calculated analytically
h^{3} renormalised at vanishing external momenta (see [1803.04359]): the counterterm is chosen such that at zero-momentum transfer the one-loop diagrams plus the counterterm is equal to the h^{3} coupling at tree level

Work ongoing to understand the connections with renormalization in the k framework to the one with SMEFT operators

Two-loop form factor (2)

- Non-trivial s-dependence, with pronounced extrema at $2 m_{t}$ and $2\left(m_{t}+m_{h}\right)$

Results for double- and triple-Higgs production

Double-Higgs production: numerical results obtained using a customized version of POWHEG-BOX of the NLO QCD calculation [1604.06447,1608.04798,1703.09252]
$b \bar{b} \gamma \gamma$ final state:

> estimated total uncertainty (th+exp)

$$
\left.\left.15 \% \text { (HE-LHC, } 15 \mathrm{ab}^{-1}\right), 5 \% \text { (FCC-pp, } 30 \mathrm{ab}^{-1}\right)
$$

Triple-Higgs production: numerical results obtained using MadGraph5_amc@NLO; NLO QCD corrections obtained applying an overall normalization [1408.6542]
$b \bar{b} b \bar{b} \gamma \gamma$ final state: simulations of relevant backgrounds ($b \bar{b} b \bar{b} \gamma \gamma, h h b \bar{b}$) within selection cuts [1508.06524][1606.09408]

HE-LHC, $15 \mathrm{ab}^{-1}$: exclusion of triple-Higgs production cross-section $11 \times$ (SM value)

FCC-pp, $30 \mathrm{ab}^{-1}$: exclusion of triple-Higgs production cross-section $2 \times$ (SM value)

Inclusive double- and triple-Higgs production

Red and green areas: limits from measurements of double-Higgs and tripleHiggs production
Yellow region $\quad \Delta \chi^{2}=5.99(95 \% \mathrm{CL}$ for a gaussian distribution $)$

$$
\kappa_{4} \in[-21,29]
$$

$$
\kappa_{4} \in[-5,14]
$$

large modifications due to O_{6} only or both O_{6}, O_{8}

Differential distributions in double-Higgs production

Precise measurement of differential distributions may resolve ambiguities or flat directions
$\left.\begin{array}{ll}\kappa_{3}=1.1, & \kappa_{4}=0 \\ \kappa_{3}=1, & \kappa_{4}=40\end{array}\right\} \begin{aligned} & \text { double-Higgs } \\ & \text { production rate } \\ & \text { decreases by } \sim 10 \%\end{aligned}$

Shape analysis performed with POWHEG-BOX+Pythia8 to include parton shower effects

No background estimate, CL curves mimic more sophisticated analysis which include simulation of all relevant backgrounds
[1802.04319]

Differential distribution fit

Degeneracy observed in the triple-Higgs production case now absent Bounds weaker than triple-Higgs production measurements

$$
\kappa_{4} \in[-21,29] \quad \kappa_{4} \in[-27,25]
$$

Global fit

Combined constraints using hh differential distributions and inclusive hhh production

$\kappa_{3}=1$
$\kappa_{4} \in[-20,29]$
Profiling over $\kappa_{3} \quad \kappa_{4} \in[-17,25]$

$\kappa_{3}=1$
$\kappa_{4} \in[-5,13]$
Profiling over $\kappa_{3} \quad \kappa_{4} \in[-4,12]$

Recapitulation

- We studied indirect constraints on the quartic Higgs self-coupling in doubleHiggs production measurement at future colliders
- Differential measurements in $p p \rightarrow h h$ channel alone expected to lead to somewhat weaker determinations of quartic Higgs self-coupling than inclusive $p p \rightarrow h h h$ production
- Combined measurements of differential distributions in double-Higgs production and inclusive triple-Higgs production: $\kappa_{4} \in[-17,25]$ (HE-LHC), $\kappa_{4} \in[-4,12]$ (FCC-pp)
- Results can be compared to hypothetical constraints from HE e+e- machines: ILC-500 ($\kappa_{4} \in[-11,13]$, ILC-3000 ($\kappa_{4} \in[-5,7]$, finding comparable potential for FCC-pp and ILC-3000 [1802.07616][1803.04359]
- Phenomenological results in agreement with [1811.12366] (see talk by Davide)

