The Drell-Yan fiducial cross section at N³LO+N³LL

Luca Rottoli

SWISS NATIONAL SCIENCE FOUNDATION

The Drell-Yan process: a standard for precision at the LHC

Lepton-pair production constitutes the most important standard candle at hadron colliders

Talk by Chris Pollard

The wealth of data collected enables a **broad spectrum** of applications to different areas:

- determination of SM parameters such as the W mass
- extraction of parton densities of the proton
- exploration of BSM scenarios

Theoretical predictions now reach highest level of accuracy

- N³LO for inclusive cross section and rapidity Talk by Tonghzi Yang
- N³LO for fiducial cross section and distributions This talk
- NLO EW and mixed QCD-EW at NNLO Talk by Luca Buonocore

The transverse momentum spectrum

Clean experimental and theoretical environment for precision physics

- little or no sensitivity to multi-parton interactions
- reduced sensitivity to non-perturbative effects
- measured extremely precisely at experiments

Very accurate theoretical predictions needed

The transverse momentum spectrum

Clean experimental and theoretical environment for precision physics

- little or no sensitivity to multi-parton interactions
- reduced sensitivity to non-perturbative effects
- measured extremely precisely at experiments

Very accurate theoretical predictions needed

Large transverse momentum logarithms

 $L = \ln(p_t^H/m_H) \qquad p_t^H \ll m_H$

The transverse momentum spectrum

Clean experimental and theoretical environment for precision physics

- little or no sensitivity to multi-parton interactions
- reduced sensitivity to non-perturbative effects
- measured extremely precisely at experiments

Very accurate theoretical predictions needed

Large transverse momentum logarithms

 $L = \ln(p_t^H/m_H) \qquad p_t^H \ll m_H$

Rencontres de Moriond 2022, 24

Resummation of the transverse momentum spectrum

Solution 1:

move to **conjugate space** where phase space factorization is manifest

Talk by Ignazio Scimemi

Rencontres de Moriond 2022, 24th March 2022

b-space formulation

[Parisi, Petronzio '79; Collins, Soper, Sterman '85]

Resummation of the transverse momentum spectrum

Solution 2:

resummation in **direct space** exploiting the properties of the observable in the presence of multiple radiation [Banfi, Salam, Zanderighi '03]

RadISH formulation

[Bizon, Monni, Re '16][Bizon, Monni, Re, LR, Torrielli '17]

RadISH in a nutshell

Resummation of the transverse momentum spectrum in direct space

Result at NLL accuracy with scale-independent PDFs

$$\sigma(p_{\perp}) = \sigma_0 \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(\epsilon v_1)} \qquad v_i = k_{t,i}/m_H, \quad \zeta_i$$
$$\times R'(v_1) \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} R'(\zeta_i v_1) \Theta\left(p_{\perp} - |\vec{k}_{t,i} + \cdots + \vec{k}_{t,n+1}|)\right)$$

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

Resummation of the transverse momentum spectrum in direct space

Result at NLL accuracy with scale-independent PDFs

Simple observable

$$\sigma(p_{\perp}) = \sigma_0 \int \frac{dv_1}{v_1} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-R(\epsilon v_1)} \qquad v_i = k_{t,i}/m_H, \quad \zeta_i = k_{t,i}/m_H, \quad \zeta_i$$

Formula can be evaluated with Monte Carlo method; dependence on ϵ vanishes (as $\mathcal{O}(\epsilon)$) and result is finite in four dimensions

Logarithmic accuracy defined in terms of $\ln(m_H/k_{t1})$ Result formally equivalent to the *b*-space formulation [Bizon, Monni, Re, LR, Torrielli '17]

Resummation available at N³LL accuracy [Bizon, Monni, Re, LR, Torrielli '17][Re, LR, Torrielli '21]

$$v_i = k_{t,i}/m_H, \quad \zeta_i = v_i/v_1$$

Transfer function

To obtain predictions valid across the whole q_T spectrum the resummation result must be matched with the fixed order result

Fully differential formula in the **transverse momentum** q_T and in the Born kinematic variables for the production of a colour singlet V

Finite for $q_T \rightarrow 0$: integral over q_T allows one to obtain N^kLO+N^kLL predictions within fiducial cuts

 $d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} \dashv$

+
$$d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_{V}^{N^{k}LL}\right]_{\mathcal{O}(\alpha_{s}^{k})}$$

To obtain predictions valid across the whole q_T spectrum the resummation result must be matched with the fixed order result

Fully differential formula in the **transverse momentum** q_T and in the Born kinematic variables for the production of a colour singlet *V*

Finite for $q_T \rightarrow 0$: integral over q_T allows one to obtain N^kLO+N^kLL predictions within fiducial cuts

 $d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} -$

N^kLL resummed q_T distribution

+
$$d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_{V}^{N^{k}LL}\right]_{\mathcal{O}(\alpha_{s}^{k})}$$

To obtain predictions valid across the whole q_T spectrum the resummation result must be matched with the fixed order result

Fully differential formula in the **transverse momentum** q_T and in the Born kinematic variables for the production of a colour singlet *V*

Finite for $q_T \rightarrow 0$: integral over q_T allows one to obtain N^kLO+N^kLL predictions within fiducial cuts

 $d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} +$

differential
$$q_T$$
 distrib

Rencontres de Moriond 2022, 24th March 2022

7

+
$$d\sigma_{V+jet}^{N^{k-1}LO} - [d\sigma_V^{N^kLL}]_{\mathcal{O}(\alpha_s^k)}$$

bution at N^{k-1}LO

To obtain predictions valid across the whole q_T spectrum the resummation result must be matched with the fixed order result

Fully differential formula in the **transverse momentum** q_T and in the Born kinematic variables for the production of a colour singlet V

Finite for $q_T \rightarrow 0$: integral over q_T allows one to obtain N^kLO+N^kLL predictions within fiducial cuts

 $d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} + d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_V^{N^kLL}\right]_{\mathcal{O}(\alpha_s^k)}$ **Expansion of the N^kLL resummed** q_T distribution at order $\mathcal{O}(\alpha_s^k)$

To obtain predictions valid across the whole q_T spectrum the resummation result must be matched with the fixed order result

Fully differential formula in the **transverse momentum** q_T and in the Born kinematic variables for the production of a colour singlet *V*

Finite for $q_T \rightarrow 0$: integral over q_T allows one to obtain N^kLO+N^kLL predictions within fiducial cuts

$$d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} + d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_V^{N^kLL}\right]_{\mathcal{O}(\alpha_s^k)}$$

Both **diverge logarithmically** for $q_T \rightarrow 0$: high numerical precision required in the $d\sigma_{V+jet}^{N^{k-1}LO}$ down to very small values of q_T

To obtain predictions valid across the whole q_T spectrum the resummation result must be matched with the fixed order result

Fully differential formula in the **transverse momentum** q_T and in the Born kinematic variables for the production of a colour singlet V

Finite for $q_T \rightarrow 0$: integral over q_T allows one to obtain N^kLO+N^kLL predictions within fiducial cuts

$$d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} + \left(d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_V^{N^kLL} \right]_{\mathcal{O}(\alpha_s^k)} \right) \Theta(q_T > q_t^{cut}) + \mathcal{O}((q_T^{cut}/M)^n)$$

Both diverge logarithmically for $q_T \rightarrow 0$: high numerical precision required in the $d\sigma_{V+jet}^{N^{k-1}LO}$ down to very small values of q_T

Setting
$$d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_{V}^{N^{k}LL}\right]_{\mathcal{O}(\alpha_{s}^{k})} = 0$$
 for $q_{T} \le q_{T}^{cut}$

introduces a **slicing error** of order $\mathcal{O}((q_T^{\text{cut}}/M)^n)$

q_T -subtraction and power corrections

The perturbative expansion of the N^kLL+N^kLO fiducial cross section to third order in α_s leads to the N^kLO prediction as obtained according to the q_T -subtraction formalism [Catani, Grazzini '07]

 $d\sigma_{V}^{N^{k}LO} \equiv \mathscr{H}_{V}^{N^{k}LO} \otimes d\sigma_{V}^{LO} + \left(d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_{V}^{N^{k}LL} \right]_{\mathcal{O}(\alpha_{s}^{k})} \right) \Theta(q_{T} > q_{t}^{cut}) + \mathcal{O}((q_{T}^{cut}/M)^{n})$

Virtual correction after subtraction of IR singularities and contribution of soft/collinear origin (beam, soft, jet functions)

q_T -subtraction and power corrections

The perturbative expansion of the N^kLL+N^kLO fiducial cross section to third order in α_s leads to the N^kLO prediction as obtained according to the q_T -subtraction formalism [Catani, Grazzini '07]

 $d\sigma_V^{N^kLO} \equiv \mathscr{H}_V^{N^kLO} \otimes d\sigma_V^{LO} + \left(d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_V^{N^kLL} \right]_{\mathscr{O}(\alpha_s^k)} \right) \Theta(q_T > q_t^{cut}) + \mathcal{O}((q_T^{cut}/M)^n)$ Missing **power corrections** below the slicing cut-off

q_T -subtraction and power corrections

The perturbative expansion of the N^kLL+N^kLO fiducial cross section to third order in α_s leads to the N^kLO prediction as obtained according to the q_T -subtraction formalism [Catani, Grazzini '07]

 $d\sigma_V^{\rm N^kLO} \equiv \mathscr{H}_V^{\rm N^kLO} \otimes d\sigma_V^{\rm LO} + \left(d\sigma_{\rm V+jet}^{\rm N^{k-1}LO} - \right)$

Relative size of power corrections affects stability and performance of non-local subtraction methods

The larger the power corrections, the lower are the values of the slicing parameters needed for extrapolation of correct result (CPU consuming, numerically unstable)

$$-\left[d\sigma_{V}^{N^{k}LL}\right]_{\mathcal{O}(\alpha_{s}^{k})} \Theta(q_{T} > q_{t}^{cut}) + \mathcal{O}((q_{T}^{cut}/M)^{n})$$
Missing **power corrections**
below the slicing cut-off

q_T -subtraction with inclusive cuts and in various fiducial setups

 $r_{\rm cut} \sim q_T/Q$

Rencontres de Moriond 2022, 24th March 2022

q_T -subtraction for $\begin{array}{c} \mathcal{O}(r_{\text{cut}}) & 2 \rightarrow 2 \text{ processes with} \\ \text{(a)symmetric cuts} \end{array} \end{array}$

 $r_{\rm cut} \sim q_T/Q$

via a simple recoil prescription

[Catani, de Florian, Ferrera, Grazzini '15][Billis, Dehnadi, Ebert, Michel, Stewart, Tackmann '21]

[Catani, de Florian, Ferrera, Grazzini '15][Billis, Dehnadi, Ebert, Michel, Stewart, Tackmann '21]

[Catani, de Florian, Ferrera, Grazzini '15]

Born matrix element evaluated at $q_T = 0$

[Catani, de Florian, Ferrera, Grazzini '15]

Rencontres de Moriond 2022, 24th March 2022

Generate singlet q_T by QCD radiation

[Catani, de Florian, Ferrera, Grazzini '15]

Rencontres de Moriond 2022, 24th March 2022

Generate singlet q_T by QCD radiation

[Catani, de Florian, Ferrera, Grazzini '15]

e⁻

Rencontres de Moriond 2022, 24th March 2022

Generate singlet q_T by QCD radiation

[Catani, de Florian, Ferrera, Grazzini '15]

[Catani, de Florian, Ferrera, Grazzini '15]

[Catani, de Florian, Ferrera, Grazzini '15]

Sufficient to capture the full linear fiducial power correction for q_T [Ebert et al. '20]

[Catani, de Florian, Ferrera, Grazzini '15]

Implementation in RadISH: [Re, LR, Torrielli '21]

- Each contribution in the resummation formula **boosted in the corresponding frame**
- Derivative of the expansion computed on-the-fly, boost computed according to the value of q_T

The Drell-Yan fiducial cross section at N³LO and N³LO+N³LL

The above considerations are particularly relevant for the case of **Drell-Yan productions within fiducial cuts**

ATLAS fiducial region

11

 $p_T^{\ell^{\pm}} > 27 \,\mathrm{GeV}$

Remark: linear power corrections in the symmetric/asymmetric case are related to ambiguities in the perturbative expansion and can be avoided with different sets of cuts

All necessary ingredients available to calculate N³LO cross section using q_T -subtraction

calculation [Chen, Gehrmann, Glover, Huss, Yang, Zhu '21]

(permille-level!)

Rencontres de Moriond 2022, 24th March 2022

- ATLAS (and CMS) experiments define their fiducial region using symmetric cuts on the lepton transverse momenta

$$V \qquad |\eta^{\ell^{\pm}}| < 2.5$$

[Salam, Slade '21]

- [Gehrmann et al '10][Catani, Cieri, de Florian, Ferrera, Grazzini '12][Gehrmann, Luebbert, Yang '14][Li, Zhu '17][Luo, Yang, Zhu, Zhu '19, '21][Ebert, Mistlberger, Vita '20]
- N³LO cross section for on-shell Drell-Yan production calculated using q_T -subtraction and compared to analytic Talk by Tonghzi Yang
- First estimates of the N³LO correction in the fiducial region obtained using these ingredients [Camarda, Cieri, Ferrera '21]
- Full control on the **theory systematics** is paramount due to the astonishing precision of the experimental data

Transverse momentum spectrum at N³LO+N³LL [Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli '22]

$$d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} + d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_V^{N^kLL}\right]_{\mathcal{O}(\alpha_s^k)}$$

- **Excellent description** of the data across the whole q_T spectrum,
- First bin which is susceptible to non-perturbative corrections
- Non-singular (matching) correction **nonnegligible** even below $q_T \lesssim 15$ GeV
- Residual theoretical uncertainty in the intermediate q_T region is at the **few-percent level**, about 5% for $q_T \gtrsim 50$ GeV

Linear power corrections for q_T -subtraction

Resorting to the recoil prescription allows the inclusion of all missing fiducial linear power corrections below $r_{\rm cut}$, improving dramatically the efficiency of the non-local subtraction [Buonocore, Kallweit, LR, Wiesemann'21] [Camarda, Cieri, Ferrera '21]

Resorting to this prescription allows one to obtain precise and reliable predictions at N³LO

Rencontres de Moriond 2022, 24th March 2022

Much improved convergence over linear power correction case

Accurate computation of the N^kLO correction without the need to push $r_{\rm cut}$ to very low values

Now available in MATRIX 2.1 Talk by Simone Devoto

The Drell-Yan fiducial cross section at N³LO

ATLAS fiducial region

• Mandatory to include missing linear power corrections to reach a precise control of the **N**^k**LO correction** down to small values of q_T^{cut}

• Plateau at small $q_T^{\rm cut}$ indicates the desired independence of the slicing parameter

 Result without power correction does not converge yet to the correct value at NkLO

 $p_T^{\ell^{\pm}} > 27 \,\text{GeV} \qquad |\eta^{\ell^{\pm}}| < 2.5$

The Drell-Yan fiducial cross section at N³LO

Product cuts [Salam, Slade '21]

 $\sqrt{|\overrightarrow{p}_T^{\ell^+}||\overrightarrow{p}_T^{\ell^-}|} > 27 \,\text{GeV}$

• Alternative set of cuts which does not suffer from linear power corrections

 Improved convergence, result independent of the recoil procedure

$\min\{|\overrightarrow{p}_T^{\ell^{\pm}}|\} > 20 \,\text{GeV}$

The Drell-Yan fiducial cross section at N³LO and N³LO+N³LL

	Order	σ [pb] Symmetric cuts	
	k	$N^k LO$	N^kLO+N^kLL
	0	$721.16^{+12.2\%}_{-13.2\%}$	
	1	$742.80(1)^{+2.7\%}_{-3.9\%}$	$748.58(3)^{+3.19}_{-10.2}$
	2	$741.59(8)^{+0.42\%}_{-0.71\%}$	$740.75(5)^{+1.15}_{-2.66}$
$q_T^{\rm cut} = 0.8 {\rm GeV}$	3	$722.9(1.1)^{+0.68\%}_{-1.09\%} \pm 0.9$	$726.2(1.1)^{+1.0}_{-0.7}$

- 2.5% negative correction at N³LO in the ATLAS fiducial region. N³LO larger than the NNLO correction and outside its error band
- absence of linear power corrections
- interval

Includes resummation of linear power corrections

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli '22]

• More robust estimate of the theory uncertainty when **resummation effects are included**

• Central value very similar at N^kLO and N^kLO+N^kLL for product cuts, compatible with the

• Slicing error computed conservatively by considering the cutoff within the [0.45-1.5] GeV

Fiducial distributions at N³LO+N³LL

$$d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} + d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_V^{N^kLL}\right]_{\mathcal{O}(\alpha_s^k)}$$

• Fully differential calculation allows one to obtain N³LO+N³LL predictions for fiducial observables

• Leptonic transverse momentum is a particularly relevant observable due to its importance in the extraction of the W mass

 Inclusion of resummation effects necessary to cure (integrable) divergences due to the presence of a **Sudakov shoulder** at $m_{ee}/2$ [Catani, Webber '97]

- the LHC, through N³LO and N³LO+N³LL in QCD.
- over all systematic uncertainties involved.
- level in differential distributions.

• State-of-the-art predictions for the fiducial cross section and differential distributions in the DY process at

• Thorough study of the performance of the computational method adopted, reaching an excellent control

• Residual theoretical uncertainties at the $\mathcal{O}(1\%)$ level in the fiducial cross section, and at the few-percent

Resummation of the transverse momentum spectrum

Resummation of transverse momentum is delicate because p_t is a vectorial quantity

Two concurring mechanisms leading to a system with small p_t

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression

Rencontres de Moriond 2022, 24th March 2022

Large kinematic cancellations *p*_t ~0 far from the Sudakov limit

Power suppression

Resummation of the transverse momentum spectrum

Resummation of transverse momentum is delicate because p_t is a vectorial quantity

Two concurring mechanisms leading to a system with small *p*_t

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

Exponential suppression

Rencontres de Moriond 2022, 24th March 2022

[Parisi, Petronzio, '79]

Resummation of the transverse momentum spectrum in b space

two-dimensional momentum conservation $\delta^{(2)} \left(\vec{p}_t - p_t \right)$

Expo

onentiation in conjugate space

$$\sigma = \sigma_0 \int d^2 \overrightarrow{p}_{\perp}^H \int \frac{d^2 \overrightarrow{b}}{4\pi^2} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^H} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^n \int [dk_i] |M(k_i)|^2 \left(e^{i \overrightarrow{b} \cdot \overrightarrow{k}_{i,i}} - 1 \right) = \sigma_0 \int d^2 \overrightarrow{p}_{\perp}^H \int \frac{d^2 \overrightarrow{b}}{4\pi^2} e^{-i \overrightarrow{b} \cdot \overrightarrow{p}_{\perp}^H} e^{-R_{\rm P}}$$

 $R_{\rm NLL}(L) = -Lg_1(\alpha_s L) - g_2(\alpha_s L)$ $L = \ln(m_H b/b_0)$

Logarithmic accuracy defined in terms of $\ln(m_H b/b_0)$

Rencontres de Moriond 2022, 24th March 2022

$$\left(\sum_{i=1}^{n} \overrightarrow{k}_{t,i}\right) = \int d^2 b \frac{1}{4\pi^2} e^{i\overrightarrow{b}} \cdot \overrightarrow{p}_t \prod_{i=1}^{n} e^{-i\overrightarrow{b}} \cdot \overrightarrow{k}_{t,i}$$

NLL formula with scale-independent PDFs

Talk by Ignazio Scimemi

Now include effect of **collinear radiation** and terms beyond NLL accuracy

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1,c_2} \frac{d|M_B|_{c_1c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

$$\begin{split} \hat{\Sigma}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) &= \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ek_{t1})} \\ &\times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ &\times \sum_{\ell_{1}=1}^{2} \left(\mathbf{R}_{\ell_{1}}'(k_{t1}) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \\ &\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}) \right), \\ &\times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'(k_{ti}) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \end{split}$$

[Bizon, Monni, Re, LR, Torrielli '17] [Re, LR, Torrielli '21]

Unresolved

 $v = p_t/M$

Now include effect of **collinear radiation** and terms beyond NLL accuracy

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1,c_2} \frac{d|M_B|_{c_1c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

Sudakov radiator

$$\hat{\Sigma}_{N_{1},N_{2}}^{c_{1}c_{2}}(v) = \left[\mathbf{C}_{N_{1}}^{c_{1}c_{3}}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{r1}}{k_{r1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(\epsilon k_{r1})}$$

$$R(k_{r1}) = -\log \frac{M}{k_{r1}}g_{1} - g_{2} - \left(\frac{\alpha_{s}}{\pi}\right)g_{3} - \left(\frac{\alpha_{s}}{\pi}\right)^{2}g_{4} - \left(\frac{\alpha_{s}}{\pi}\right)^{3}g_{5} \qquad \times \exp\left\{-\sum_{\ell=1}^{2}\left(\int_{\epsilon k_{1}}^{\mu_{0}} \frac{dk_{r}}{k_{r}} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{r})) + \int_{\epsilon k_{1}}^{\mu_{0}} \frac{dk_{r}}{k_{r}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{r}))\right)\right\}$$
Resummation scale $Q \sim M$

$$\sum_{\ell=1}^{2}\left(\mathbf{R}_{\ell_{1}}^{\prime}(k_{r1}) + \frac{\alpha_{s}(k_{r1})}{\pi}\mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{r1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{r}))\right)$$

$$\ln \frac{M}{k_{r1}} \rightarrow \ln \frac{Q}{k_{r1}} + \ln \frac{M}{Q} \qquad \qquad \times \sum_{n=0}^{2} \frac{1}{n!}\prod_{i=2}^{n+1}\int_{c}^{1} \frac{d\zeta_{i}}{\zeta_{i}}\int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi}\Theta\left(v - V(\{\bar{p}\}, k_{1}, \dots, k_{n+1})\right),$$
Constant terms expanded in α_{s} and included in H

$$\times \sum_{\ell=1}^{2}\left(\mathbf{R}_{\ell_{1}}^{\prime}(\mathbf{k}_{\ell_{1}}) + \frac{\alpha_{s}(k_{i})}{\pi}\mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{i})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{\ell_{1}}))\right)$$

$$\ln \frac{M}{k_{t1}} \to \ln \frac{Q}{k_{t1}} + \ln \frac{M}{Q}$$

[Bizon, Monni, Re, LR, Torrielli '17] [Re, LR, Torrielli '21]

Now include effect of **collinear radiation** and terms beyond NLL accuracy

Three-loop hard-virtual coefficient

$$H(\alpha_s) = 1 + \left(\frac{\alpha_s}{2\pi}\right) H_1 + \left(\frac{\alpha_s}{2\pi}\right)^2 H_2 + \left(\frac{\alpha_s}{2\pi}\right)^3 H_3$$

[Gehrmann et al. '10]

[Bizon, Monni, Re, LR, Torrielli '17] [Re, LR, Torrielli '21]

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1,c_2} \frac{d|M_B|_{c_1c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

$$\begin{split} \hat{\Sigma}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) &= \left[\mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0})) \mathbf{H}(\boldsymbol{\mu_{R}}) \mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \right] \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-\mathbf{R}(ek_{t1})} \\ &\times \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{ck_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{ek_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \\ &\times \sum_{\ell_{1}=1}^{2} \left(\mathbf{R}_{\ell_{1}}'\left(k_{t1}\right) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \\ &\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{e}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\ &\times \sum_{\ell_{\ell}=1}^{2} \left(\mathbf{R}_{\ell_{\ell}}'\left(k_{ti}\right) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \end{split}$$

Now include effect of **collinear radiation** and terms beyond NLL accuracy

$$C(\alpha_s, z) = \delta(1-z) + \left(\frac{\alpha_s}{2\pi}\right)C_1(z) + \left(\frac{\alpha_s}{2\pi}\right)^2 C_2(z) + \left(\frac{\alpha_s}{2\pi}\right)^3 C_3(z)$$

[Li, Zhu '16][Vladimirov '16][Luo et al. '19][Ebert et al. '20]

[Bizon, Monni, Re, LR, Torrielli '17] [Re, LR, Torrielli '21]

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1,c_2} \frac{d|M_B|_{c_1c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

$$\hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) = \left[\mathbf{C}_{N_1}^{c_1;T}(\boldsymbol{\alpha}_s(\mu_0)) H(\mu_R) \mathbf{C}_{N_2}^{c_2}(\boldsymbol{\alpha}_s(\mu_0)) \right] \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})}$$

$$\times \exp\left\{-\sum_{\ell=1}^{2}\left(\int_{\epsilon k_{t1}}^{\mu_{0}}\frac{dk_{t}}{k_{t}}\frac{\alpha_{s}(k_{t})}{\pi}\Gamma_{N_{\ell}}(\alpha_{s}(k_{t}))+\int_{\epsilon k_{t1}}^{\mu_{0}}\frac{dk_{t}}{k_{t}}\Gamma_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t}))\right\}$$

$$\times \sum_{\ell_1=1}^2 \left(\mathbf{R}_{\ell_1}'(k_{t1}) + \frac{\alpha_s(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_1}}(\alpha_s(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_1}}^{(C)}(\alpha_s(k_{t1})) \right)$$

$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \\ \times \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'\left(k_{ti}\right) + \frac{\alpha_{s}(k_{ti})}{\pi} \Gamma_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \Gamma_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti}))\right)$$

Now include effect of **collinear radiation** and terms beyond NLL accuracy

DGLAP evolution

[Bizon, Monni, Re, LR, Torrielli '17] [Re, LR, Torrielli '21]

$$\frac{d\Sigma(v)}{d\Phi_B} = \int_{\mathscr{C}_1} \frac{dN_1}{2\pi i} \int_{\mathscr{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1,c_2} \frac{d|M_B|_{c_1c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) \mathbf{f}_{N_2}(\mu_0),$$

$$\hat{\boldsymbol{\Sigma}}_{N_1,N_2}^{c_1,c_2}(v) = \left[\mathbf{C}_{N_1}^{c_1;T}(\boldsymbol{\alpha}_s(\mu_0))H(\mu_R)\mathbf{C}_{N_2}^{c_2}(\boldsymbol{\alpha}_s(\mu_0)) \right] \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} e^{-\mathbf{R}(\epsilon k_{t1})}$$

$$\times \exp\left\{-\sum_{\ell=1}^{2}\left(\int_{\epsilon k_{t1}}^{\mu_{0}}\frac{dk_{t}}{k_{t}}\frac{\alpha_{s}(k_{t})}{\pi}\Gamma_{N_{\ell}}(\alpha_{s}(k_{t}))+\int_{\epsilon k_{t1}}^{\mu_{0}}\frac{dk_{t}}{k_{t}}\Gamma_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t}))\right\}\right\}$$

$$\times \sum_{\ell_1=1}^2 \left(\mathbf{R}_{\ell_1}'(k_{t1}) + \frac{\alpha_s(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_1}}(\alpha_s(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_1}}^{(C)}(\alpha_s(k_{t1})) \right)$$

$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right),$$

$$\times \sum_{\ell_i=1}^2 \left(\mathbf{R}_{\ell_i}'(k_{ti}) + \frac{\alpha_s(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_i}}(\alpha_s(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_i}}^{(C)}(\alpha_s(k_{ti})) \right)$$

All-order formula in Mellin space at N³LL [Bizon, Monni, Re, LR, Torrielli '17] [Re, LR, Torrielli '21]

$$\frac{d\Sigma(v)}{d\Phi_{B}} = \int \frac{dk_{11}}{k_{11}} \frac{d\phi_{1}}{2\pi} d_{L} \left(-e^{-R(k_{1})} \mathscr{L}_{NLL}(k_{1})\right) \int d\Sigma \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{g+1})\right)$$
Luminosity factor: contains the fullop collinear coefficient function and the three loop hard function $K_{11} = \frac{1}{2\pi} \int \frac{d\xi_{11}}{k_{11}} \frac{d\phi_{1}}{2\pi} \left(\frac{d\psi_{1}}{2\pi} - R(k_{1})\right) \int \frac{d\Sigma}{\xi_{2}} \frac{d\phi_{2}}{2\pi} \left(\frac{R(k_{1}) \mathscr{L}_{NNLL}(k_{1}) - \partial_{L}\mathscr{L}_{NNLL}(k_{1})}{\delta_{L} - 2\pi} - \frac{\delta_{L}(k_{1})}{k_{1}} \int \frac{d\xi_{2}}{2\pi} \frac{d\phi_{2}}{\xi_{2}} \left(\frac{R(k_{1}) \mathscr{L}_{NNLL}(k_{1}) - \partial_{L}\mathscr{L}_{NNLL}(k_{1})}{\delta_{L} - 2\pi} - \frac{\delta_{L}(k_{1})}{\kappa^{2}} \right) = R(k_{1}) \left(\partial_{L}\mathscr{L}_{NNLL}(k_{1}) - 2\frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{1})\hat{p}^{(0)} \otimes \mathscr{L}_{NLL}(k_{1}) + \frac{\alpha_{s}^{2}(k_{1})}{\pi^{2}} \right) = R(k_{1}) \left(\partial_{L}\mathscr{L}_{NNLL}(k_{1}) - 2\frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{1})\hat{p}^{(0)} \otimes \mathscr{L}_{NLL}(k_{1}) + \frac{\alpha_{s}^{2}(k_{1})}{\pi^{2}} \right) = R(k_{1}) \left(\partial_{L}\mathscr{L}_{NNLL}(k_{1}) - 2\frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{1})\hat{p}^{(0)} \otimes \mathscr{L}_{NLL}(k_{1}) + \frac{\alpha_{s}^{2}(k_{1})}{\pi^{2}} \right) = R(k_{1}) \left(\partial_{L}\mathscr{L}_{NNLL}(k_{1}) - 2\frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{1})\hat{p}^{(0)} \otimes \mathscr{L}_{NLL}(k_{1}) + \frac{\alpha_{s}^{2}(k_{1})}{\pi^{2}} \right) = R(k_{1}) \left(\partial_{L}\mathscr{L}_{NNLL}(k_{1}) - 2\frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{1})\hat{p}^{(0)} \otimes \mathscr{L}_{NLL}(k_{1}) + \frac{\alpha_{s}^{2}(k_{1})}{\pi^{2}} \right) = R(k_{1}) \left(\partial_{L}\mathscr{L}_{N}(k_{1}) - \beta_{0} \frac{\alpha_{s}^{2}(k_{1})}{\pi^{2}} - 2\beta_{0} \ln \frac{1}{\xi_{s}} \hat{p}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathscr{L}_{NL}(k_{1}) + \frac{\alpha_{s}^{2}(k_{1})}{2\pi} \left(\hat{p}^{(0)} \otimes \hat{p}^{(0)} \otimes \mathscr{L}_{NL}(k_{1})\right) \right) \right)$

N3LL corrections
$$\left\{ + \frac{1}{2} \int \frac{dk_{1}}{k_{1}} \frac{d\phi_{1}}{2\pi} - R(k_{1}) \int \frac{d\xi_{1}}{\pi} \int \frac{d\xi_{1}}{\xi_{1}} \frac{d\phi_{2}}{2\pi} \frac{d\phi_{2}}{2\pi} R'(k_{1})} \left(\sum (1 \ln \frac{1}{\xi_{s}} + \ln \frac{1}{\xi_{s}}) \right) - \Theta (v - V([\tilde{p}], k_{1}, \dots, k_{n+1}, k_{n}))\right) \right) \right)$$

$$\left\{ + \frac{1}{2} \int \frac{dk_{1}}{k_{1}} \frac{d\phi_{1}}{2\pi} \left(\partial_{L} (1 - \frac{1}{\xi_{s}}) + \frac{\alpha_{s}^{2}(k_{1})}{\pi^{2}} \left(\ln \frac{1}{\xi_{s}} + \ln \frac{1}{\xi_{s}}\right) R''(k_{1})\hat{p}^{(0)} \otimes \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathscr{L}_{NL}(k_{1}) + \frac{\alpha_{s}^{2}(k_{1})}{\pi^{2}} \left(\ln \frac{1}{\xi_{s}} + \ln \frac{1}{\xi_{s}}\right) R''(k_{1})\hat{p}^{(0)} \otimes \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \hat{$$

Transverse recoil effects in fiducial DY setup [Re, LR, Torrielli '21]

At the pure resummed level recoil prescription captures whole linear power corrections from fiducial cuts Effect reduce at 1-2% level after matching to fixed order (effect becomes $\mathcal{O}(\alpha_s^4)$) Pure resummed: band widening due to power corrections due to modified logs

Transverse momentum spectrum at N³LO+N³LL [Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli '22]

$$d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} + d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_V^{N^kLL}\right]_{\mathcal{O}(\alpha_s^k)}$$

No fixed order component below 30 GeV

- Non-singular (matching) correction **nonnegligible** even below $q_T \lesssim 15$ GeV
- Fixed order matching **crucial** to get correct shape

Transverse momentum spectrum at N³LO+N³LL [Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli '22]

$$d\sigma_V^{N^kLO+N^kLL} \equiv d\sigma_V^{N^kLL} + d\sigma_{V+jet}^{N^{k-1}LO} - \left[d\sigma_V^{N^kLL}\right]_{\mathcal{O}(\alpha_s^k)}$$

Effect of NNLO corrections in the V+jet calculation has 1-3% effect between 10 and 30 GeV

Transverse recoil effects in fiducial DY setup

Symmetric cuts on the dileptons induce linear power corrections in the fiducial spectrum Can be avoided by suitable choice of cuts [Salam, Slade '21]

Recoil effectively captures the **full linear fiducial power correction** for p_t

Comparison with previous N³LO estimates

Symmetric cuts

- Omission of linear power corrections leads to incorrect estimate of N^kLO corrections [Camarda, Cieri, Ferrera '21]
- Data at N³LO not of sufficient quality to observe a stable plateau, inducing larger systematic uncertainties

 $p_T^{\ell^{\pm}} > 25 \,\text{GeV} \qquad |\eta^{\ell^{\pm}}| < 2.5$

