

## **Resummation and Phenomenology** of Transverse Observables

Luca Rottoli

**Rudolf Peierls Centre for Theoretical Physics, University of Oxford** 



Work in progress with Wojtek Bizon, Pier Monni, Emanuele Re, Paolo Torrielli





## LHC, New Physics, and the pursuit of Precision

#### LHC as a **discovery machine**

- ► Higgs Boson 🗸
- BSM particles  $\times$ (as of today)

Focus in LHC run II

- Signals of New Physics beyond the Standard Model

A theorist's Quest:

- New BSM scenarios to be tested
- from SM predictions
- Development of **accurate** and **precise** theoretical predictions

# Measurement of the Standard Model parameters with very high precision

New techniques to enhance signal/background ratio and isolate tiny deviations



- $\sim$  40 inverse femtobarns collected in 2016
- Increase in statistics enables study of differential distributions in detail
- Physics results can be extracted only if precise predictions are available



arXiv:1606.09253



- Accurate determination of **Parton Distribution Functions**
- Constraints on **New Physics** (e.g. light-quark Yukawa
- Probe on **non-perturbative effects** in distributions



#### See talk by Marzani



## Differential distributions in Colour Singlet Production

**Higgs Production** 

Inclusive cross-section available at N<sup>3</sup>LO

NLO differential distributions known for several years

H+1 jet at NNLO available



**Fixed Order** 

#### **Z** Production

Inclusive Z-production available up to NNLO

Z-boson distribution at NNLO recently available

[Boughezal *et al* '15, Gehermann-De Ridder *et al* '16]

Fixed-order perturbative description of differential distributions features large logarithms e.g.

 $\alpha_s^n \ln^m(m_H/p_t^H)/p_t^H$ 

 $m \leq 2n-1$ 

All-order resummation of these logarithms necessary to achieve accurate predictions



#### **Transverse Observables in Colour Singlet Production**

Consider observables which obey the following parameterization



Banfi, Monni, Salam, Zanderighi '12

scaling with respect to the transverse momentum of a soft and/or collinear emission is the same everywhere in phase-space

 $v(k) = \left(\frac{k_t}{M}\right)^a f(\phi)$ 

Azimuthal angle

Many of this observables can be resummed in direct space in the (observable-independent) **ARES framework** (e.g.  $p_T$ ,  $E_T$ )

However, other observables (e.g. colour singlet  $p_T$ ,  $\phi^*$ ) have **azimuthal cancellations** 

Necessary to extend the formalism

Once extended, the method will be observableindependent for **all global rIRC observables** 

No need for factorization theorems

- a) in the presence of multiple soft and/or collinear emissions, observable has the same scaling properties as with just one of them;
- b) for sufficiently small values of the observable, emissions below ev do not significantly contribute to the observable



#### **Resummation in Parameter Space**

$$\frac{d\sigma}{dp_T^2} = \sigma_0 \int dx_1 dx_2 \int_0^\infty db \frac{b}{2} J_0(bp_T) S_c(b,Q) \int dz_1 dz_2 \delta\left(1 - z_1 z_2 \frac{x_1 x_2 s}{Q^2}\right) [HCC] f(x_1, 2\frac{e^{-\gamma_E}}{b}) f(x_2, 2\frac{e^{-\gamma_E}}{b})$$

- Resummation performed in parameter space up to NNLL
- **Stability** of the integral at large and small values of *b*
- **Speed** limited by the need to compute an inverse transformation
- Approach relies on factorization of the observables

Standard resummation for  $p_T$ ,  $\phi^*$  rely on a formulation in **impact-parameter-space** 

Observables **naturally factorize** in parameter space (**exponentiation**)

[Bozzi, Catani, de Florian, Grazzini '03-'05; Becher, Neubert '10] [Banfi, Dasgupta, Marzani, Tomlinson, '12] **Contour deformation** must be performed with care to avoid Landau pole



#### **Resummation in Direct Space**

Unable to find closed analytic expressions which is both

- Free of logarithmically subleading corrections
- [Frixione, Nason, Ridolfi '98] Free of singularities at finite *p*<sub>T</sub> values

Consider ensemble of independent emissions  $k_1, k_2 \dots k_n$ 

$$\Sigma(p_T) = \int_0^{p_T} dp'_T \frac{d\sigma(p'_T)}{dp'_T}$$
$$= \sigma_0 \int_0^\infty \langle dk_1 \rangle R'(k_{t,1}) e^{-R(\epsilon k_{t,1})}$$

Resummation obtained expanding  $k_{t,a}$  around  $p_{\overline{a}}$  nd neglecting subleading effects. At **NLL** accuracy

$$\Sigma(p_T) = \sigma_0 e^{-R(p_T)} e^{-\gamma_E R'(p_T)} \frac{\Gamma(1 - R'(p_T)/2)}{\Gamma(1 + R(p_T)/2)} \sim \frac{1}{2 - R'(p_T)} \frac{\text{Geometric singularity at finite}}{\text{momentum values}}$$

However - expansion of the cross section in power of the coupling **contains the correct logarithms**: non-logarithmic effect missing

$$q_{n+1} = \sum_{j=1}^{n+1} k_{t,j}$$

$$\sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon k_{t,1}}^{k_{t,1}} \langle dk_i \rangle R'(k_{t,i}) \Theta(p_t - |q_{n+1}|)$$
  
PDF scale dependence neglected here



### **Resummation in Direct Space**

Physical origin: two different mechanisms give a contribution in the small  $p_T$  region

- configurations where the transverse momenta of the radiated partons is small (Sudakov limit) Exponential suppression
- configurations where pT tends to zero because of cancellations of non-zero transverse momenta of the emissions

Non-logarithmic effects should be included when the second mechanism becomes dominant ( $R' \sim 2$ )

Set the scale of real radiation to the **first emission** kinstead of p<sub>T</sub>; resummation of logarithms of  $m/k_{t,1}$ 

> inclusion of subleading logarithmic terms

Power-law suppression  $\mathcal{O}(p_T^2)$ 

[Monni, Re, Torrielli '16]

In the Sudakov limit  $k_{t,1} \le p_T$  When cancellations kick IN reakradiation described correctly



#### Thanks to P. Monni pT vs. ET: dependence on the first emission



#### **Resummation in Direct Space**

 $\Sigma(v) = \int \frac{dv_1}{v_1} \frac{d\phi_1}{2\pi} [-e^{-R(v_1)} \partial_L \mathcal{L}(\mu_F e^{-L}) + e^{-R(v_1)} \mathcal{L}(\mu_F e^{-L}) R$ 

Shower ordered in the observable

possible to implement all rIRC observables for colour singlet using same formalism **Advantages** of a direct space approach:

- **Computational speed**
- No need to have a factorization theorem established (**observable independent**)
- NNLL corrections computed with the ARES method
- **Fully exclusive** in Born kinematics (easy to implement cuts, dynamic scales, etc)
- Joint resummation of observables with the same Sudakov Radiator

Approach extends to a **wider class of observables** which features the same cancellations

$$\mathbb{R}'(v_1,\phi_1) \left[ \left( \epsilon^{\hat{R}'(v_1)} \sum_{i=0}^{\infty} \frac{1}{n} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_i}{\zeta_i} \frac{d\phi_i}{2\pi} \hat{R}'(v_1) \right) \Theta(v - v(\{k_i\})) \right]$$

$$\mathbb{NLL accuracy}$$



Formalism first applied to produce the first NNLO+NNLL predictions for Higgs pT by P. Monni, E. Re and P. Torrielli



- Fast evaluation of master formula using MC methods
- Impact of resummation important for p<sub>T</sub> 4 GeV
- Resummation predictions reduce to NNLO at higher p<sub>T</sub>

Results with **multiplicative matching** 



Thanks to a **new multiplicative matching** now easier to extend the formalism to new 

Example:  $\phi^*$  in Drell-Yan pair production [Banfi, Redford, Vesterinen, Waller, Wyatt '10]  $\vec{a}_L$ 

- Experimental uncertainties are minimized when measuring  $\phi^*$ 
  - $\phi^*$  measures deviations from co-planarity (vanishes at Born level)



Precision measurement on the  $p_{\overline{b}}$  pectrum at small is limited by experimental resolution





FO from Gehermann-De Ridder *et al* '16 ATLAS 8 TeV arXiv:1512.02192 Some details still to be finalized

- Choice of the resummation scale
- Form of the modified logarithms





Some details still to be finalized

- Choice of the resummation scale
- Form of the modified logarithms



#### Conclusions

- factorization theorem
- Formalism valid for all colour singlet processes and all rIRC global observables
- Systematic NNLO matching
- **Fully exclusive** in the Born phase-space Outlook
- Systematic inclusion of higher-order corrections

New method entirely formulated in direct space does not rely on any specific

Full exclusivity in Born kinematics allows for **joint resummation** at NNLL  $(p_{T}, p_{T})$ 

