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LHC, New Physics, and the pursuit of Precision

LHC as a discovery machine

» HiggsBoson Vv
» BSM particles x (as of today)

Focus in LHC run I

» Measurement of the Standard Model parameters with very high precision
» Signals of New Physics beyond the Standard Model

A theorist’s Quest:

» New BSM scenarios to be tested

» New techniques to enhance signal/background ratio and isolate tiny deviations
from SM predictions

» Development of accurate and precise theoretical predictions




LHC, New Physics, and the pursuit of Prec1smn

» ~40 inverse femtobarns collected in 2016

distributions in detail

Increase in statistics enables study of differential

LHC 2016 RUN (6 5 TeV/beam)
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> Physics results can be extracted only if precise predictions NV A
are available ez
P — — > Accurate determination of Parton D|str|but|on Functlons
of -f » Constraints on New Physics (e.g. light-quark Yukawa
| TN { |  Couplings)
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Differential distributions in Colour Singlet Production

Higgs Production Z Production

Inclusive cross-section available at N3LO Inclusive Z-production available up to

= N0 d . NNLO
= ifferential distributions known for
§ several years Z—bplscl))rll distribution at NNLO recently
2 . . available
i Jet a’!\ll\l-LO Gl [Boughezal et al 15, Gehermann-De Ridder et al "16]
S U » Fixed-order perturbative
I WO description of differential
S lof 1 distributions features large
T . logarithms e.g.
| « In™ (my/pit) / pf m < 2n—1
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» All-order resummation of
| SO these logarithms necessary to
"% e 50 75 100 25 150 achieve accurate predictions
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Bozzi et al '03]
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Transverse Observables in Colour Singlet Production

Consider observables which obey the following parameterization
Ak

M>af(</>)\

v(k)

Transverse momentum of the
emission wrt beam axis Azimuthal angle

- ] Many of this observables can be resummed in

B I T VA ———L Z : : :
I = direct space in the (observable-independent)
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However, other observables (e.qg. colour singlet
pr, ¢*) have azimuthal cancellations

== Necessary to extend the formalism
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Once extended, the method will be observable-
independent for all global rIRC observables

iZation theorem;\

a) inthe prﬁ,sence of multiple soft and/or collinear emissions, observable has the

o same scaling properties as with just one of them;
sc?l,lng with respect tﬁthe transverse mom,enth of a soft and/or . .
collinear emission is the same everywhere in phase-space b) for sufficiently small values of the obs%rlvable, emissions below ev do not
e

significantly Contribute to the observa
(Pxford
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€(Pt veto) / €central(Pt,veto)

No need for fac

Banfi, Monni, Salam, Zan;derighi 12



Resummation in Parameter Space

» Standard resummation for pr, #*rely on a formulation in impact-parameter-space

e_’)’E e_')’E

do )[HCC]f(Jq,Z 7 ) f (x2,2 ) )

© b
% _— UO/dxldeA db§]0(pr)Sc(b/ Q)/d21d225 (1 — 21422

X1XpS

QZ

» Observables naturally factorize in parameter space (exponentiation)

» Resummation performed in parameter space up to NNLL

[Bozzi, Catani, de Florian, Grazzini '03-'05; Becher, Neubert “10]
[Banfi, Dasqupta, Marzani, Tomlinson, “12]

» Contour deformation must be performed with care to avoid Landau pole
» Stability of the integral at large and small values of b
» Speed limited by the need to compute an inverse transformation

» Approach relies on factorization of the observables
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Resummation in Direct Space
Unable to find closed analytic expressions which is both

» Free of logarithmically subleading corrections

» Free of sinqularities at finite prvalues [Frixione, Nason, Ridolf1 "98]
Consider ensemble of independent emissions ki, ky ...k,
n+1
pT dU' On+1 — Z kt,j
%(p1) / dpt il .
/ —R(€ek; 1) i g /
= oo [ (k)R (ke 80 Y T |7 (k) R (k)@ (pr = g )
0 n=0 't i=p Jekia

PDF scale dependence neglected here

Resummation obtained expanding k:around pand neglecting subleading effects. At
NLL accuracy

Ripp) —reR (p) T = R (p1)/2) 1 Geometric singularity at finite
e [(1+R(pr)/2)

(pr) = ooe ) ~ 2= R(pr) momentum values

However - expansion of the cross section in power of the coupling contains the correct
logarithms: non-logarithmic effect missing
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Resummation in Direct Space

Physical origin: two different mechanisms give a contribution in the small pr region

» configurations where the transverse momenta of the radiated
partons is small (Sudakov limit) Exponential suppression

» configurations where pT tends to zero because of cancellations of
non-zero transverse momenta of the emissions Power-law suppression O(p%)

Non-logarithmic effects should be included when the
second mechanism becomes dominant (R'~2)

Set the scale of real radiation to the first emission kinstead of pr;
resummation of logarithms of ./, [Monni, Re, Torrielli“16]

» Inthe Sudakov limit k:1 < pr » When cancellations kick in

inclusion of subleading reakradiation described
logarithmic terms correctly

(Pxford
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pT

Thanks to P. Monni
pl vs. K1 dependence on the first emission
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R'(ks1) < 1 : few emissions — pr ~ kg

L R/ (k¢1) > 2 : many emissions — azimuthal cancel. |

At some value of R (ky)a Eransition

|‘ balees place and the wore Likely i

. way to get pT-»0 becomes the '
! second mechanism |

50 100 150 200 250 300 | : R _ —




Resummation in Direct Space

Approach extends to a wider class of observables which features the same cancellations

U1 2T . gi 27T

. 2 00 n+1 . L
2(0) = [ DI R0y Lippe ) + e RO L (upe R (01, 1) ( Z % H ' dGi dg R’(m)) O(v —ov({ki}))
— =2

NLL accuracy

Shower ordered in the observable

possible to implement all rIRC observables for colour singlet using same formalism

Advantages of a direct space approach:

» Computational speed

» No need to have a factorization theorem established (observable independent)
» NNLL corrections computed with the ARES method

» Fully exclusive in Born kinematics (easy to implement cuts, dynamic scales, etc)

» Joint resummation of observables with the same Sudakov Radiator
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Phenomenological applications
Formalism first applied to produce the first NNLO4+NNLL predictions for Higgs pT by P. Monni, E. Re

and P. Torrielli

bt " NNLO A
LD » Fast evaluation of master formula
+ KRS58
: using MC methods
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Phenomenological applications

Thanks to a new multiplicative matching now easier to extend the formalism to new
observables == systematic matching at NNLO

Example: ¢*in Drell-Yan pair production
[Banfi, Redford, Vesterinen, Waller, Wyatt "10] p7 FiT

171_ _ 171+
cos(6*) = tanh >

Recoil

» Precision measurement on the p$pectrum at small is limited by experimental resolution

» Experimental uncertainties are minimized when measuring ¢

> ¢* measures deviations from co-planarity (vanishes at Born level)
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Phenomenological applications

20 | ——r .
1 NNLO-+NNLL
NNLO
15 NLO+NNLL T
NN NLO
10 1 Data |
5 Some details still to be finalized
.g 5 > | o“a‘v N . .
L prettiLl » Choice of the resummation scale
O NNPDF3.0 (NNLO)
pp, 8 TeV . .
L 0 < |n| < 2.4 1 » Form of the modified logarithms
06 < my < 116
—10 ! I Lo g I I oo gl
1072 1071 109

FO from Gehermann-De Ridder et al'16
ATLAS 8 TeV arXiv:1512.02192
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Phenomenological applications
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_ Some details still to be finalized

- » (Choice of the resummation scale

» Form of the modified logarithms
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Conclusions

» New method entirely formulated in direct space does not rely on any specific
factorization theorem

» Formalism valid for all colour singlet processes and all rIRC global
observables

» Systematic NNLO matching

» Fully exclusive in the Born phase-space

Outlook

» Full exclusivity in Born kinematics allows for joint resummation at NNLL (p7,p7)

» Systematic inclusion of higher-order corrections



