\qquad

The atmospheric prompt neutrino flux revisited

Luca Rottoli

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Based on: arXiv 1506.08025, R. Gauld, J. Rojo, LR, J. Talbert
arXiv 1511.06346 , R. Gauld, J. Rojo, LR, S. Sarkar, J. Talbert

Prompt vs. conventional flux

The energy spectrum from semi-leptonic decay products depends on a hadronic critical energy, below which the decay probability is > interaction probability

For pions \& kaons, this critical energy is low (decay length is long) hence the leptonic energy spectrum is soft. For charmed mesons, the critical energy is high: they decay promptly to highly energetic leptons

Courtesy: Anne Schukraft
The atmospheric neutrino flux from the decay of pions \& kaons is the conventional flux, whereas that from charm decay is called the prompt flux

Where are the prompt neutrinos?

The flux of prompt neutrinos is harder than that of conventional neutrinos, and was predicted to dominate the total atmospheric flux at energies above $\sim 105-6 \mathrm{GeV}$

No prompt flux seen so far, but an astrophysical signal with similar spectrum has been discovered Astrophysical neutrinos

Recent data put an upper limit on the prompt flux above 1 TeV , which is less than
$\sim 1.5 \mathrm{x}$ the benchmark ERS 2008 calculation arXiv 0806.0418

Even stronger limit of 0.54×ERS @ 90\% C.L. from combined IC59 + IC79 + IC86 data

Cascade Formalism

1. $\frac{d \phi_{p}}{d X}=-\frac{\phi_{p}}{\lambda_{p}}+Z_{p p} \frac{\phi_{p}}{\lambda_{p}}$
2. $\frac{d \phi_{h}}{d X}=-\frac{\phi_{h}}{\rho d_{h}(E)}-\frac{\phi_{h}}{\lambda_{h}}+Z_{h h} \frac{\phi_{h}}{\lambda_{h}}+Z_{p h} \frac{\phi_{p}}{\lambda_{p}}$
3. $\frac{d \phi_{l}}{d X}=\sum_{h} Z_{h \rightarrow l} \frac{\phi_{h}}{\rho d_{h}}$

Asymptotic solutions

$$
\pm 1
$$

$$
\left.\phi_{l}\right|_{\text {low }}=\phi_{p}(E) Z_{h \rightarrow l}^{\text {low }} \frac{Z_{p h}}{\left(1-Z_{p p}\right)}
$$

$$
\left.\phi_{l}\right|_{\text {high }}=\frac{Z_{h \rightarrow l} \epsilon_{h}}{E} \frac{Z_{p h} \phi_{p}(E)}{\left(1-Z_{p p}\right)\left(1-\frac{\Lambda_{p}}{\Lambda_{h}}\right)} \ln \frac{\Lambda_{h}}{\Lambda_{p}}
$$

Geometric Interpolation

$$
\phi_{l}=\sum_{h} \frac{\phi_{l}^{l o w} \phi_{l}^{h i g h}}{\phi_{l}^{l o w}+\phi_{l}^{h i g h}}
$$

Our final flux includes all (interpolated) contributions from charmed hadrons

Full series of cascade equations, from incoming cosmic ray nucleons to final state leptons

Cascade Formalism: Z-moments

For particle production:

$$
Z_{k h}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{k}\left(E^{\prime}, X, \theta\right)}{\phi_{k}(E, X, \theta)} \frac{\lambda_{k}(E)}{\lambda_{k}\left(E^{\prime}\right)} \frac{d n\left(k A \rightarrow h Y ; E^{\prime}, E\right)}{d E} \quad \frac{d n\left(p A \rightarrow h Y ; E^{\prime}, E\right)}{d E}=\frac{1}{\sigma_{p A}\left(E^{\prime}\right)} \frac{d \sigma\left(p A \rightarrow h Y ; E^{\prime}, E\right)}{d E}
$$

For particle decay:

$$
Z_{h \rightarrow l}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{h}\left(E^{\prime}, X\right)}{\phi_{h}(E, X)} \frac{d_{h}(E)}{d_{h}\left(E^{\prime}\right)} \frac{d n\left(h \rightarrow l Y ; E^{\prime}, E\right)}{d E} \quad \frac{d n\left(h \rightarrow l Y ; E^{\prime}, E\right)}{d E}=\frac{1}{\Gamma} \frac{d \Gamma}{d E}
$$

Calculating the prompt flux of atmospheric neutrinos requires a synthesis of QCD, atmospheric physics, and neutrino physics

Incident Cosmic Ray Fluxes: $\phi_{N}^{0}(E)$

Cosmic ray spectrum constrained \sim up to $10^{5} \mathrm{GeV}$ by balloon and space experiments, e.g. AMS and CREAM Higher energies rely on air shower arrays, e.g. Kascade, Auger \& TA. . . many uncertainties regarding CR composition

Broken-Power-Law (BPL)

Gaisser et al. fluxes:
arXiv:astro-ph/1111.6675
arXiv:astro-ph/1303.3565
The effect of the new
parametrizations is significant above $\sim 10^{6} \mathrm{GeV}$, and we are interested in making predictions up to $\sim 10^{8} \mathrm{GeV}$...

$$
\phi_{i}(E)=\Sigma_{j=1}^{3} a_{i, j} E^{-\gamma_{i, j}} \times \exp \left[-\frac{E}{Z_{i} R_{c, j}}\right]
$$

The QCD input: $Z_{p h}$

$$
Z_{p h}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{p}\left(E^{\prime}\right)}{\phi_{p}(E)} \frac{A}{\sigma_{p A}(E)} \frac{d \sigma\left(p p \rightarrow c \bar{c} Y ; E^{\prime}, E\right)}{d E}
$$

- The differential cross-section can be calculated in a variety of formalisms, e.g. the colour dipole model of ERS which is empirical (hard to estimate uncertainties)
- However, there is no evidence that perturbative QCD (with DGLAP evolution) cannot describe charm production data for the entire kinematic region of interest, hence our calculation is performed with NLO+PS Monte-Carlo event generators
- Boosting from CM to the rest frame of the (atmospheric) fixed target, one finds:

$$
\sqrt{s}=7[\mathrm{TeV}] \longleftrightarrow E_{b}=2.6 \times 10^{7}[\mathrm{GeV}]
$$

- Thus there is complementarity with LHC physics. We will predict the prompt neutrino flux at energies up to $10^{8} \mathbf{G e V} \ldots$ at these energies, the charm production cross section is dominated by gluon fusion, hence we are sensitive to the behaviour of the gluon PDF (parton distribution function) at small- x

Gluon PDF Sensitivities

$\mathrm{xg}(\mathrm{x}, \mathrm{Q})$, comparison

$\mathrm{xg}(\mathrm{x}, \mathrm{Q})$, comparison

Small-x Gluon NNPDF: LHCb constraints

- We utilize charm production data from LHCb to reduce the uncertainties in the small- x gluon PDF
- Similar strategy as the one used by the PROSA collaboration in the HERAfitter framework arXiv: 1503.04581
- By using a Bayesian re-weighting technique, the impact of the new data is estimated. 75 data points added to NNPDF3.0 analysis
- The impact is negligible for $x>10^{-4}$, but substantive in the small- x region where data was previously unavailable. At $x \sim 10^{-5}$, we achieve a $3 x$ reduction in uncertainty
- We utilize these improved PDFs to make predictions for 13 TeV physics

NNPDF3.0 NLO $\alpha_{s}=0.118$

Due to the improved NNPDF3.0+LHCb, the PDF errors are moderate even @ 13 TeV

arXiv.org 1510.01707

Z_{ph} with NNPDF3.0+LHCb

$$
Z_{p h}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{p}\left(E^{\prime}\right)}{\phi_{p}(E)} \frac{A}{\sigma_{p A}(E)} \frac{d \sigma\left(p p \rightarrow c \bar{c} Y ; E^{\prime}, E\right)}{d E}
$$

The differential cross-section is generated at various E' between 10^{3} and $10^{10} \mathrm{GeV}$ with POWHEG+PYTHIA8, and incorporates our updated NNPDF3.0+LHCb ... Cross-checks made with aMC@NLO
We perform an interpolation over $E_{\text {inc }}$ and E_{h}.

Benchmark NNPDF3.0+LHCb flux

We present the following predictions for prompt atmospheric neutrino flux adopting the broken power-law (BPL) as well as H3A and H3P cosmic-ray spectra

Scale, PDF, and charm mass uncertainty
Different cosmic ray spectrum parameterisations
\Rightarrow significant differences in the expected flux above $\sim 10^{6} \mathrm{GeV}$

Consistency with IceCube bounds

Consistency with previous calculations

Prompt Neutrino Flux (BPL)

Input PDF dependency

Prompt Neutrino Flux (BPL)

Response from the astrophysics community

KM3nET Letter of Intent
arxiv.org/1601.07459

Conclusions

We have presented updated predictions for the flux of prompt atmospheric neutrinos at ground-based detectors.

Our approach is grounded in perturbative QCD, and incorporates:

1. State-of-the-art calculation of charmed hadron production in the forward region, validated against recent LHCb measurements
2. A small-x gluon PDF which is also constrained by LHCb data

Our estimates are consistent with previous studies but provide a more reliable estimate of uncertainties and alleviate the tension between the previous benchmark (ERS) calculation and IceCube data

The prompt flux should be seen soon (and provide a probe of low-x QCD)

Back-up

Previous calculations

- Volkova, Sov. J. Nucl. Physics 12 (1980) 784
- Bugaev, Naumov, Sinegovksy, Zaslavskaya, II Nuovo Cimento C 12 (1989) 41
- Lipari, Astroparticle Physics 1 (1993) 195
- Thunman, Ingelman, Gondolo (TIG), Astroparticle Physics 5 (1993) 309
- Pasquali, Reno, Sarcevic (PRS), Physical Review D59 (1999) 034020
- Gelmini, Gondolo, Varieschi (GGV1), Physical Review D61 (2000) 036005
- Gelmini, Gondolo, Varieschi (GGV2), Physical Review D61 (2000) 056011
- Martin, Ryskin, Stasto (MRS), Acta Physica Polonica B34 (2003) 3273
- Enberg, Reno, Sarcevic (ERS), Physical Review D78 (2008) 043005
- Bhattacharya, Enberg, Reno, Sarcevic, Stasto (BERSS), JHEP 1506 (2015) 110
- Garzelli, Moch, Sigl (GMS), JHEP 1510 (2015) 115

Calculating the prompt flux of atmospheric neutrinos requires a synthesis of QCD, atmospheric physics, and neutrino physics

Prompt vs. conventional flux

The energy spectrum from semi-leptonic decay products depends on a hadronic 'critical energy', below which the decay probability is > interaction probability:

$$
\begin{array}{rlrl}
\epsilon_{h} & =\frac{m_{h} c^{2} h_{0}}{c \tau_{h} \cos \theta} & \epsilon_{\pi^{ \pm}} & =115[\mathrm{GeV}] \\
\epsilon_{K^{ \pm}} & =850[\mathrm{GeV}]
\end{array}
$$

For pions \& kaons, this critical energy is low (decay length is long) hence the leptonic energy spectrum is soft. For charmed mesons, the critical energy is high . . . they decay promptly to highly energetic leptons

$$
\begin{aligned}
\epsilon_{D^{0}} & =9.71 \times 10^{7}[\mathrm{GeV}] \\
\epsilon_{D^{ \pm}} & =3.84 \times 10^{7}[\mathrm{GeV}] \\
\epsilon_{D_{s}^{ \pm}} & =8.40 \times 10^{7}[\mathrm{GeV}] \\
\epsilon_{\Lambda_{c}} & =24.4 \times 10^{7}[\mathrm{GeV}]
\end{aligned}
$$

The atmospheric neutrino flux from the decay of pions \& kaons is the conventional flux, whereas that from charm decay is called the prompt flux

Tracing a particle through the atmosphere

The flux of particle j can be generically written as:

$$
\frac{d \phi_{j}}{d X}=-\frac{\phi_{j}}{\lambda_{j}}-\frac{\phi_{j}}{\lambda_{j}^{d e c}}+\sum S(k \rightarrow j)
$$

This depends on the slant depth X measuring the atmosphere traversed:

$$
X(l, \theta)=\int_{l}^{\infty} \rho\left(H\left(l^{\prime}, \theta\right) d l^{\prime} \quad H(l, \theta) \simeq l \cos \theta+\frac{l^{2}}{2 R_{0}} \sin ^{2} \theta\right.
$$

We adopt a simple isothermal model of the atmosphere:

$$
\begin{array}{ll}
\rho(H)=\rho_{0} e^{-\frac{H}{H_{0}}} & \rho_{0}=2.03 \times 10^{-3}\left[\frac{g}{c m^{3}}\right] \\
H_{0}=6.4[\mathrm{~km}]
\end{array}
$$

Such that sample values of X are:

$$
\begin{array}{ll}
X=0\left[\frac{g}{c m^{2}}\right](\text { space }) & X=1300\left[\frac{g}{{c m^{2}}^{2}}\right](\theta=0) \\
X=\infty\left[\frac{g}{c m^{2}}\right](\text { ground }) & X=36000\left[\frac{g}{{c m^{2}}^{2}}\right]\left(\theta=\frac{\pi}{2}\right)
\end{array}
$$

Atmospheric hadron flux

$$
\frac{d \phi_{h}}{d X}=-\frac{\phi_{h}}{\rho d_{h}(E)}-\frac{\phi_{h}}{\lambda_{h}}+Z_{h h} \frac{\phi_{h}}{\lambda_{h}}+Z_{p h} \frac{\phi_{p}}{\lambda_{p}}
$$

In the low energy limit, the probability for hadron interaction is minimal, and thus we neglect the interaction and regeneration terms:

$$
\left.\phi_{h}\right|_{\text {low }}=\frac{Z_{p h}}{\Lambda_{p}\left(1-Z_{p p}\right)} \rho d_{h} \phi_{p}(E) e^{-\frac{X}{\Lambda_{p}}}
$$

At high energies the decay length becomes large, hence we neglect the decay term:

$$
\left.\phi_{h}\right|_{h i g h}=\frac{Z_{p h} \phi_{p}(E)}{\left(1-Z_{p p}\right)} \frac{\left(e^{-\frac{X}{\Lambda_{h}}}-e^{-\frac{X}{\Lambda_{p}}}\right)}{\left(1-\frac{\Lambda_{p}}{\Lambda_{h}}\right)}
$$

These solutions then feed into asymptotic solutions for the final leptonic flux (note that the low-energy solution scales with an additional power of E):

$$
\begin{aligned}
\text { high } & \phi_{h} \propto \phi_{p} \\
\text { low } & \phi_{h} \propto E \phi_{p}
\end{aligned}
$$

Cascade Formalism: Sources \& Z-moments

$$
S(k \rightarrow j)=\int_{E}^{\infty} \frac{\phi_{k}\left(E_{k}^{\prime}\right)}{\lambda_{k}\left(E_{k}^{\prime}\right)} \frac{d n\left(k \rightarrow j ; E^{\prime}, E\right)}{d E} d E^{\prime}
$$

Under reasonable assumptions, the S-moments simplify:

$$
S(k \rightarrow j)=\frac{\phi_{k}}{\lambda_{k}} Z_{k j}
$$

For particle production:

$$
Z_{k h}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{k}\left(E^{\prime}, X, \theta\right)}{\phi_{k}(E, X, \theta)} \frac{\lambda_{k}(E)}{\lambda_{k}\left(E^{\prime}\right)} \frac{d n\left(k A \rightarrow h Y ; E^{\prime}, E\right)}{d E} \quad \frac{d n\left(p A \rightarrow h Y ; E^{\prime}, E\right)}{d E}=\frac{1}{\sigma_{p A}\left(E^{\prime}\right)} \frac{d \sigma\left(p A \rightarrow h Y ; E^{\prime}, E\right)}{d E}
$$

For particle decay:

$$
Z_{h \rightarrow l}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{h}\left(E^{\prime}, X\right)}{\phi_{h}(E, X)} \frac{d_{h}(E)}{d_{h}\left(E^{\prime}\right)} \frac{d n\left(h \rightarrow l Y ; E^{\prime}, E\right)}{d E} \quad \frac{d n\left(h \rightarrow l Y ; E^{\prime}, E\right)}{d E}=\frac{1}{\Gamma} \frac{d \Gamma}{d E}
$$

Atmospheric Nucleon Flux

$$
\frac{d \phi_{N}}{d X}=-\frac{\phi_{N}}{\lambda_{N}}+S(N A \rightarrow N Y)=-\frac{\phi_{N}}{\lambda_{N}}+Z_{N N} \frac{\phi_{N}}{\lambda_{N}}
$$

Assume a factorisation of fluxes $\longrightarrow \phi_{k}(E, X)=\phi_{k}(E) \phi_{k}(X)$

Define the interaction length
$\longrightarrow \quad \lambda_{N}(E)=\frac{A}{N_{0} \sigma_{p A}(E)}$
Define the attenuation length \qquad

$$
\Lambda_{N}=\frac{\lambda_{N}}{\left(1-Z_{N N}\right)}
$$

$$
\begin{gathered}
\frac{d \phi_{N}}{d X}=\frac{\phi_{N}}{\lambda_{N}}\left(Z_{N N}-1\right) \rightarrow \frac{d \phi_{N}}{d X}+\frac{\phi_{N}}{\lambda_{N}}\left(1-Z_{N N}\right)=0 \\
\downarrow \downarrow \downarrow
\end{gathered}
$$

$$
\phi_{N}=\phi_{N}^{0}(E) e^{-\frac{X}{\Lambda_{N}}}
$$

What constitutes this primary nucleon flux?

Gaisser et all. fluxes: $\quad \phi_{N}^{0}(E)$

arXiv:astro-ph/1111.6675 arXiv:astro-ph/1303.3565

	p	He	CNO	$\mathrm{Mg}-\mathrm{Si}$	Fe
Pop. 1:	7860	3550	2200	1430	2120
$R_{c}=4 \mathrm{PV}$	1.661	1.58	1.63	1.67	1.63
Pop. 2:	20	20	13.4	13.4	13.4
$R_{c}=30 \mathrm{PV}$	1.4	1.4	1.4	1.4	1.4
Pop. 3:	1.7	1.7	1.14	1.14	1.14
$R_{c}=2 \mathrm{EV}$	1.4	1.4	1.4	1.4	1.4
Pop. 3(*):	200	0.0	0.0	0.0	0.0
$R_{c}=60 \mathrm{EV}$	1.6				

Input PDF dependency

Evaluations of charm production utilising multiple input PDFs, including our updated NNPDF3.0+LHCb, indicate substantive differences in the small-x region. This will trace through our calculation of the prompt atmospheric neutrino flux and lead to qualitative differences in the high-energy tail.
We are thus evaluating final uncertainties utilising multiple input PDFs.

Forward Charm Production \& LHCb

$$
\sqrt{s}=7[T e V]
$$

arXiv:1506.08025
arXiv:1302.2864 (LHCb)

We first validate our NLO predictions for forward charm production against recent LHCb data . . . finding good agreement between the 3 calculation schemes

Small-x Gluon NNPDF: LHCb constraints

- We utilize charm production data from LHCb to reduce the uncertainties in the small- x gluon PDF
- Similar strategy as the one used by the PROSA collaboration in the HERAfitter framework
- By using a Bayesian re-weighting technique, the impact of the new data is estimated. 75 data points added to NNPDF3.0 analysis
- The impact is negligible for $x>10^{-4}$, but substantive in the smaller-x region where data was previously unavailable. At $x \sim 10^{-5}$, we achieve a 3 x reduction in uncertainty
- We utilize these improved PDFs to make predictions for 13 TeV physics

Courtesy: Katerina Lipka

Our principal new result: Z_{ph}

$$
Z_{p h}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{p}\left(E^{\prime}\right)}{\phi_{p}(E)} \frac{A}{\sigma_{p A}(E)} \frac{d \sigma\left(p p \rightarrow c \bar{c} Y ; E^{\prime}, E\right)}{d E}
$$

The differential cross-section is generated at various E^{\prime} between 10^{3} and $10^{10} \mathrm{GeV}$ with POWHEG+PYTHIA8, and incorporates our updated NNPDF3.0+LHCb ... Cross-checks made with aMC@NLO

arXiv: 1506.08025

Decay moments: $\mathbb{Z}_{h \rightarrow l}$

$$
Z_{h \rightarrow l}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{h}\left(E^{\prime}, X\right)}{\phi_{h}(E, X)} \frac{d_{h}(E)}{d_{h}\left(E^{\prime}\right)} \frac{d n\left(h \rightarrow l Y ; E^{\prime}, E\right)}{d E}
$$

The relative contributions of different species in the BPL cosmic ray scenario.

The relative contributions of the D^{+}species in varying cosmic ray scenarios.

Stitching things together...

Decay moments: $Z_{h \rightarrow l}$

$$
Z_{h \rightarrow l}=\int_{E}^{\infty} d E^{\prime} \frac{\phi_{h}\left(E^{\prime}, X\right)}{\phi_{h}(E, X)} \frac{d_{h}(E)}{d_{h}\left(E^{\prime}\right)} \frac{d n\left(h \rightarrow l Y ; E^{\prime}, E\right)}{d E}
$$

The distribution for leptonic decay is known to obey the simple scaling law:

$$
d n\left(h \rightarrow l Y ; E^{\prime}, E\right)=F_{h \rightarrow l}\left(\frac{E}{E^{\prime}}\right) \frac{d E}{E^{\prime}}
$$

The moment then simplifies, and we generate F with POWHEG:

$$
Z_{h \rightarrow l}=\int_{0}^{1} d x_{E} \frac{\phi_{h}\left(E / x_{E}\right)}{\phi_{h}(E)} F_{h \rightarrow l}\left(x_{E}\right)
$$

The following branching fractions are built into our decay moments:

$$
\begin{aligned}
\mathcal{B}\left(D^{ \pm} \rightarrow \nu_{l} X\right) & =.153 \\
\mathcal{B}\left(D^{0} \rightarrow \nu_{l} X\right) & =.101 \\
\mathcal{B}\left(D_{s}^{ \pm} \rightarrow \nu_{l} X\right) & =.06 \\
\mathcal{B}\left(\Lambda_{c} \rightarrow \nu_{l} X\right) & =.02
\end{aligned}
$$

