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LHC, New Physics, and the pursuit of Precision 2

LHC as a discovery machine

‣ Higgs Boson 
‣ BSM particles

✓
𐄂 (as of today)

Focus in LHC run II

‣ Measurement of the Standard Model parameters with very high precision 
‣ Signals of New Physics beyond the Standard Model

‣ New BSM scenarios to be tested 
‣ New techniques to enhance signal/background ratio and isolate tiny deviations 

from SM predictions 
‣ Development of accurate and precise theoretical predictions 

A theorist’s Quest:
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Higgs production in gluon fusion
Estimation of theoretical uncertainties for inclusive gluon fusion Higgs production 
involves different sources of uncertainty

‣ Missing electroweak corrections 

‣ Bottom and charm effects 

‣ Finite top mass effects 

‣ Truncation of the soft expansion 

‣ Missing higher orders uncertainties 

‣ …sociological uncertainty: uncertainty in the interpretation of the uncertainties

This talk

3

In this world nothing can be said to 
be certain, except death and taxes. 

(Benjamin Franklin)
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The curious case of the inclusive Higgs cross section
‣ Inclusive gluon fusion Higgs production cross section has a very slowly 

convergent perturbative expansion 

‣ NLO and NNLO large QCD corrections 

‣ Missing higher order uncertainties as large as PDF uncertainties 
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The curious case of the inclusive Higgs cross sectionHiggs in gluon fusion at LHC: perturbative (in)stability
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The Canon
‣ Canonical way to probe higher order uncertainties: scale variation 

‣ Theoretical computation of the inclusive Higgs cross section depends on scales 
(factorization and renormalization scales - more scales in a SCET approach)

�(mH) = �
i,j

Cij

�
�s(µR),

µR
mH

,
µF
mH

�
� Lij(µF)

‣ Scale dependence is higher order and vanishes to all orders 

‣ Arbitrary choice of a central scale and variation of the scales

9

Advantages Limitations

‣ Simple  procedure 
‣ Universal

‣ Choice of central scale 
‣ Range of the variation 
‣ Interpretation of the uncertainty 
‣ Limited class of higher order terms being probed
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The Canon for ggHHiggs in gluon fusion at LHC: perturbative (in)stability
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1/2 < µR/mH < 2
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Higgs in gluon fusion at LHC: perturbative (in)stability
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1/4 < µR/mH < 1

11The Canon for ggH
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Apocrypha

Are there any alternatives to canonical scale variation?

‣ Symmetrization of the uncertainties to avoid stationary points 

‣ Modification of the range

1. ‘Stretching’ the canon

2. Thinking outside the canon
‣ Rearranging  the perturbative expansion 

‣ Resort to a completely different approach

12

‣ Resummation 

‣ Series acceleration
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Threshold resummation
Reorganization of the perturbative expansion by performing an all order 
summation of classes of logs

Inclusive cross section: large logarithms of 1 � z z =
m2

H
ŝ

Tower of logarithms �n
s

�
lnk(1 � z)

1 � z

�

+

, 0 � k � 2n � 1

Enhancement in the partonic soft limit z � 1

Double logarithmic enhancement due to soft gluon emission

Mellin space expression

13

C(N) = 1 +
�

�
n=1

�n
s

2n

�
k=0

cnk lnk N + O(1/N)



PSR 2016, Paris, July 4-6, 2016

Theme and Variations
Standard dQCD 
resummationC(N) = g0(�s) exp

�
1
�s

g1(�sln N) + g2(�sln N) + �sg3(�sln N) + . . .
�

‣ Subdominant contribution not fixed by resummation Freedom over              terms1/N

‣ Exponentiation of constants provides a handle on subleading terms
Improvements:
‣ Single gluon emission kinematics 
‣ Collinear contributions from the full AP splitting function

Resummation is beneficial
‣ Perturbative convergence improved 
‣ Theory uncertainty from scale variations 
‣ Theory uncertainty from subleading (all order) and subdominant (all order) 

contributions
Perform all these variations together…

14

Bonvini, Marzani 2014
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Higgs cross section results
Perform 42 variations and take the envelope The answer to the ultimate question of 

life, the universe and everything!!!!!!!!!
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Sequence transformations according to Weniger

G(n)
k (qm, sn, �n) =

k

�
j=0

(�1)j
�

k
j

� k�1

�
m=1

n + j + qm
n + k + qm

sn+j

�n+j

k

�
j=0

(�1)j
�

k
j

� k�1

�
m=1

n + j + qm
n + k + qm

1
�n+j

Very wide class of sequence transformation

Idea (Stirling, Euler): speed up convergence by applying a transformation to the sequence sn

Application to the inclusive Higgs cross section

Choose some good algorithms and compute some guesses

Choose many O(100) algorithms and compute many guesses

David, Passarino 2013

Bonvini, Marzani, Muselli, LR 2016

‣ No information on the asymptotic behaviour of the series, so it is not clear 
how to prefer an algorithm rather than another 

‣ Result should not depend on the scale

16

lim
n��

s�
n � s

sn � s
= 0
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Higgs cross section results
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The Cacciari-Houdeau approach I believe that we do not know anything 
for certain, but everything probably 
(Christiaan Huygens)

18

Statistical model for the interpretation of theory errors, from which one can 
compute the uncertainty on the truncated perturbative series for a given degree of 
belief (DoB) given the first terms in the expansion. 

Probability density for �

� = �LO

�

�
k=0

bk(�, k0)(k + k0)!
��s

�

�k

Possible power growth

Possible factorial growth

Cacciari, Houdeau (2011)

Bagnaschi, Cacciari, Guffanti, Jenniches (2014)

Determination of λ 

‣ Survey over several observables (assumes λ is process-independent)  

‣ fit λ requiring the first known coefficients are of the same size 
Bagnaschi, Cacciari, Guffanti, Jenniches (2014)

Forte, Isgrò, Vita (2013)

� = �LO

�

�
k=0

ck(�)
��s

�

�k

CH

CH
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Higgs cross section results 19

CH: results
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Figure 4. The CH (red) and CH (blue) errors on the LO, NLO, NNLO and N3LO cross sections for the four
scales µF = µR = mH/4, mH/2, mH, 2mH (from left to right). For the four values of the scales, the fitted values
of � are respectively 0.44, 0.46, 0.24, 0.17 for CH and 1.08, 1.14, 0.58, 0.41 for CH. Thicker bands correspond to
68% DoB, while thinner bands correspond to 95% DoB.

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

CH 48.1 ± 0.7(1.2) 48.1 ± 0.6(1.0) 46.5 ± 2.1(3.5) 44.3 ± 3.5(5.8)

CH 48.1 ± 1.2(1.9) 48.1 ± 1.2(2.0) 46.5 ± 4.2(7.0) 44.3 ± 6.9(11.5)

Table 4. N3LO results and their CH and CH uncertainties at 68% DoB (95% DoB in brackets).

are all of the same size. In fact, as we also confirmed, it is convenient to exclude the first coefficient
from the fit, on the ground that the LO result is not in line with the next orders (it is much smaller),
and the fact that this fit aims at guessing the asymptotic behaviour of the coefficients. In the results
that follow, we will then use for each method (CH and CH) the value of � obtained by such fit.

In Fig. 4 we show the four results at LO, NLO, NNLO and N3LO for the four scales µF = µR =
mH/4, mH/2, mH, 2mH, each with the two versions (CH and CH) of the Cacciari-Houdeau uncertainty.
We observe that the CH uncertainty is larger than the CH one at LO and NLO, but is smaller at NNLO
and N3LO: this effect originates from the factorial contribution, which changes the relative weight of the
individual orders in the determination of the uncertainty. In this respect, the CH uncertainty at N3LO
is more conservative than the CH one. We also note that the 68% DoB uncertainty (thicker band)
is able to cover the next order only at NNLO, while for lower orders only the 95% DoB uncertainty
(thinner band) works (except at LO for CH). We also see that for small scales µF = µR = mH/4, mH/2
the uncertainty shrinks considerably as the perturbative order increases, an indication that the series
is converging. For larger scales, µF = µR = mH, 2mH, the observed pattern is much worse and, as a
consequence, the uncertainty band of the N3LO is still large.

In Tab. 4 we report the value of N3LO cross section together with its uncertainty as obtained

– 16 –

Marco Bonvini Understanding theoretical uncertainties 28

Pascal bet on the existence of God basing on calculation of probabilities, we use calculation 
of probabilities to bet on the value of the cross section of the God’s particle Higgs
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All Things Considered 20

CH: results

Figure 4. The CH (red) and CH (blue) errors on the LO, NLO, NNLO and N3LO cross sections for the four
scales µF = µR = mH/4, mH/2, mH, 2mH (from left to right). For the four values of the scales, the fitted values
of � are respectively 0.44, 0.46, 0.24, 0.17 for CH and 1.08, 1.14, 0.58, 0.41 for CH. Thicker bands correspond to
68% DoB, while thinner bands correspond to 95% DoB.

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

CH 48.1 ± 0.7(1.2) 48.1 ± 0.6(1.0) 46.5 ± 2.1(3.5) 44.3 ± 3.5(5.8)

CH 48.1 ± 1.2(1.9) 48.1 ± 1.2(2.0) 46.5 ± 4.2(7.0) 44.3 ± 6.9(11.5)

Table 4. N3LO results and their CH and CH uncertainties at 68% DoB (95% DoB in brackets).

are all of the same size. In fact, as we also confirmed, it is convenient to exclude the first coefficient
from the fit, on the ground that the LO result is not in line with the next orders (it is much smaller),
and the fact that this fit aims at guessing the asymptotic behaviour of the coefficients. In the results
that follow, we will then use for each method (CH and CH) the value of � obtained by such fit.

In Fig. 4 we show the four results at LO, NLO, NNLO and N3LO for the four scales µF = µR =
mH/4, mH/2, mH, 2mH, each with the two versions (CH and CH) of the Cacciari-Houdeau uncertainty.
We observe that the CH uncertainty is larger than the CH one at LO and NLO, but is smaller at NNLO
and N3LO: this effect originates from the factorial contribution, which changes the relative weight of the
individual orders in the determination of the uncertainty. In this respect, the CH uncertainty at N3LO
is more conservative than the CH one. We also note that the 68% DoB uncertainty (thicker band)
is able to cover the next order only at NNLO, while for lower orders only the 95% DoB uncertainty
(thinner band) works (except at LO for CH). We also see that for small scales µF = µR = mH/4, mH/2
the uncertainty shrinks considerably as the perturbative order increases, an indication that the series
is converging. For larger scales, µF = µR = mH, 2mH, the observed pattern is much worse and, as a
consequence, the uncertainty band of the N3LO is still large.

In Tab. 4 we report the value of N3LO cross section together with its uncertainty as obtained

– 16 –
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Application to the Higgs cross section

Idea 1: Choose some “good” algorithms and compute a guess for the
all-order cross section [David,Passarino 2013]

Idea 2: Choose many (≥ 100) algorithms and compute many guesses for
the all-order cross section. Do it for several choices of the central scale (the
sum must be the same). Observe. Decide. [MB,Marzani,Muselli,Rottoli 2016]

Note: statistical interpretation still missing, but not impossible...
Figure 5. Distributions of the Higgs cross section at 13 TeV as obtained using the various convergence acceler-
ation algorithms described in the text. Both the fixed-order (orange) and the resummed (blue) expansions are
shown, for the four scales µR = µF = mH/2 (top left), mH (top right), mH/4 (bottom left) and 2mH (bottom
right).

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

Fixed-order expansion 48.7 ± 1.0 48.7 ± 1.2 46.3 ± 4.6 44.6 ± 9.3

Resummed expansion 48.9 ± 0.5 48.9 ± 0.6 50.2 ± 1.0 52.6 ± 1.6

Table 5. Mean and standard deviation of the estimates of the all-order sum of the fixed-order (first row) and
resummed (second row) expansions, based on the set of convergence acceleration algorithms described in the
text.

All the numbers in Tab. 5 come from estimates of the all-order sum of the series, which should
be then the same for all scales and for both the fixed-order and the resummed expansions. They are
indeed all compatible within the quoted errors, except the resummed result at µ0 = 2mH which is
higher than most of the other results: this is just a consequence of the limited statistical meaning of
the error estimates, which does not take into account the shape of the distribution of the results, which
is rather asymmetric in this case. The smaller standard deviation on the resummed results shows once
again that the resummed series converges faster, as well as the smaller standard deviation on the
results at lower scales indicates that using µ0 = mH/2 or µ0 = mH/4 leads to a faster convergence, in

– 19 –
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‣ Cacciari-Hodeau

‣ Acceleration

Results

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

LO 18.6+5.8
�3.9 16.0+4.3

�3.1 13.8+3.2
�2.4 11.9+2.5

�1.9

NLO 44.2+12.0
�8.5 36.9+8.4

�6.2 31.6+6.3
�4.8 27.5+4.9

�3.9

NNLO 50.7+3.4
�4.6 46.5+4.2

�4.7 42.4+4.6
�4.4 38.6+4.4

�4.0

N3LO 48.1+0.0
�7.5 48.1+0.1

�1.8 46.5+1.6
�2.6 44.3+2.5

�2.9

LO+LL 24.0+8.9
�6.8 20.1+6.2

�5.0 16.9+4.5
�3.7 14.3+3.3

�2.8

NLO+NLL 46.9+15.1
�12.6 46.2+15.0

�13.2 46.7+20.8
�13.8 47.3+26.1

�15.8

NNLO+NNLL 50.2+5.5
�5.3 50.1+3.0

�7.1 51.9+9.6
�8.9 54.9+17.6

�11.5

N3LO+N3LL 47.7+1.0
�6.8 48.5+1.5

�1.9 50.1+5.9
�3.5 52.9+13.1

�5.3

Table 3. Fixed-order results and their scale uncertainty together with resummed results and their uncertainty
(as given by the envelope of prescription and scale variations) for four choices of the central scale.

Let us first comment the fixed-order results. Ignoring the LO which contains too few information
for being predictive, we can investigate the convergence pattern of the fixed-order perturbative ex-
pansion when going from NLO to NNLO and to N3LO, relative to the scale uncertainty. For “large”
central scales, µ0 = mH and µ0 = 2mH, NNLO is a large correction and its central value is not covered
by the NLO uncertainty band. The N3LO is a smaller correction, a sign that the series is converging
(at least asymptotically), but for µ0 = 2mH its central value is not covered by the NNLO uncertainty
band. For µ0 = mH/2, the convergence pattern is improved, now with the central NNLO contained in
the NLO band, and the central N3LO contained in the NNLO band. However, for instance, the central
N3LO and its band are not contained in the NLO band (they do not even overlap). At µ0 = mH/4 the
convergence pattern seems further improved, however the N3LO error is very asymmetric and large
(same size of the NNLO error). Additionally, the N3LO results at the four central scales shown in
Table 3 are barely compatible (if one had chosen µ0 = 4mH the result would not be compatible with
the one at µ0 = mH/2). This analysis shows that the estimate of the uncertainty from missing higher
orders using canonical 7-point scale variation is not reliable at fixed order.

On the other hand, resummation allows for a different way of estimating the effect of missing higher
orders, which is not purely based on scale variation. We observe that, for each choice of the central
scale µ0, the uncertainty of the resummed results from NLO+NLL onwards covers the central value
and at least a portion of the band of the next (logarithmic) order. In fact, with the exception of the
choice µ0 = mH/4 (the pathological behaviour of which seems to be driven by the N3LO contribution),
the NNLO+NNLL band is fully contained in the NLO+NLL band, and the N3LO+N3LL band is fully
contained in the NNLO+NNLL band. We also note a systematic reduction of the scale uncertainty
when going from one logarithmic order to the next.

We also observe that the resummed results at each order are all compatible among the different
choices of the central scale µ0, thereby showing little sensitivity on µ0. It is true that at extreme
choices of µ0 the error bands become very asymmetric and lead to higher values of the cross section at
large µ0 and to lower values of the cross section at small µ0; nevertheless, a region of overlap always
exists.

We note that our observations on the behaviour of the resummed results would still hold if one
considers a less conservative option, namely our default �-soft resummation with AP2 and the natural

– 11 –
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Results

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

LO 18.6+5.8
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�3.9
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Table 3. Fixed-order results and their scale uncertainty together with resummed results and their uncertainty
(as given by the envelope of prescription and scale variations) for four choices of the central scale.

Let us first comment the fixed-order results. Ignoring the LO which contains too few information
for being predictive, we can investigate the convergence pattern of the fixed-order perturbative ex-
pansion when going from NLO to NNLO and to N3LO, relative to the scale uncertainty. For “large”
central scales, µ0 = mH and µ0 = 2mH, NNLO is a large correction and its central value is not covered
by the NLO uncertainty band. The N3LO is a smaller correction, a sign that the series is converging
(at least asymptotically), but for µ0 = 2mH its central value is not covered by the NNLO uncertainty
band. For µ0 = mH/2, the convergence pattern is improved, now with the central NNLO contained in
the NLO band, and the central N3LO contained in the NNLO band. However, for instance, the central
N3LO and its band are not contained in the NLO band (they do not even overlap). At µ0 = mH/4 the
convergence pattern seems further improved, however the N3LO error is very asymmetric and large
(same size of the NNLO error). Additionally, the N3LO results at the four central scales shown in
Table 3 are barely compatible (if one had chosen µ0 = 4mH the result would not be compatible with
the one at µ0 = mH/2). This analysis shows that the estimate of the uncertainty from missing higher
orders using canonical 7-point scale variation is not reliable at fixed order.

On the other hand, resummation allows for a different way of estimating the effect of missing higher
orders, which is not purely based on scale variation. We observe that, for each choice of the central
scale µ0, the uncertainty of the resummed results from NLO+NLL onwards covers the central value
and at least a portion of the band of the next (logarithmic) order. In fact, with the exception of the
choice µ0 = mH/4 (the pathological behaviour of which seems to be driven by the N3LO contribution),
the NNLO+NNLL band is fully contained in the NLO+NLL band, and the N3LO+N3LL band is fully
contained in the NNLO+NNLL band. We also note a systematic reduction of the scale uncertainty
when going from one logarithmic order to the next.

We also observe that the resummed results at each order are all compatible among the different
choices of the central scale µ0, thereby showing little sensitivity on µ0. It is true that at extreme
choices of µ0 the error bands become very asymmetric and lead to higher values of the cross section at
large µ0 and to lower values of the cross section at small µ0; nevertheless, a region of overlap always
exists.

We note that our observations on the behaviour of the resummed results would still hold if one
considers a less conservative option, namely our default �-soft resummation with AP2 and the natural
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Results

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

LO 18.6+5.8
�3.9 16.0+4.3

�3.1 13.8+3.2
�2.4 11.9+2.5

�1.9

NLO 44.2+12.0
�8.5 36.9+8.4

�6.2 31.6+6.3
�4.8 27.5+4.9

�3.9

NNLO 50.7+3.4
�4.6 46.5+4.2

�4.7 42.4+4.6
�4.4 38.6+4.4

�4.0

N3LO 48.1+0.0
�7.5 48.1+0.1

�1.8 46.5+1.6
�2.6 44.3+2.5

�2.9

LO+LL 24.0+8.9
�6.8 20.1+6.2

�5.0 16.9+4.5
�3.7 14.3+3.3

�2.8

NLO+NLL 46.9+15.1
�12.6 46.2+15.0

�13.2 46.7+20.8
�13.8 47.3+26.1

�15.8

NNLO+NNLL 50.2+5.5
�5.3 50.1+3.0

�7.1 51.9+9.6
�8.9 54.9+17.6

�11.5

N3LO+N3LL 47.7+1.0
�6.8 48.5+1.5

�1.9 50.1+5.9
�3.5 52.9+13.1

�5.3

Table 3. Fixed-order results and their scale uncertainty together with resummed results and their uncertainty
(as given by the envelope of prescription and scale variations) for four choices of the central scale.

Let us first comment the fixed-order results. Ignoring the LO which contains too few information
for being predictive, we can investigate the convergence pattern of the fixed-order perturbative ex-
pansion when going from NLO to NNLO and to N3LO, relative to the scale uncertainty. For “large”
central scales, µ0 = mH and µ0 = 2mH, NNLO is a large correction and its central value is not covered
by the NLO uncertainty band. The N3LO is a smaller correction, a sign that the series is converging
(at least asymptotically), but for µ0 = 2mH its central value is not covered by the NNLO uncertainty
band. For µ0 = mH/2, the convergence pattern is improved, now with the central NNLO contained in
the NLO band, and the central N3LO contained in the NNLO band. However, for instance, the central
N3LO and its band are not contained in the NLO band (they do not even overlap). At µ0 = mH/4 the
convergence pattern seems further improved, however the N3LO error is very asymmetric and large
(same size of the NNLO error). Additionally, the N3LO results at the four central scales shown in
Table 3 are barely compatible (if one had chosen µ0 = 4mH the result would not be compatible with
the one at µ0 = mH/2). This analysis shows that the estimate of the uncertainty from missing higher
orders using canonical 7-point scale variation is not reliable at fixed order.

On the other hand, resummation allows for a different way of estimating the effect of missing higher
orders, which is not purely based on scale variation. We observe that, for each choice of the central
scale µ0, the uncertainty of the resummed results from NLO+NLL onwards covers the central value
and at least a portion of the band of the next (logarithmic) order. In fact, with the exception of the
choice µ0 = mH/4 (the pathological behaviour of which seems to be driven by the N3LO contribution),
the NNLO+NNLL band is fully contained in the NLO+NLL band, and the N3LO+N3LL band is fully
contained in the NNLO+NNLL band. We also note a systematic reduction of the scale uncertainty
when going from one logarithmic order to the next.

We also observe that the resummed results at each order are all compatible among the different
choices of the central scale µ0, thereby showing little sensitivity on µ0. It is true that at extreme
choices of µ0 the error bands become very asymmetric and lead to higher values of the cross section at
large µ0 and to lower values of the cross section at small µ0; nevertheless, a region of overlap always
exists.

We note that our observations on the behaviour of the resummed results would still hold if one
considers a less conservative option, namely our default �-soft resummation with AP2 and the natural
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‣ Scale Variations

The answer to the ultimate question 
of life, the universe and everything!!!
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The Quest for the Holy Scale 21

Is there a way to choose the optimal scale?

The series has better convergence at mH/2
Do we understand why?

Caveat: factorization and renormalization 
scales are not physical scales 

Central scale chosen such that there are not large logs in the coefficient function

ln
µF
mH

ln
µR
mH

ln
µRN
mH

ln
µFN
mHbut also

Could the best scale be the soft scale?

Saddle-point analysis: determination of Nsaddle~2 for mH~125 GeV Bonvini, Forte, Ridolfi (2012)
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The soft spot
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Summary 23

The aim of science is not to open a door to infinite wisdom, 
but to set a limit to infinite error 

 (Brecht)

‣ Thorough understanding of theory errors mandatory at the LHC  

‣ Canonical scale variation often does not guarantee a reliable estimate of the 
uncertainty from missing higher orders 

‣ Reverting to a different expansion is promising since it goes beyond scale 
dependent terms 

‣ CH Bayesian approach gives a statistical interpretation of the theory errors so 
far missing in other approaches 

‣ All scales are equal, but some scales are more equal than others
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Back-up



PSR 2016, Paris, July 4-6, 2016

Theme and variations

Computation of integrals in the large-N limit: N-soft

   -soft:  variant of the N-soft resummation � ln N � �0(N) Reproduces 
up to O(1/N2) 

S

C(N, �s) = ḡ0(�s) exp S(�s, N)

S(�s, N) =
� 1

0
dz

zN�1 � 1
1 � z

�

�
� m2

H
(1�z)2

z

m2
H

dµ2

µ2 2A
�

�s(µ2)
�

+ D
�

�s([1 � z]2m2
H

�
�

�

S(�s, N) � S(�s, N + 1)

S(�s, N) � 2S(�s, N) � 3S(�s, N + 1) + 2S(�s, N + 2)

AP1
AP2

Collinear improvement: class of next-to-soft terms, through inclusion of more 
terms in the soft expansion of Pgg

Bonvini, Marzani 2014
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Theme and variations
N
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 -soft
default constants in exp constants in g0

µF/mH µR/mH AP2 AP1 AP2 AP1 AP2 AP1 N -soft

4 4 56.8 66.0 56.8 66.0 51.2 58.7 49.4

4 2 55.1 62.3 54.9 62.0 52.2 58.6 50.5

2 4 53.2 57.2 53.7 57.9 48.2 51.4 46.0

2 2 52.9 56.0 52.7 55.8 49.9 52.5 47.9

2 1 51.2 53.0 50.9 52.6 50.5 52.1 48.9

1 2 50.2 50.4 50.6 50.9 47.6 47.7 45.6

1 1 50.1 50.1 49.8 49.8 49.1 49.0 47.5

1 1/2 48.5 48.3 48.3 48.0 49.1 48.8 48.3

1/2 1 48.4 47.4 48.8 47.7 47.6 46.6 46.3

1/2 1/2 48.5 48.0 48.3 47.8 48.6 48.1 48.0

1/2 1/4 47.0 47.1 47.1 47.2 47.7 47.7 47.9

1/4 1/2 47.8 47.4 48.2 47.7 48.0 47.6 47.6

1/4 1/4 47.7 48.0 47.6 47.9 48.0 48.2 48.2

1/4 1/8 44.7 45.1 45.4 45.7 44.6 45.0 44.9

1/8 1/4 45.5 46.1 46.1 46.6 46.2 46.6 46.5

1/8 1/8 41.0 40.9 41.4 41.2 40.9 40.8 40.9

Table 2. Resummed cross sections (in pb) at N3LO+N3LL cross section for the different prescriptions. Scales
and settings as in Tab. 1.

dependence is compensated among different channels, as DGLAP evolution mixes quarks and gluons.
Moreover, at fixed order the factorization scale dependence for Higgs production is very mild (and
much milder than renormalization scale dependence, see Tab. 1), so the factorization scale dependence
of the resummed result is visibly larger. The quark channels, of which qg gives the most important
contribution, give rise to logarithmic terms that are suppressed by 1/N , in the large N limit. Including
a prediction of this channel to all orders should compensate most of the factorization scale dependence.
The resummation of the leading logarithms of this class of NS contributions has been performed in
Ref. [51]. However, these contributions are not yet implemented in the current version of TROLL.

We now turn to our proposal for the perturbative uncertainty of our resummed results. We
consider  -soft with AP2 and with the natural choice for the constants, Eq. (3.2), as our best option
for threshold resummation. However, the other variants of  -soft have the same formal accuracy and
allow us to estimate the uncertainty from 1/N terms and subleading logarithmic terms. We therefore
suggest to consider, for each of the central scales µ0 in Eq. (4.4), the envelope of the canonical 7-point
scale variations and the 6 variants of  -soft resummation (we exclude N -soft from the computation).
This corresponds to a total of 7 · 6 = 42 cross section points,7 from which one takes the highest and
the lowest cross sections as the maximum and minimum of the uncertainty band. As an example, we
highlighted in Tab. 2 those 42 cross sections entering in the error band computation for the central
scale µ0 = mH/2. We conventionally take our default best option (shown in red in Tab. 2) as the
central prediction.

7The reader should not be scared by the number of cross section points needed: the code TROLL is very fast and
computes all of them in less than a second.
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The Cacciari-Houdeau approach

“We make the assumption that all the coefficients cn in a perturbative series share some 
sort of upper bound c> 0 to their absolute values, specific to the physical process studied. 
The calculated coefficients will give an estimate of this c, restricting the possible values for 
the unknown cn. “ 

� = �
n

cn�n
s

Cacciari, Houdeau (2011)

λ: ensures that c exists

Assumption that all cn are bounded broken by presence of factorial growths (renormalons) 

� = �LO

�

�
k=0

bk(�, k0)(k + k0)!
��s

�

�k

Drell-Yan: gluon appears first at NLO, correction to the gluon propagator at NNLO, k0 = −1

Higgs: gluon appears at LO, correction to the gluon propagator at NLO, k0 = 0

Weak processes starting at order αs0: renormalon factorial growth behaves as αsk(k − 1)!


