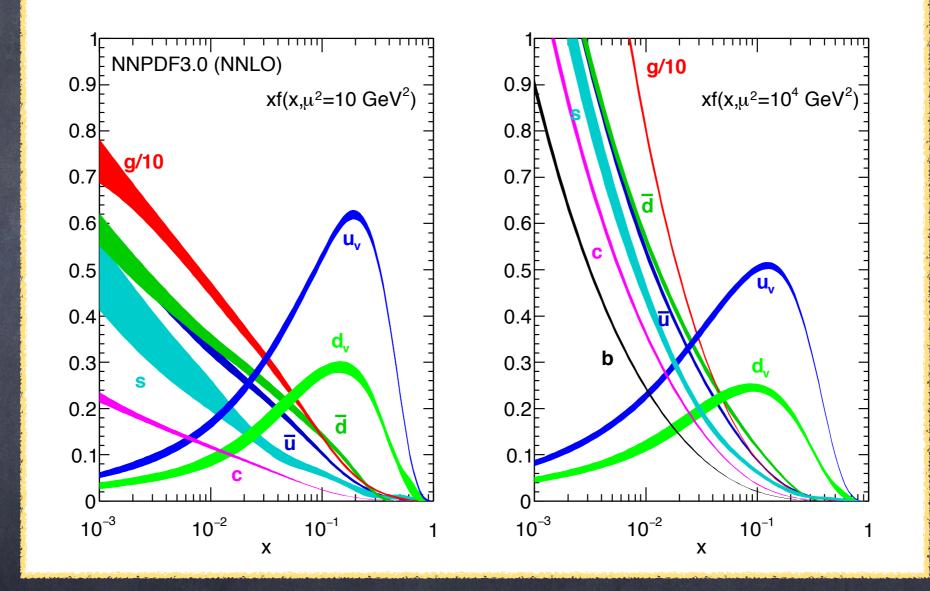


NNPDF Status and Future Plans

Luca Rottoli

Rudolf Peierls Center for Theoretical Physics, University of Oxford

QCDELHC 2015, London


On behalf of the NNPDF collaboration:

R. D. Ball, V. Bertone, S. Carrazza, L. Del Debbio, S. Forte, P. Groth-Merrild, A. Guffanti, N. P. Hartland, Z. Kassabov, J. L. Latorre, J. Rojo, L. Rottoli, M. Ubiali

Luca Rottoli

NNPDF Collaboration, JHEP 1504 (2015) 040

- New PDF set released last November

Luca Rottoli

NNPDF3.0 Dataset

New in NNPDF3.0

- HERA: HERA II ZEUS+H1 structure functions, HERA charm production
- ATLAS: 2.76TeV Jets, high-mass Drell-Yan, W pT, top total cross section
- CMS: W muon asymmetry, double- differential Drell-Yan, jets, W+c, top total cross section
- LHCb: Z rapidity

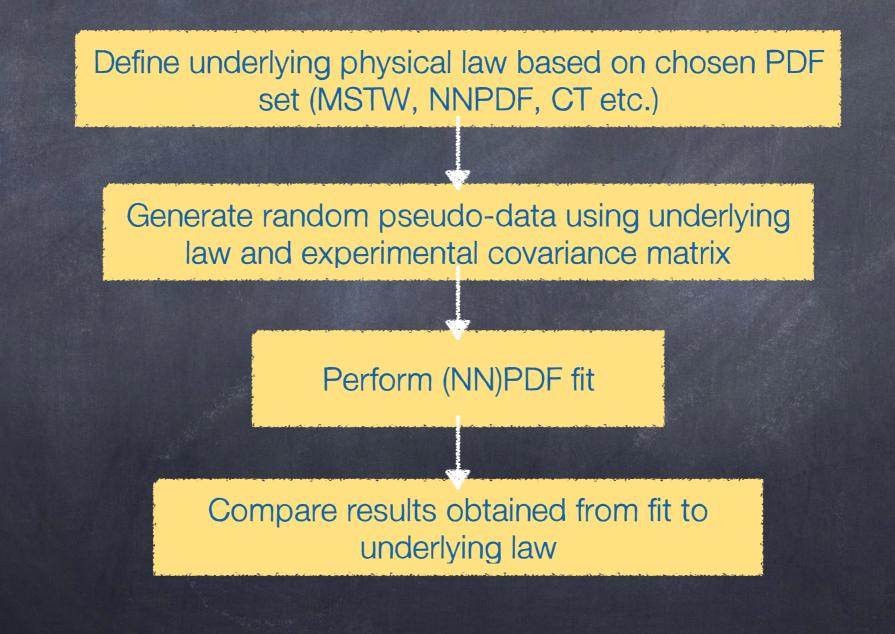
FT DIS 10^{7} HFRA1 FT DY TEV EW 10⁶ TEV JET ATLAS EW $O^{2} / M^{2} / p_{T}^{2} [GeV^{2}] g_{1}^{2} = 0$ LHCB EW LHC JETS HFRA2 LAS JETS 2.76TEV ATLAS HIGH MASS ATLAS WpT CMS W ASY CMS JETS CMS WC TOT 0 CMS WC RAT 10^{2} \mathbf{O} LHCB Z TTBAR 10 10⁻² 10⁻³ 10-6 10⁻⁵ 10⁻⁴ 10⁻¹

Total Dataset: 4276/4078 (NLO/NNLO)

Luca Rottoli

NNPDF Status and Future Plans

NNPDF3.0 NLO dataset


NNPDF3.0 Dataset

- New code, completely rewritten in C++: focus on efficiency and modularity; easier to include new data and to upgrade theory
- Optimisation of the Genetic Algorithm: new mutation strategy exploiting NN structure in order to obtain better fits in a shorter amount of time
- Generalised PDF parametrisation: fits can now be performed in any arbitrary input PDF basis
- Lookback stopping: improved cross-validation which prevents the fit from stopping too early while still protecting against over-learning
- Optimisation of positivity constraints covering a wider range of observables over a larger kinematic range
- First PDF set validated by a Closure Test

Closure Testing

Validation and optimisation of fitting strategy by fitting to pseudo-data generated using known PDFs

Luca Rottoli

M. Bonvini, S. Marzani, J. Rojo, LR, M. Ubiali et al, arXiv:1507.01006

Motivation

- Logarithmic contributions in fixed order perturbative calculations become large in some kinematic regions, thus spoiling the perturbative expansions
- Large-x resummation: logarithmic enhancement appears close to threshold, $x \rightarrow 1$
- Resummed calculations provide the state of the art accuracy for many processes at LHC
- Inconsistent use of fixed order PDFs with resummed partonic cross sections can lead to inaccurate predictions
- One needs resummed PDFs to be able to provide a consistent calculation

Threshold Resummation in a nutshell

$$\sigma(\mathbf{x}, \mathbf{Q}^2) = \mathbf{x} \int_{\mathbf{x}}^1 \frac{\mathrm{d}z}{z} \mathcal{L}\left(\frac{\mathbf{x}}{z}, \mathbf{Q}^2\right) \frac{\widehat{\sigma}(z, \mathbf{Q}^2, \alpha_s)}{z}$$

Convolution integral diagonalised in Mellin space

 $\sigma(N, Q^2) = \mathcal{L}(N, Q^2)\sigma_0(N, Q^2)C(N)$

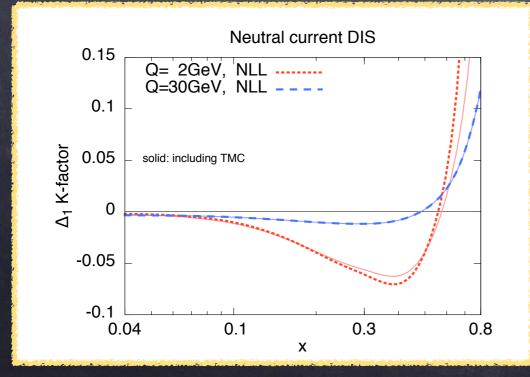
Double logarithmic enhancement due to soft gluon emission

$$C(N) = 1 + \sum_{n=1}^{\infty} \alpha_s^n \sum_{k=0}^{2n} c_{nk} \ln^k N + O(1/N)$$

N-soft approximation

Exponentiation

$$C(N) = g_0(\alpha_s) \exp \left[\frac{1}{\alpha_s} g_1(\alpha_s \ln N) + g_2(\alpha_s \ln N) + \alpha_s g_3(\alpha_s \ln N) + \dots \right]$$

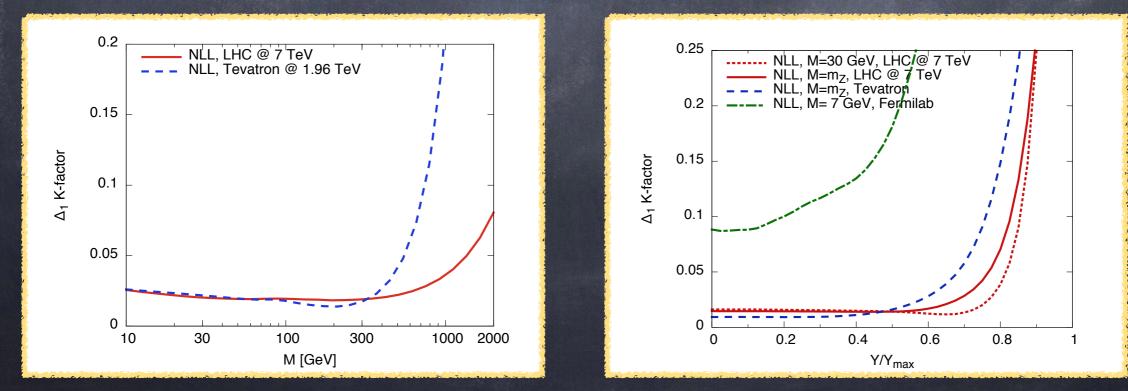

The functions g_i resum $\alpha_s^n \ln^n N$ to all orders

Threshold Resummation in DIS and DY

- TROLL (TROLL Resums Only Large-x Logarithms) computes threshold-enhanced terms up to N³LL' accuracy(<u>http://www.ge.infn.it/~bonvini/troll/</u>)
- Consistent match with fixed order
- TROLL delivers $\Delta_j K_{N^n LL}$

$\sigma_{N^{j}LO+N^{k}LL} = \sigma_{N^{j}LO} + \sigma_{LO} \times \Delta_{j} K_{N^{k}LL}$

Target Mass Corrections at Next to Leading Twist



Luca Rottoli

Threshold Resummation in DIS and DY

- TROLL (TROLL Resums Only Large-x Logarithms) computes threshold-enhanced terms up to N³LL' accuracy(<u>http://www.ge.infn.it/~bonvini/troll/</u>)
- Consistent match with fixed order
- TROLL delivers $\Delta_j K_{N^n LL}$

$\sigma_{N^{j}LO+N^{k}LL} = \sigma_{N^{j}LO} + \sigma_{LO} \times \Delta_{j} K_{N^{k}LL}$

Luca Rottoli

NNPDF3.0res Dataset

Experiment	Observable	Ref.	NNPDF3.0 global	NNPDF3.0 DIS+DY+top
I			(N)NLO	(N)NLO [+(N)NLL]
NMC	$\sigma_{ m dis}^{ m NC}, F_2^d/F_2^p$	[114, 115]	Yes	Yes
BCDMS	F_2^d, F_2^p	[116, 117]	Yes	Yes
SLAC	F_2^d, F_2^p	[118]	Yes	Yes
CHORUS	$\sigma_{\nu N}^{\rm CC}$	[119]	Yes	Yes
NuTeV	$\sigma_{ u N}^{ m CC, charm}$	[120]	Yes	Yes
HERA-I	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[121]	Yes	Yes
ZEUS HERA-II	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[122–125]	Yes	Yes
H1 HERA-II	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[126, 127]	Yes	Yes
HERA charm	$\sigma_{ m dis}^{ m NC, charm}$	[128]	Yes	Yes
DY E866	$\sigma_{ m DY,p}^{ m NC}, \sigma_{ m DY,d}^{ m NC}/\sigma_{ m DY,p}^{ m NC}$	[129–131]	Yes	Yes
DY E605	$\sigma_{ m DY,p}^{ m NC}$	[132]	Yes	Yes
CDF Z rap	$\sigma_{ m DY,p}^{ m NC}$	[133]	Yes	Yes
CDF Run-II k_t jets	$\sigma_{ m jet}$	[134]	Yes	No
D0 Z rap	$\sigma_{ m DY,p}^{ m NC}$	[135]	Yes	Yes
ATLAS Z 2010	$\sigma_{ m DY,p}^{ m NC}$	[136]	Yes	Yes
ATLAS W 2010	$\sigma^{ m CC}_{ m DY,p}$	[136]	Yes	No
ATLAS 7 TeV jets 2010	$\sigma_{ m jet}$	[137]	Yes	No
ATLAS 2.76 TeV jets	$\sigma_{ m jet}$	[138]	Yes	No
ATLAS high-mass DY	$\sigma_{ m DY,p}^{ m NC}$	[139]	Yes	Yes
ATLAS $W p_T$	$\sigma^{ m CC}_{ m DY,p}$	[140]	Yes	No
CMS W electron asy	$\sigma^{ m CC}_{ m DY,p}$	[141]	Yes	No
CMS W muon asy	$\sigma^{ m CC}_{ m DY,p}$	[142]	Yes	No
CMS jets 2011	$\sigma_{ m jet}$	[143]	Yes	No
CMS $W + c$ total	$\sigma_{ m DY,p}^{ m NC, charm}$	[144]	Yes	No
CMS 2D DY 2011	$\sigma_{ m DY,p}^{ m NC}$	[145]	Yes	Yes
LHCb W rapidity	$\sigma^{ m CC}_{ m DY,p}$	[146]	Yes	No
LHCb Z rapidity	$\sigma_{ m DY,p}^{ m NC}$	[147]	Yes	Yes
ATLAS CMS top prod	$\sigma(t\bar{t})$	[148–153]	Yes	Yes

Luca Rottoli

NNPDF3.0res Dataset

Experiment	Observable	Ref.	NNPDF3.0 global	NNPDF3.0 DIS+DY+top
			(N)NLO	(N)NLO [+(N)NLL]
NMC	$\sigma_{ m dis}^{ m NC}, F_2^d/F_2^p$	[114, 115]	Yes	Yes
BCDMS	F_2^d, F_2^p	[116, 117]	Yes	Yes
SLAC	F_2^d, F_2^p	[118]	Yes	Yes
CHORUS	$\sigma^{ m CC}_{ u N}$	[119]	Yes	Yes
NuTeV	$\sigma_{ u N}^{ m CC, charm}$	[120]	Yes	Yes
HERA-I	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[121]	Yes	Yes
ZEUS HERA-II	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[122–125]	Yes	Yes
H1 HERA-II	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[126, 127]	Yes	Yes
HERA charm	$\sigma_{ m dis}^{ m NC, charm}$	[128]	Yes	Yes
DY E866	$\sigma_{ m DY,p}^{ m NC}, \sigma_{ m DY,d}^{ m NC}/\sigma_{ m DY,p}^{ m NC}$	[129–131]	Yes	Yes
DY E605	$\sigma_{ m DY,p}^{ m NC}$	[132]	Yes	Yes
CDF Z rap	$\sigma_{ m DY,p}^{ m NC}$	[133]	Yes	Yes
CDF Run-II k_t jets	$\sigma_{ m jet}$	[134]	Yes	No
D0 Z rap	$\sigma_{ m DY,p}^{ m NC}$	[135]	Yes	Yes
ATLAS Z 2010	$\sigma_{ m DY,p}^{ m NC}$	[136]	Yes	Yes
ATLAS W 2010	$\sigma^{ m CC}_{ m DY,p}$	[136]	Yes	No
ATLAS 7 TeV jets 2010	$\sigma_{ m jet}$	[137]	Yes	No
ATLAS 2.76 TeV jets	$\sigma_{ m jet}$	[138]	Yes	No
ATLAS high-mass DY	$\sigma_{ m DY,p}^{ m NC}$	[139]	Yes	Yes
ATLAS $W p_T$	$\sigma^{ m CC}_{ m DY,p}$	[140]	Yes	No
$CMS \ W \ electron \ asy$	$\sigma^{ m CC}_{ m DY,p}$	[141]	Yes	No
CMS W muon asy	$\sigma_{ m DY,p}^{ m CC}$	[142]	Yes	No
CMS jets 2011	$\sigma_{ m jet}$	[143]	Yes	No
CMS $W + c$ total	$\sigma_{ m DY,p}^{ m NC, charm}$	[144]	Yes	No
CMS 2D DY 2011	$\sigma_{ m DY,p}^{ m NC}$	[145]	Yes	Yes
LHCb W rapidity	$\sigma^{ m CC}_{ m DY,p}$	[146]	Yes	No
LHCb Z rapidity	$\sigma_{ m DY,p}^{ m NC}$	[147]	Yes	Yes
ATLAS CMS top prod	$\sigma(t\bar{t})$	[148–153]	Yes	Yes

medium & large-x gluon

quark-flavour separations

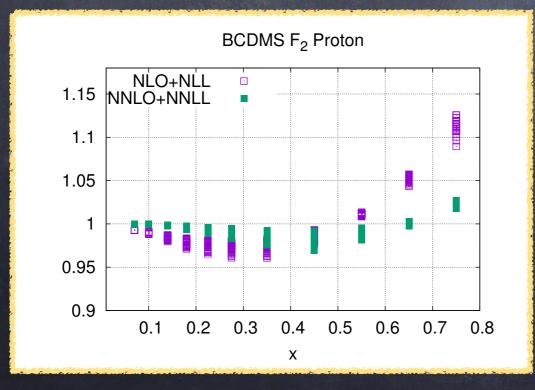
Luca Rottoli

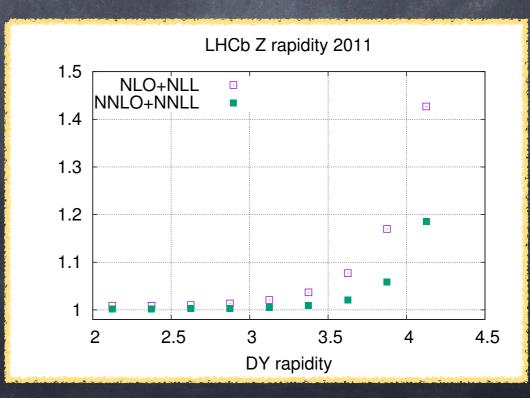
NNPDF3.0res Dataset

Experiment	Observable	Ref.	NNPDF3.0 global	NNPDF3.0 DIS+DY+top
			(N)NLO	(N)NLO [+(N)NLL]
NMC	$\sigma_{ m dis}^{ m NC}, F_2^d/F_2^p$	[114, 115]	Yes	Yes
BCDMS	F_2^d, F_2^p	[116, 117]	Yes	Yes
SLAC	F_2^d, F_2^p	[118]	Yes	Yes
CHORUS	$\sigma_{ u N}^{ m CC}$	[119]	Yes	Yes
NuTeV	$\sigma_{ u N}^{ m CC, charm}$	[120]	Yes	Yes
HERA-I	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[121]	Yes	Yes
ZEUS HERA-II	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[122–125]	Yes	Yes
H1 HERA-II	$\sigma_{ m dis}^{ m NC}, \sigma_{ m dis}^{ m CC}$	[126, 127]	Yes	Yes
HERA charm	$\sigma_{ m dis}^{ m NC, charm}$	[128]	Yes	Yes
DY E866	$\sigma_{ m DY,p}^{ m NC}, \sigma_{ m DY,d}^{ m NC}/\sigma_{ m DY,p}^{ m NC}$	[129–131]	Yes	Yes
DY E605	$\sigma_{ m DY,p}^{ m NC}$	[132]	Yes	Yes
CDF Z rap	$\sigma_{ m DY,p}^{ m NC}$	[133]	Yes	Yes
CDF Run-II k_t jets	$\sigma_{ m jet}$	[134]	Yes	No
D0 Z rap	$\sigma_{ m DY,p}^{ m NC}$	[135]	Yes	Yes
ATLAS Z 2010	$\sigma_{ m DY,p}^{ m NC}$	[136]	Yes	Yes
ATLAS W 2010	$\sigma^{ m CC}_{ m DY,p}$	[136]	Yes	No
ATLAS 7 TeV jets 2010	$\sigma_{ m jet}$	[137]	Yes	No
ATLAS 2.76 TeV jets	$\sigma_{ m jet}$	[138]	Yes	No
ATLAS high-mass DY	$\sigma_{ m DY,p}^{ m NC}$	[139]	Yes	Yes
ATLAS $W p_T$	$\sigma^{ m CC}_{ m DY,p}$	[140]	Yes	No
$CMS \ W \ electron \ asy$	$\sigma^{ m CC}_{ m DY,p}$	[141]	Yes	No
CMS W muon asy	$\sigma^{ m CC}_{ m DY,p}$	[142]	Yes	No
CMS jets 2011	$\sigma_{ m jet}$	[143]	Yes	No
CMS $W + c$ total	$\sigma_{ m DY,p}^{ m NC, charm}$	[144]	Yes	No
CMS 2D DY 2011	$\sigma_{ m DY,p}^{ m NC}$	[145]	Yes	Yes
LHCb W rapidity	$\sigma^{ m CC}_{ m DY,p}$	[146]	Yes	No
LHCb Z rapidity	$\sigma_{ m DY,p}^{ m NC}$	[147]	Yes	Yes
ATLAS CMS top prod	$\sigma(t\bar{t})$	[148–153]	Yes	Yes

~3000 Data Points

Accuracy competitive with global fit, except for large-x gluon

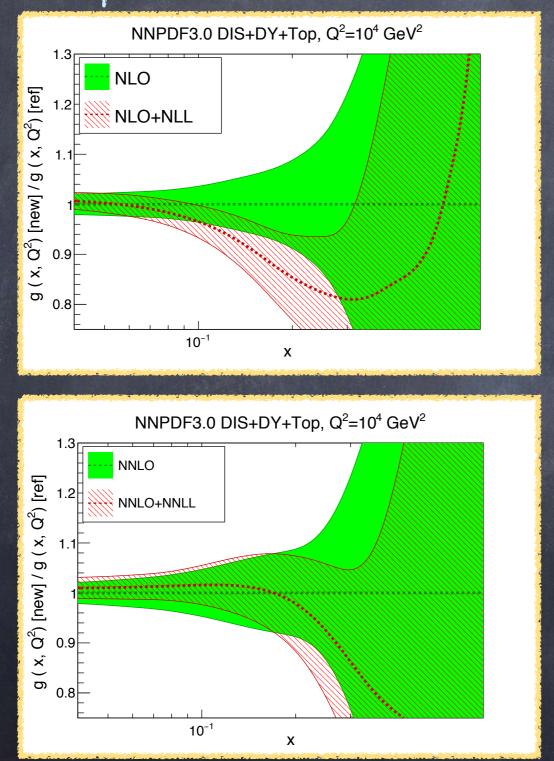

Luca Rottoli

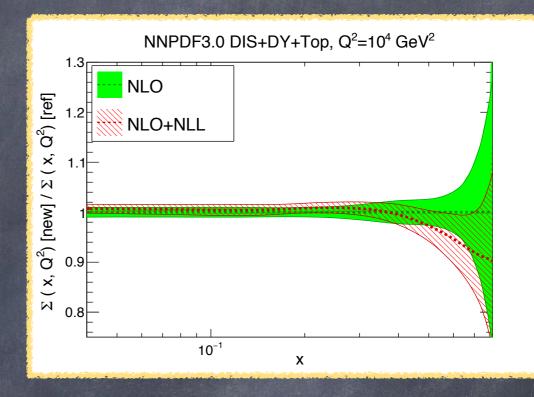

K-factors

 Effect of resummation included supplementing fixed order computation with K-factors

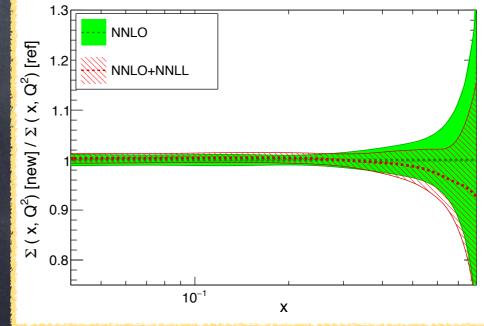
$$\mathsf{K}^{\mathsf{N}^{\mathsf{k}}\mathsf{L}\mathsf{O}+\mathsf{N}^{\mathsf{k}}\mathsf{L}\mathsf{L}} = \frac{\sigma^{\mathsf{N}^{\mathsf{k}}\mathsf{L}\mathsf{O}+\mathsf{N}^{\mathsf{k}}\mathsf{L}\mathsf{L}}}{\sigma^{\mathsf{N}^{\mathsf{k}}\mathsf{L}\mathsf{O}}}$$

Re-iteration of the fits to ensure convergence

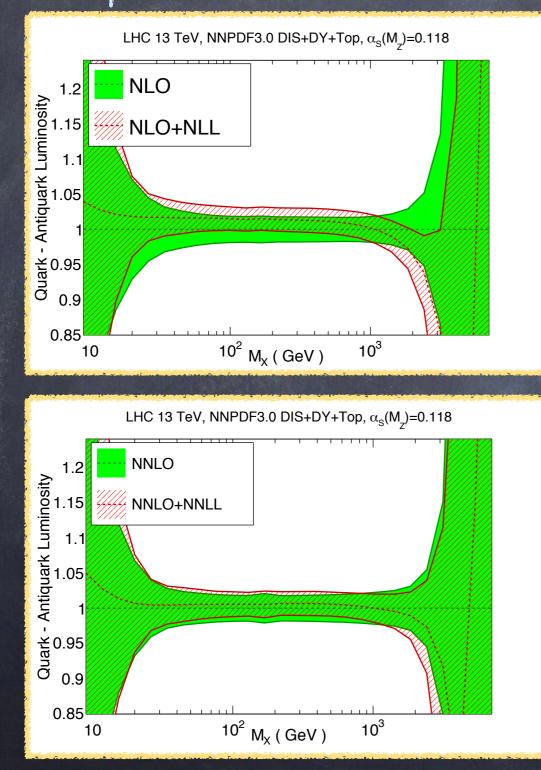


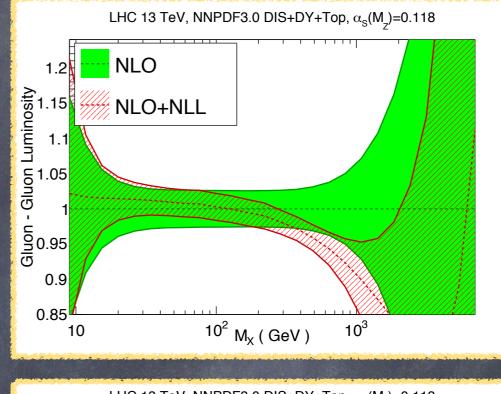


xford

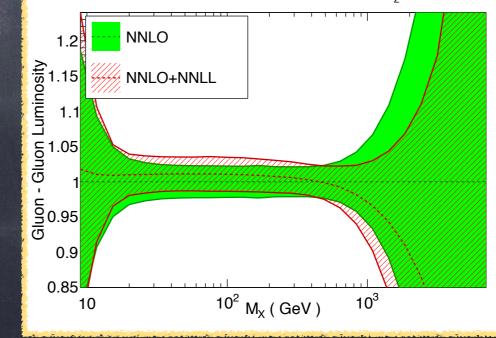

hysics

Comparison with Baseline Fits

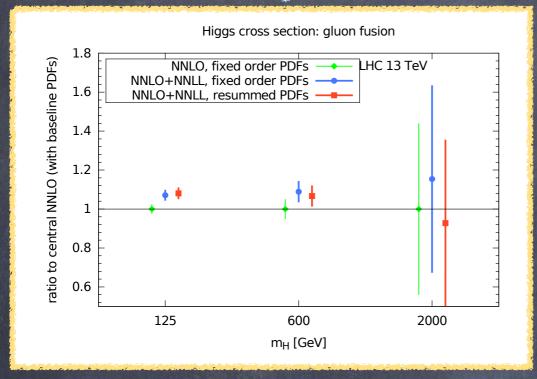



xford

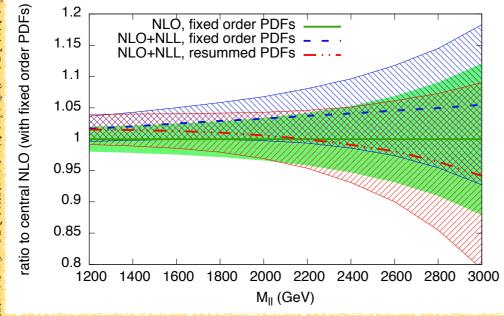
hysics



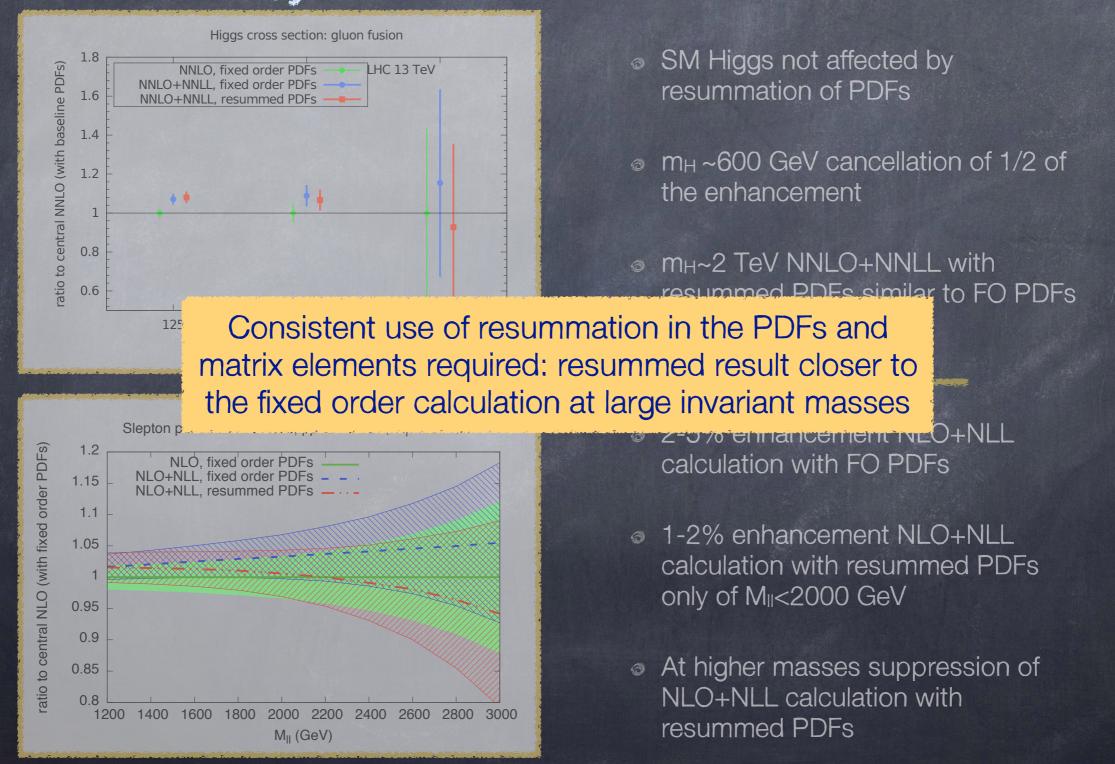
Comparison with Baseline Fits



LHC 13 TeV, NNPDF3.0 DIS+DY+Top, $\alpha_{s}(M_{2})$ =0.118



Phenomenology

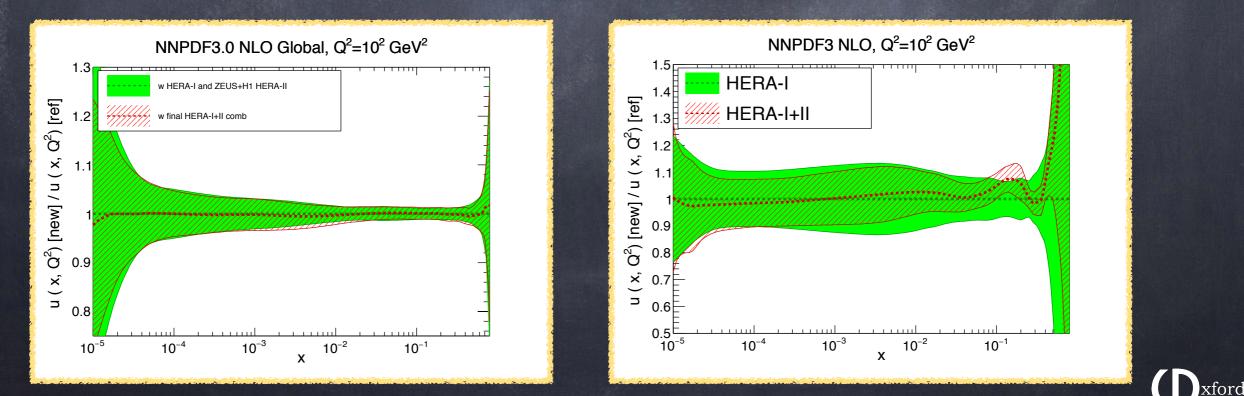

Slepton pair invariant mass, pp @ 13 TeV, m_l = 564 GeV.

- SM Higgs not affected by resummation of PDFs
- m_H ~600 GeV cancellation of 1/2 of the enhancement
- m_H~2 TeV NNLO+NNLL with resummed PDFs similar to FO PDFs (larger uncertainty)
- 2-5% enhancement NLO+NLL calculation with FO PDFs
- 1-2% enhancement NLO+NLL calculation with resummed PDFs only of M_{II}<2000 GeV
- At higher masses suppression of NLO+NLL calculation with resummed PDFs

Phenomenology

Threshold Resummation: Summary

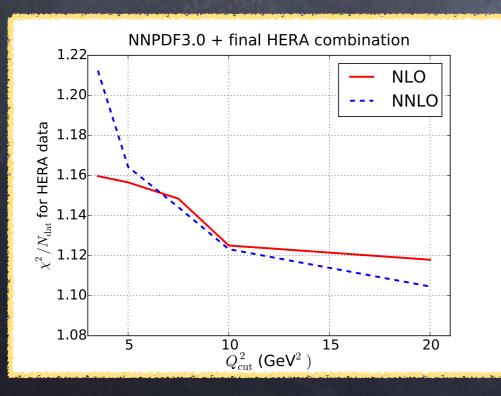
- First ever (global) fit of PDFs with threshold resummation
- PDFs reduced in the large-x region; at intermediate values of x quark PDFs slightly enhanced (sum rule); negligible effects at x<0.01
- Inclusion of resummation in PDFs compensates the enhancement from resummation in partonic cross sections for when M_X is large
- Importance of using consistently the same perturbative order in all components when calculating hadronic cross sections: consistent resummed calculations might be closer to fixed order results
- Limitations: larger uncertainties do to reduced dataset. Methodology enables to have truly global resummed PDFs when calculations for missing processes will be available

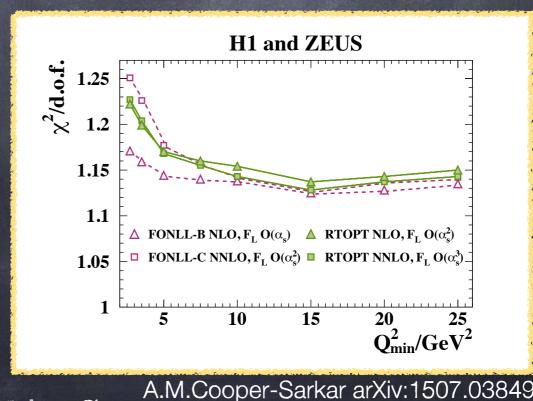

New Experimental Data

- HERA II HERA II legacy data
- o D0 W asymmetry
- ATLAS low-mass DY, prompt photon, W+c, Z pt, top rapidity, inclusive jets 7 TeV
- CMS Z pt, top rapidity, double differential DY 8 TeV

New Experimental Data: HERA II Data Impact

- NNPDF3.0 already includes all published data from HERA-II from H1 and ZEUS
- Impact of HERA legacy data on NNPDF3.0 negligible
- Rather substantial impact of HERA II data on HERA I-only fit


Luca Rottoli


NNPDF Status and Future Plans

hysics

New Experimental Data: HERA II Data Impact

- NNPDF3.0 already includes all published data from HERA-II from H1 and ZEUS
- Impact of HERA legacy data on NNPDF3.0 negligible
- Rather substantial impact of HERA II data on HERA I-only fit
- $\circ \chi^2 v s Q_{cut}^2$ may indicate the need for small-x resummation

Integration of APFEL in NNPDF with APFELcomb: straightforward inclusion in the NNPDF fits of new theory developments (resummations, IC, scale variations...)

✓ NNPDF3.0res with threshold resummation

□ NNPDF3.x with new data, MSbar running masses

□ NNPDF3.x with small-x resummation

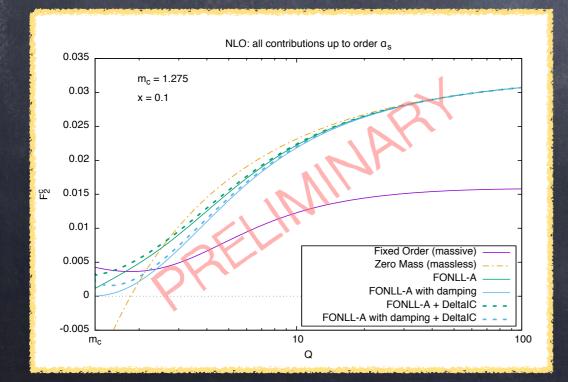
□ NNPDF3.x with fitted charm PDF (M. Bonvini's talk)

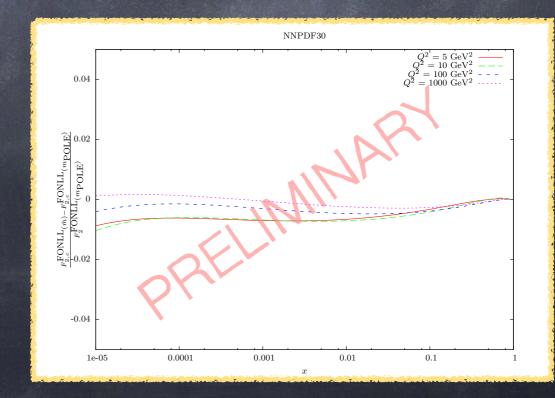
□ NNPDF3.xQED: precision determination of the photon PDF from LHC data

□ NNPDF4.0 (?) with theoretical uncertainties on PDFs

Luca Rottoli

NNPDF methodology: a short recap


- Each PDF parameterised by a Neural Network (NN): default 2-5-3-1 architecture, 37 parameters
- Minimisation performed using Genetic Algorithms (GA) to find best-fit PDFs
- Best fit through cross-validation method (no noise fitting)
- Capture the PDF uncertainties by using a Monte Carlo approach
 Approach
- Monte Carlo representation of covariance matrix trough pseudo-data replicas
- PDF replica set is fitted to each pseudo-data replica
- Set of PDF replicas can be used to compute any set of observables



Heavy Quarks Treatment

- Extension of FONLL GM-VFN scheme to include MSbar running masses and intrinsic charm (IC)
- Moderate but not negligible effect in the pole \rightarrow MSbar mass when keeping the same numerical value of the charm mass fixed
- Intrinsic charm discussed in M. Bonvini's talk

xford

hysics

