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NNLO+PS: general strategy

Recast perturbative NNLO calculation in a Monte Carlo language (radiation ordered in a 
given resolution variable)

• Introduce a set of resolution variables to measure hardness of first, second… emission 

• Logarithmic dependence on resolution parameters resummed explicitly or via Sudakov 
form factors 

• Fix remaining degrees of freedom by matching to NNLO computation (exploiting 
resummation properties of resolution variable)
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NNLO+PS: GENEVA vs. MiNNLOPS

• Originally developed using 
jettiness-like observables ( , ) 

• High-accuracy resummation of 
residual logarithmic dependence 

• Additive-like matching to reach 
NNLO accuracy (jettiness/qT 
subtraction)

𝒯0 𝒯1

• Originally developed using 
transverse-momentum observables 

• Sudakov factors used to resum 
logarithmic dependence on 
resolution parameters 

• Multiplicative-like matching to 
reach NNLO accuracy (also 
inspired by jettiness/qT subtraction)

GENEVA MiNNLOPS

GENEVA and MiNNLOPS methods achieve NNLO+PS accuracy following the same 

general strategy, with some important differences:
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GENEVA method in a nutshell

• Design IR-finite definition of events, based 
on resolution parameter . Emissions 
below  are unresolved and the 
kinematic configuration considered is the 
one of the event before the emission 

rcut

rcut
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• Associate differential cross-sections to 
events such that 0-jet events are NNLO 
accurate and  is resummed at NNLL’r

• Shower events

• Hadronise, add multi-parton interactions 
(MPI) and compare with data

[Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi ’15]
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GENEVA method in a nutshell
Procedure can be iterated, thus slicing the phase space into jet-bins

+ȴȣɻʉɫʞƁʉǩȣǊ xæ࢙˨ȣǩʉƟ ƟʻƟȣʉɻ
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GENEVA method in a nutshell: resummation of the resolution parameter
As we take , large logarithms of   appear, which must be resummed lest 
they spoil the perturbative convergence

rcut
0 → 0 rcut

0 , r0

dσ
dr

rcut
0

+∞

X+j @ Nk-1LO

1
r0

ln2k−1 r0

Q

r0

resummation of  r0

• Expand to fixed order 
•  ingredients𝒪(α2

s )

dσMC
F = dσres

F + [dσFJ]f.o. − [dσres
F ]f.o.

NNLO accuracy guaranteed up to power correction in  rcut
0
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dσMC
FJ

dΦFJ
(r0 > rcut

0 ) =
dσres

dΦFdr0
𝒫(ΦFJ) +

dσNLOFJ

dΦFJ
− [ dσres

dΦFdr0
𝒫(ΦFJ)]

NLO

∫
dΦFJ

dΦFJdr0
𝒫(ΦFJ) = 1

Above formula can be compared to the  or jettiness subtraction formalismqT
[Gaunt, Stahlhofen, Tackmann, Walsh ’15][Catani, Grazzini ’08]

However, we are interested in a fully differential Monte Carlo event generator. Since the 
resummed component is only differential in Born phase space  and , one has to make 
it differential in 2 more variables, e.g. energy ratio , azimuthal angle .

Φ0 r0
z = Em/Es ϕ

Here  is a normalised splitting probability to make the resummation differential in 𝒫(ΦFJ) ΦFJ

GENEVA method in a nutshell: resummation of the resolution parameter

dσMC
F = dσres

F + [dσFJ]f.o. − [dσres
F ]f.o.
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GENEVA method in a nutshell: 1-/2-jet separation

dσMC
FJ = dσres

FJ + [dσFJJ]f.o. − [dσres
FJ ]f.o.

An analogue separation is performed for the 1-jet cross section, which is partitioned into an 
exclusive 1-jet cross section and an inclusive 2-jet cross section

Integrated quantities retain NLO accuracy via local subtraction; resummation accuracy at 
NLL is sufficient

U1(ΦFJ, rcut
1 ) + ∫

dΦFJJ

dΦFJ
U′ 1(ΦFJ, r1)𝒫(ΦFJJ)θ(r1 > rcut

1 ) = 1

Analogously to the 0-/1-jet separation, a normalised splitting function   is needed 
to make the extend the differential dependence of  

𝒫(ΦFJJ)
dσres

FJ

Sudakov form factor resumming  dependence r1



2nd Workshop on Tools for High Precision LHC Simulations,  9 May 2024

NNLO+PS: GENEVA vs. MiNNLOPS

• Originally developed using 
jettiness-like observables ( , ) 

• High-accuracy resummation of 
residual logarithmic dependence 

• Additive-like matching to reach 
NNLO accuracy (inspired by 
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GENEVA and MiNNLOPS methods achieve NNLO+PS accuracy following the same 
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MiNNLOPS in a nutshell

dσres
F

dpTdΦB
=

d
dpT

{e−Sℒ} = e−S {S′ ℒ + ℒ′ }

≡ D

dσF = dσres
F + [dσFJ]f.o. − [dσres

F ]f.o.

Starting point of MiNNLOPS construction is analogue to the formulae above

Up to the second perturbative order, the resummed component can be written as a total 
derivative

ℒ ∼ H(C ⊗ f )(C ⊗ f )

where the luminosity  and the Sudakov form factor  are written in terms of the 
ingredients of  resummation at N3LL accuracy

ℒ S
qT

S(pT) = ∫
Q

pT

dq
q (A(αs(q))ln

Q2

q2
+ B(αs(q)))

[Monni, Nason, Re, Wiesemann, Zanderighi ’19]
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MiNNLOPS in a nutshell

dσMiNNLO
F

dpTdΦB
= e−S(pT){ αs(pT)

2π
dσ(1)

FJ

dpTdΦB
(1

𝒪(αs(pT))

+
αs

2π
S(1)(pT)) + ( αs(pT)

2π )
2 dσ(2)

FJ

dpTdΦB

𝒪(αs(p2
T))

By factoring out the Sudakov exponential factor

dσF = dσres
F + [dσFJ]f.o. − [dσres

F ]f.o. = e−S {D +
[dσFJ]f.o.

[e−S]f.o
−

[dσres
F ]f.o.

[e−S]f.o }

+[D(pT) −
αs

2π
D(1)(pT) − ( αs(pT)

2π )
2

D(2)(pT)]
𝒪(αs(pT)3)

+ regular terms 𝒪(α3
s )}

Expanding up to  one gets𝒪(α3
s (pT))
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MiNNLOPS in a nutshell

dσMiNNLO
F

dpTdΦB
= e−S(pT){ αs(pT)

2π
dσ(1)

FJ

dpTdΦB
(1

𝒪(αs(pT))

+
αs

2π
S(1)(pT)) + ( αs(pT)

2π )
2 dσ(2)

FJ

dpTdΦB

𝒪(αs(p2
T))

+[D(pT) −
αs

2π
D(1)(pT) − ( αs(pT)

2π )
2

D(2)(pT)]
𝒪(αs(pT)3)

+ regular terms 𝒪(α3
s )}

First line equivalent to the MiNLO’ formulation 
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MiNNLOPS in a nutshell
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First line equivalent to the MiNLO’ formulation 

Second lines contains the additional terms needed to reach NNLO accuracy, upon 
integration in qT



2nd Workshop on Tools for High Precision LHC Simulations,  9 May 2024
12

MiNNLOPS in a nutshell

dσMiNNLO
F

dpTdΦB
= e−S(pT){ αs(pT)

2π
dσ(1)

FJ

dpTdΦB
(1

𝒪(αs(pT))

+
αs

2π
S(1)(pT)) + ( αs(pT)

2π )
2 dσ(2)

FJ

dpTdΦB

𝒪(αs(p2
T))

+[D(pT) −
αs

2π
D(1)(pT) − ( αs(pT)

2π )
2

D(2)(pT)]
𝒪(αs(pT)3)

+ regular terms 𝒪(α3
s )}

First line equivalent to the MiNLO’ formulation 

Regular terms contribute beyond NNLO accuracy

Second lines contains the additional terms needed to reach NNLO accuracy, upon 
integration in qT
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MiNNLOPS in a nutshell

dσMiNNLO
F

dpTdΦB
= e−S(pT){ αs(pT)

2π
dσ(1)

FJ

dpTdΦB
(1

𝒪(αs(pT))

+
αs

2π
S(1)(pT)) + ( αs(pT)

2π )
2 dσ(2)

FJ

dpTdΦB

𝒪(αs(p2
T))

+[D(pT) −
αs

2π
D(1)(pT) − ( αs(pT)

2π )
2

D(2)(pT)]
𝒪(αs(pT)3)

+ regular terms 𝒪(α3
s )}

NNLO subtraction accomplished thanks to the presence of a Sudakov form factor which 
exponentially suppressed the  limitqT → 0
NNLO subtraction accomplished thanks to the presence of a Sudakov form factor which 
exponentially suppressed the  limitqT → 0
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MiNNLOPS in a nutshell

dσ
dΦFJ

= B̃FJ × {Δpwg(Λpwg) + ∫ dΦradΔ(pT,rad)
R(ΦFJ, Φrad)

B(ΦFJ }

dσ
dΦFJ

= B̃MiNNLOPS
FJ × {Δpwg(Λpwg) + ∫ dΦradΔ(pT,rad)

R(ΦFJ, Φrad)
B(ΦFJ }

NNLO+PS construction achieved by applying the above formulae to the POWHEG 
calculation for F+j production, making it NNLO accurate
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MiNNLOPS in a nutshell

B̃FJ ∼ {dσ(1)
FJ + dσ(2)

FJ }

B̃MiNNLOPS(ΦFJ) ≃ e−S(pT){ αs

2π [ dσ
dΦFJ ]

(1)

(1 +
αs

2π
[S(pT)](1)) + ( αs

2π )
2

[ dσ
dΦFJ ]

(2)

NNLO+PS construction achieved by applying the above formulae to the POWHEG 
calculation for F+j production, making it NNLO accurate

+(D(pT) − D(1)(pT) − D(2)(pT)) × 𝒫(ΦFJ)}
Here  again is needed to spread the last term in the  phase space𝒫(ΦFJ) ΦFJ
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Choice of the resolution parameter (1)

𝒯N =
2
Q ∑

k

min{qa ⋅ pk, qb ⋅ pk, q1 ⋅ pk, …qN ⋅ pK}

Original incarnation of GENEVA uses N-jettiness (beam thrust) as 0-jet resolution 
parameter, defined in terms of beams  and jet-directions qa,b qj

Similarly, MiNNLOPS has been originally formulated by creating a connection to the 
transverse momentum resummation formalism

Any resolution variable which can be resummed at high enough accuracy can be used

The availability of different resolution variables within the same formalism allows one to 
study the robustness of the frameworks and assess the uncertainties associated to the 
choice of the resolution parameter
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Extension(s) of the GENEVA framework

First method to be extended to use a different resolution variable

Availability of N3LL resummation for  and extreme precision at which this observable is 
measured by the LHC experiments motivated the extension of the GENEVA framework

qT

𝒯0 → qT

The GENEVA method was formulated in full generality, making its extension formally viable 

Technically challenging as it requires acting on all aspects of the framework (interplay with 
resummation, subtractions, mapping, shower interface…) 

[Alioli, Bauer, Broggio, Gavardi, 
Kallweit, Lim, Nagar, Napoletano, 
LR ’21]

Recently extended to use also the leading jet  as resolution variablepT

𝒯0 → pj1
T

[Gavardi, Lim, Alioli, Tackmann ’23]

thanks to the recent availability of NNLL’ ingredients for pj1
T

[Abreu, Gaunt, Monni, LR, Szafron ’22]
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Extension of the MiNNLOPS framework

Extension of the MiNNLOPS formalism to other (SCETI) resolution variables less 
straightforward, due to the connection with the transverse resummation formalism

Differences with respect to the transverse momentum case arise from the different singular 
structure (SCETI vs SCETII) which leads to a richer structure up to order α2

s

dσsing(𝒯0)
dΦB

= e−𝒮(𝒯0)[ℒ(𝒯0)(1 −
ζ2

2
[(𝒮′ )2 − 𝒮′ ′ ] − ζ3𝒮′ 𝒮′ ′ +

3ζ4

16
(𝒮′ ′ )2 +

ζ3

3
𝒮′ ′ ′ )

+ℒ′ (𝒯0)(ζ2𝒮′ + ζ3𝒮′ ′ ) −
ζ2

2
ℒ′ ′ (𝒯0) + 𝒪(α3

s )]
To be compared with

dσsing(pT)
dΦB

= e−𝒮(pT)[ℒ(pT)(1 −
ζ3

4
𝒮′ 𝒮′ ′ +

ζ3

12
𝒮′ ′ ′ ) −

ζ3

4
αs(pT)

π
𝒮′ ′ 

̂P ⊗ ℒ(pT) + 𝒪(α3
s )]

[Ebert, LR, Wiesemann, Zanderighi, Zanoli ’23]

[Monni, Nason, Re, Wiesemann, Zanderighi ’19]



2nd Workshop on Tools for High Precision LHC Simulations,  9 May 2024
17

Extension of the MiNNLOPS framework

B̃MiNNLOPS(ΦFJ) ≃ e−S(𝒯0){ αs

2π [ dσ
dΦFJ ]

(1)

(1 +
αs

2π
[S(𝒯0)](1)) + ( αs

2π )
2

[ dσ
dΦFJ ]

(2)

It turns out that the MiNNLOPS construction is sufficiently flexible to allow for its extension 
to a rather different variable such as jettiness, provided that the POWHEG calculation is 
modified in a suitable manner 

+(D(𝒯0) − D(1)(𝒯0) − D(2)(𝒯0)) × 𝒫(ΦFJ)}

qT → 𝒯0

With the POWHEG  function now readingB̃

[Ebert, LR, Wiesemann, Zanderighi, Zanoli ’23]
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Choice of the resolution parameter (2)

However, its choice has important consequences

• Size of missing power corrections (in the GENEVA method) 

• Ease of interface with the shower 

• Overall description of physical events after matching and showering 

• Extension to more complicated processes

The choice of resolution variables is in principle immaterial to reach NNLO accuracy 
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Resolution parameter and missing power corrections
The GENEVA method relies on a non-local subtraction scheme to reach NNLO accuracy

As such, it is prone to the same limitation of non-local subtraction schemes, i.e. sensitivity 
to missing power corrections below the technical cutoff rcut

0

GENEVA  typically relies on an overall reweighing of the events to reproduce the NNLO 
cross section due to larger missing power corrections using 

𝒯0

𝒯0
9

following expression

]d�mc
0

d�0

(r cut

0
) =

d�res

d�0

(r cut

0
) �


d�res

d�0

(r cut

0
)

�

NLO0

+ (B0 + V0)(�0)

+

Z
d�1

d�0

(B1)(�1) ✓
�
r0(�1) < r cut

0

�
, (30)

which only involves a local subtraction at O(↵S) and the
expansion of the resummation at the same order. The
formula assumes an exact cancellation between the fixed-
order and the resummed expanded contribution below the
value of r cut

0
at order ↵2

S
. The cancellation is guaranteed

for the singular contributions due to the accuracy of the
r0 cumulant (we stress again that in order to achieve
NNLO0 accuracy the resummation accuracy must be
at least NNLL0); however, the formula fails to capture
nonsingular contributions at O(↵2

S
). These nonsingular

contributions can be expressed as

d�nons
0

d�0

(r cut

0
) =

⇥
↵Sf1(r

cut

0
,�0) + ↵

2

S
f2(r

cut

0
,�0)

⇤
r cut

0
,

(31)

and their integral over the phase space is

⌃ns(r
cut

0
) =

Z
d�0

d�nons
0

d�0

(r cut

0
) . (32)

The nonsingular cumulant vanishes in the limit r cut
0

! 0
since the functions fi(r cut

0
,�0) contain at worst loga-

rithmic divergences. As discussed above, our calculation
includes the term f1(r cut

0
,�0) since we implement a NLO1

FKS local subtraction. On the contrary, f2(r cut
0

,�0) is
not included in Eq. (31). Neglecting the O(↵2

S
) power

corrections is acceptable as long as we choose r cut
0

to be
very small.
So far, the Geneva method has been based on N -jettiness
subtraction [109–111]. In this work we take r0 equal to
q?; e↵ectively, this corresponds to basing Geneva on a
qT subtraction scheme [112]. The availability of di↵erent
resolution parameters in Geneva is beneficial, as the size
and the scaling of the power corrections can be di↵erent.
The size of the missing O(↵2

S
) power corrections as a

function of qcut

? can be calculated as

⌃(2)

NS
(qcut

? ) = ��
NNLO

� ⌃N
3
LL

asymp
+ ⌃N

3
LL

asymp
|↵s

�

Z 1

qcut
?

dq?

0

@d�NLO1

dq?
�

d�N
3
LL

dq?

�����
↵2

s

1

A

+

Z 1

qcut
?

dq?

 
d�LO1

dq?
�

d�N
3
LL

dq?

�����
↵s

!
, (33)

where ��
NNLO = �

NNLO
� �

NLO, ⌃N
3
LL

asymp
is the cumulant

of the resummed contribution (see Eq. (21))

⌃N
3
LL

asymp
=

Z
d�0

Z qmax
?

0

dq0?
d�N

3
LL

d�0dq0?
(34)
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FIG. 2: Nonsingular cumulant at order ↵2

S
as a function

of qcut

? .

and q
max

? is the maximum value allowed by the kinematics
for each �0 point. Finally, |↵n

S
indicates the expansion up

to order ↵n
S
.

We have calculated ��
NNLO by computing �

NNLO

with Matrix. Note that Matrix also achieves NNLO
accuracy via qT subtraction, and therefore potentially
misses power corrections at O(↵2

S
). However, Matrix

includes an estimate of this power corrections by interpo-
lating the result to q

cut

? = 0, and including an estimate of
this interpolation procedure in its error.
We show the size of the missing power corrections in Fig. 2,
where we consider values of qcut

? down to 1 GeV. We con-
sider pp ! `

+
`
� production at 13 TeV in an inclusive

setup by applying a cut only on the invariant mass of
the produced colour singlet. We observe that the power
corrections are below the 2h level for log10(q

cut

? ) . 0.5,
corresponding to a value of qcut

? . 3 GeV, in accordance
with what was observed in [107]. Motivated by this plot,
we choose q

cut

? = 1 GeV as our default value. The negligi-
ble size of the missing power correction allows us to avoid
the need for the reweighting of the �0 events, which was
instead the approach followed in the previous application
of the Geneva method. Our choice is further justified
by a detailed comparison between Geneva and an inde-
pendent NNLO calculation for distributions di↵erential
in the �0 variables, as we will show in Sec. 3E.

C. NLO1 calculation and phase space mapping

In this section we discuss the implementation of the
�r

1
(�2) mapping introduced in Eq. (15) and of that intro-

duced in Eq. (18). As we anticipated in Sec. 2A, these
phase space mappings do not necessarily need to coincide,
since only the latter needs to be written as a function of
the 1-jet resolution variable T1.
We start by discussing the mapping used to implement
the NLO1 calculation. Let us first notice that the �r

1
(�2)

mapping used in the B2 term and the �C
2
(�1) used for

Reduced size of power corrections using 
transverse-momentum based observables 
removes the need of such reweighing 
improving comparisons with fixed-order 
computations 

This drawback is removed relying on transverse 
momentum observables ( , )qT pj

T
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Choice of the resolution parameter (2)

However, its choice has important consequences

• Size of missing power corrections (in the GENEVA method) 

• Ease of interface with the shower 

• Overall description of physical events after matching and showering 

• Extension to more complicated processes

The choice of resolution variables is in principle immaterial to reach NNLO accuracy 
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Interplay with the parton shower
The interplay with the parton shower is likely the most delicate aspect of NNLO+PS methods

For simplicity, let’s consider the interplay between the generator and the parton shower at 
NLO+PS using a Lund plane representation of the of the phase space for soft and/or collinear 
emissions 

η

ln kt
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Interplay with the parton shower
Let’s assume to be interested in calculating the probability  that an observable  is 
below a given threshold (here ).  

Let us consider an observable which for a single soft collinear emission scales as 

Σ(O < eL) O
L < 0

O ∼
kt

Q

η

ln kt

ln kobs
t = L
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Interplay with the parton shower

The event generator generates the hardest emission with an associated Sudakov suppression 
factor

η

ln kt

ln kobs
t = L

Let’s assume that the event generator is characterised by an resolution variable scaling as

OEG ∼
kt

Q
e−βEG|η|

Event generator
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Interplay with the parton shower

The remaining phase space which contributes to the probability  is filled by the 
parton shower

Σ(O < eL)

OPS ∼
kt

Q
e−βPS|η|

Here we again assume

η

ln kt

ln kobs
t = L

Event generator
Shower
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Interplay with the parton shower

A mismatch between  and  breaks LL accuracy due to double countingβPS βEG

η

ln kt

ln kobs
t = L

OPS ∼
kt

Q
OEG ∼

kt

Q
e−βEG|η|

Event generator
Shower
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Interplay with the parton shower

To achieve NLL (and beyond) accuracy after matching, in addition to have , one 
must ensure the absence of contour mismatch in e.g. the hard-collinear region

βPS = βEG

η

ln kt

ln kobs
t = L

OEG ∼ OPS ∼
kt

Q
e−β|η|

Event generator
Shower
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Interplay with the parton shower

At NNLO+PS the picture is more complex since the event generator takes care both of the 
first and second hardest emission, with the remaining emissions provided by the PS

• MiNNLO  (and GENEVA ) allow for a straightforward matching (at LL accuracy) when 
( -ordered) shower are employed, thanks to similarities between their resolution variables 

• GENEVA  (and GENEVA  ) resort to truncated-vetoed shower in the effort to preserve LL 
accuracy of the parton shower when matching with ( -ordered) showers 

• MiNNLO  formally breaks LL accuracy when matched to PYTHIA, as a change in the 
POWHEG mapping will be required to treat consistently the second emission

qT pj,1
T

kt

𝒯0 qT

kt

𝒯0
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Interplay with the parton shower

These aspects will become central when (N)NLL-accurate (and beyond) parton showers for 
hadron collisions will become publicly available

Use of showers with a resolution variables with   (e.g. DEDUCTOR) or angular ordered 
showers (e.g. HERWIG) would require additional care, especially beyond LL

β ≠ 0

Formalisms based on transverse-momentum like observables ( ) are favoured when 
matching with -ordered showers as they facilitate the matching 

β = 0
kt

Too many handles in LL accurate parton showers make formal accuracy not so relevant 
practically (predictions for 1-jet obs. can change significantly simply by acting on the tune)
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Phenomenology

However, its choice has important consequences

• Size of missing power corrections (in the GENEVA method) 

• Ease of interface with the shower 

• Overall description of physical events after matching and showering 

• Extension to more complicated processes

The choice of resolution variables is in principle immaterial to reach NNLO accuracy 
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Phenomenology: NNLO inclusive distributions

Results for NNLO inclusive observable should be (almost) independent on the resolution 
variable used
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Figure 8. Comparison of MiNNLOPS-pT (blue, solid) and MiNNLOPS-T0 (green, dashed) against
CMS data from ref. [67] for the transverse momentum of the lepton pair (upper left) and the Collins-
Soper angle �

⇤ (upper right), as defined in the main text, and the Z boson rapidity distribution
(bottom plot).

of large logarithmic terms. At large pT,`` values, both generators are NLO accurate only,
which is reflected in the enlarged theory uncertainty bands. In this high-pT,`` region theory
predictions tend to overestimate data but the agreement remains good, at 1–2 � level. As
for the angle �

⇤, we observe that both generators agree rather well with data (1–2 � level),
but data tend to fall more sharply at large �

⇤ values. In figure 8 we present a comparison
with CMS data. In this comparison we observe the same relative behaviour as with ATLAS
data for both pT,`` and �

⇤, so the same conclusions hold. Moreover, we present results for
the rapidity distribution of the reconstructed Z boson y``, for which we observe an excellent
description of the data with both MiNNLOPS-pT and MiNNLOPS-T0, with a discrepancy
of a few percent only, relatively flat across the whole rapidity range.
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FIG. 13: Comparison between Geneva and the CMS data for di↵erent observables. Normalised distributions are
shown on the right, see text for details.

is linear up to 30 GeV and logarithmic for larger values.
The former are in very good agreement with the data in
the whole q? range. Below 30 GeV, the central prediction
is within a few percent of the data, and only in the first
two bins, where hadronisation and nonperturbative e↵ects
play a prominent role, do the scale uncertainty bands fail
to cover the experimental data. Our predictions are also
in good agreement with the �

⇤ measurements, matching

them within scale uncertainty bands down to values of
�
⇤
⇠ 0.01; at lower values the di↵erences reach the 20%

level in the first bin, and the perturbative uncertainty
does not cover the data. Here, the inclusion of shower and
nonperturbative uncertainties as well as the development
of a dedicated tuning could help ameliorate the agreement.
Finally, in Fig. 12 we can compare our predictions with
parton level results at N3LL+NNLO1 accuracy [97] for the
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Phenomenology: transverse observables
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Figure 8: Comparison to resummation based predictions. The ratio of GENEVA-t (left) and
GENEVA-qT (right) predictions to the measured differential cross sections in pT(``) are pre-
sented for various m`` ranges. The error bars correspond to the statistical uncertainty of the
measurement and the shaded bands to the total experimental uncertainty. The light color bands
around the predictions represents the statistical uncertainties and the middle color bands rep-
resents the scale uncertainties. The dark outer bands of GENEVA-qT prediction represent the
resummation uncertainties.

The situation is instead different for more differential observables, for which the details of 
the implementation and the interplay with the parton shower play an important role

It would be interesting to 
see how GENEVA-  
performs (e.g. 
dependence on the jet 
radius), even more so 
since it features a 
different 1-2 jet 
separation variable

pj
T

 [CMS, 2205.04897] 

𝒯0 qT
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Phenomenology: transverse observables

The situation is instead different for more differential observables, for which the details of 
the implementation and the interplay with the parton shower play an important role
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The situation is instead different for more differential observables, for which the details of 
the implementation and the interplay with the parton shower play an important role
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Figure 7. Comparison of MiNNLOPS-pT (blue, solid) and MiNNLOPS-T0 (green, dashed)
against ATLAS data from ref. [65] for the transverse momentum of the lepton pair (left) and the
Collins-Soper angle �

⇤ (right), as defined in the main text.

ATLAS [65] CMS [66]

pT,` > 27 GeV pT,` > 25 GeV

|⌘`| < 2.5 |⌘`| < 2.4

66 GeV < m`` < 116 GeV |m`` �mZ |GeV < 15GeV

Table 2. Fiducial cuts used in the ATLAS and CMS analyses.

Collins-Soper angle (�⇤) are shown. The angle �
⇤ is defined as

�
⇤ = tan

✓
⇡ ���

2

◆
sin (✓⇤) , cos (✓⇤) = tanh

✓
�⌘

2

◆
, (4.1)

where �⌘ and �� are the differences in pseudorapidity and azimuthal angle between the two
leptons. As for the CMS data, we consider the analysis presented in ref. [66] where, besides
results for pT,`` and �

⇤, also the rapidity distribution of the dilepton system (y``) is shown.
The two analyses use similar fiducial cuts, which are reported in table 2. In figure 7
we present a comparison between MiNNLOPS-pT (blue, solid) and MiNNLOPS-T0 (green,
dashed) predictions with ATLAS data. As for the transverse momentum of the dilepton
system, our MiNNLOPS predictions are in good agreement with data throughout the entire
spectrum. For very small values of pT,`` (pT,`` < 10 GeV), we observe a slight difference
in shape between the MiNNLOPS curves and data, which is however not unexpected as
this region is sensitive to soft-collinear radiation and requires an accurate resummation
of large logarithmic terms. At large pT,`` values, both generators are NLO accurate only,
which is reflected in the enlarged theory uncertainty bands. In this high-pT,`` region theory
predictions tend to overestimate data but the agreement remains good, at 1–2 � level. As
for the angle �

⇤, we observe that both generators agree rather well with data (1–2 � level),

– 26 –

Caveat: different tunes used for GENEVA and MiNNLO

Phenomenology: transverse observables
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The situation is instead different for more differential observables, for which the details of 
the implementation and the interplay with the parton shower play an important role
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Figure 7. Comparison of MiNNLOPS-pT (blue, solid) and MiNNLOPS-T0 (green, dashed)
against ATLAS data from ref. [65] for the transverse momentum of the lepton pair (left) and the
Collins-Soper angle �

⇤ (right), as defined in the main text.

ATLAS [65] CMS [66]

pT,` > 27 GeV pT,` > 25 GeV

|⌘`| < 2.5 |⌘`| < 2.4

66 GeV < m`` < 116 GeV |m`` �mZ |GeV < 15GeV

Table 2. Fiducial cuts used in the ATLAS and CMS analyses.

Collins-Soper angle (�⇤) are shown. The angle �
⇤ is defined as

�
⇤ = tan

✓
⇡ ���

2

◆
sin (✓⇤) , cos (✓⇤) = tanh

✓
�⌘
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where �⌘ and �� are the differences in pseudorapidity and azimuthal angle between the two
leptons. As for the CMS data, we consider the analysis presented in ref. [66] where, besides
results for pT,`` and �

⇤, also the rapidity distribution of the dilepton system (y``) is shown.
The two analyses use similar fiducial cuts, which are reported in table 2. In figure 7
we present a comparison between MiNNLOPS-pT (blue, solid) and MiNNLOPS-T0 (green,
dashed) predictions with ATLAS data. As for the transverse momentum of the dilepton
system, our MiNNLOPS predictions are in good agreement with data throughout the entire
spectrum. For very small values of pT,`` (pT,`` < 10 GeV), we observe a slight difference
in shape between the MiNNLOPS curves and data, which is however not unexpected as
this region is sensitive to soft-collinear radiation and requires an accurate resummation
of large logarithmic terms. At large pT,`` values, both generators are NLO accurate only,
which is reflected in the enlarged theory uncertainty bands. In this high-pT,`` region theory
predictions tend to overestimate data but the agreement remains good, at 1–2 � level. As
for the angle �

⇤, we observe that both generators agree rather well with data (1–2 � level),
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system, our MiNNLOPS predictions are in good agreement with data throughout the entire
spectrum. For very small values of pT,`` (pT,`` < 10 GeV), we observe a slight difference
in shape between the MiNNLOPS curves and data, which is however not unexpected as
this region is sensitive to soft-collinear radiation and requires an accurate resummation
of large logarithmic terms. At large pT,`` values, both generators are NLO accurate only,
which is reflected in the enlarged theory uncertainty bands. In this high-pT,`` region theory
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Analogue dependence on tune settings was observed in GENEVA
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Non-negligible dependence on the 
recoil scheme of the shower, which 
can affect the transverse momentum 
spectrum at the few percent level 
(besides affecting shower accuracy)

Phenomenology: transverse observables

Tunes obtained by comparing LO predictions to data are bound to absorb higher order 
corrections into the tune parameters
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Figure 14: Comparison of the differential cross sections in pT(``) to predictions in various in-
variant mass ranges for the one or more jets case. The measurement is compared with MG5 aMC
(0, 1, and 2 jets at NLO) + PYTHIA 8 (upper left), MINNLOPS (upper right) and MG5 aMC (1 jet
at NLO) + PB (CASCADE) (lower). Details on the presentation of the results are given in Fig. 6
caption.
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Figure 15: Comparison of the differential cross sections in pT(``) to predictions in various in-
variant mass ranges for the one or more jets case. The measurement is compared with GENEVA-
t (left) and GENEVA-qT (right) predictions. Details on the presentation of the results are given
in Fig. 8 caption.

all m`` bins (Fig. 20). This contrasts with the description of the pT(``) dependence by the same
prediction (Fig. 7), owing to the washing out of the details of the pT(``) distribution in the j⇤

h

distribution. The normalisation of the prediction is good for the Z boson mass peak region but
underestimates more and more the cross section with increasing m`` , in a way relatively close
to MG5 aMC predictions. The ratio distributions (Fig. 23) also illustrate this, but a compensation
effect leads to predictions in agreement over the full j⇤

h range.

The measured cross sections as a function of j⇤
h are compared with GENEVA predictions in

Fig. 21. Similar to previous discussions of the pT(``) distributions, GENEVA-qT improves sig-
nificantly the description of the data with respect to GENEVA-t. The discrepancy of GENEVA-qT
for low pT(``) values in the two lowest m`` bins is smoothed here leading to a global agree-
ment everywhere. The cross section ratio distributions of the different m`` bins over the Z
boson mass peak bin, as a function of j⇤

h are shown in Fig. 24. Here both GENEVA predictions
provide a good description of the measurements. This indicates that, although the precise
shape in j⇤

h is not well reproduced by GENEVA-t, the scale dependence is well described over
the large range covered by the present measurement.

The differential cross section measurements are presented in the HEPData entry [100].

Phenomenology: transverse observables
Although formally equivalent (and NLO accurate), the description of observables in the 
1-jet phase space is also affected by the details of the implementation

With what accuracy the different formalisms resume Sudakov shoulder logs?
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Phenomenology: transverse observables

These differences are partially driven by how the (formally higher order) corrections re-
distributed in the V+j phase space

+(D(pT) − D(1)(pT) − D(2)(pT)) × 𝒫(ΦFJ)…

+(D(𝒯0) − D(1)(𝒯0) − D(2)(𝒯0)) × 𝒫(ΦFJ)…

Although formally equivalent (and NLO accurate), the description of observables in the 
1-jet phase space is also affected by the details of the implementation
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However, its choice has important consequences

• Size of missing power corrections (in the GENEVA method) 

• Ease of interface with the shower 

• Overall description of physical events after matching and showering 

• Extension to more complicated processes

The choice of resolution variables is in principle immaterial to reach NNLO accuracy 

Choice of the resolution parameter (2)
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Towards complexity
MiNNLOPS has been extended to processes such at  thanks to the availability of  
resummation for heavy quark pair production (+ )

QQ̄ qT
F  MiNNLOPS: broad comparison to experimental data 

[Mazzitelli, PM, Nason, Re, Wiesemann, Zanderighi (JHEP 2022)]

46

e.g. rapidity of b-flavoured jet e.g. pT of hadronic W decay’s jet of hadronic W decay’s jet in pT tt̄

[Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi ’21]
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MiNNLOPS
MiNLO'
ATLAS (2.4 fb-1)

 1

 1.5

 2

 2.5

 3

 3.5

dσ/dσMiNNLOPS

        9GeV≤pT, B+≤120GeV

yB+ 

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

 0  0.5  1  1.5  2

Figure 3: Comparison to ATLAS 7TeV data [12]. See text for details.

9

[Mazzitelli, Ratti, Wiesemann, Zanderighi ’23]

 meson rapidity in B+ pp → bb̄
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Towards complexity
On the other hand, jettiness is currently the only variable whose ingredients are known to 
reach NNLO accuracy for F+j processes 

NNLO+PS for F+j using 1-jettiness appear to be viable both within GENEVA and within 
MiNNLOPS frameworks (albeit it will come with some limitations as discussed) 

Availability of NNLL’ ingredients for a transverse-like observable for jet processes would 
allow for an (appealing?) alternative to N-jettiness 

+
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where S(2)

,�1
({q̂i} can extracted from ref. [38, 41] (an independent calculation of the two-loop

coefficients has been used in ref. [29]) and

C =
X

i2{a,b,j}

Ci , L =
X

i 6=k

(Ti ·Tk) ln
2qi · qk
QiQk

. (C.27)

C.2 MiNNLOPS formalism based on T1

Due to the similarity between the resummed T0 and T1 formulae, the derivation of the
MiNNLOPS method using T0, presented in detail in section 3.2, carries over to the case of
T1 almost unchanged. Thus, here we only briefly review the key steps, while referring for
more details to section 3.2.

The starting point for the MiNNLOPS method is the cumulant of eq. (C.17),
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We expand it around y0/y ⇠ T
cut, i.e. in Ly = ln(T cut

y/y0) ⌧ 1. By keeping only S(T cut)

exponentiated and expanding all other terms at NNLO accuracy, we obtain [cf. eq. (3.30)]
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where the derivatives are defined in eq. (3.26). Next, we evaluate all derivatives in eq. (C.29)
and exponentiate all resulting logarithms, while the remaining terms are absorbed by re-
defining the luminosity. This yields

d�sing(T cut)

d�FJ

=
X



L̃(T
cut)e�S(T cut

)
. (C.30)

Defining µB =
p
QT cut and LT = 1

2
ln(Q/T

cut), the modified luminosity is defined similar
to eq. (3.40) as
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[Ebert, LR, Wiesemann, Zanderighi, Zanoli ’23]
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FIG. 11: Resummed results for one-jettiness distribution
with T0 > 50 GeV at increasing accuracy, for the 1D flat

profile s
(p,k)(T1/T0) = 1.
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FIG. 12: Resummed results for one-jettiness distribution
with T0 > 50 GeV at increasing accuracy, for the 1D

hybrid profile discussed in the text.
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Appendix A: Alternative profile scale choices

In this appendix we study the dependence of the re-
summed results on the profile scale definition in the
(T1/mT , T1/T0) plane. We start by showing the func-
tional form of µS for the default 2D profile scales in
Fig. 9. As observed, when the LO2 kinematical con-
straint eq. (61) is satisfied, the factor s

(2,100)(T1/T0 .
1/2) ! 1 in eq. (63) and therefore the scaling of µS is
entirely dictated by frun, depending only on the value
of T1/µFO. On the other hand, when the T1/T0  1/2
condition is violated, s(2,100)(T1/T0 & 1/2) ! 0, which
implies that µS = µFO. This is a crucial asymptotic
limit, since for T1/T0 & 1/2 the fixed-order and singular
cross sections pass a kinematical boundary. Therefore,
since the fixed-order corrections are extremely relevant
in that region, care must be taken to switch o↵ the T1

resummation before passing the same threshold.
In Fig. 10 we show resummed predictions obtained us-

ing 2D profiles with p = 3 and k = 10, which results
in a earlier and smoother switch-o↵ of the resummation
around T1/T0 ⇠ 1/3. As one can see by comparing the
results with the left panel of Fig. 2, by doing so the

convergence of successive perturbative orders is slightly
worsened. Alternatively, we have explored the usage of
1D profile scales, either by removing the suppression in
the T1/T0 direction, see Fig. 11, or by switching o↵ the
resummation in the T1/T0 direction by means of a 1D
hybrid profile, see Fig. 12. The hybrid profile approach
has previously been successfully used in enforcing multi-
di↵erential profile scales switch-o↵s [70]. In our case it is
defined by

µS

�
T1/µFO,T1/T0

�
(A1)

= µFOfrun(T1/T0) + T1

�
1� frun(T1/T0)

�
,

where now the argument of frun is the ratio T1/T0 rather
than T1/µFO. The formula in eq. (A1) smoothly inter-
polates between T1 and µFO on a diagonal slice of the
(T1/T0, T1/mT ) plane. In Fig. 11 we observe that remov-
ing the T1/T0 suppression has very small e↵ects on the
T1 distribution, maintaining a good perturbative conver-
gence across orders. This, however, does not provide the
correct suppression of the resummation e↵ects past the
kinematic endpoint in the T1/T0 direction. The usage of
the hybrid profile shows instead a much poorer conver-
gence (see Fig. 12). In particular, we notice a change in
the resummed predictions also in the peak region, which
should follow a canonical scaling. This is easily explained
by the fact that for the hybrid profiles in eq. (A1) the µS
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Appendix A: Alternative profile scale choices

In this appendix we study the dependence of the re-
summed results on the profile scale definition in the
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since the fixed-order corrections are extremely relevant
in that region, care must be taken to switch o↵ the T1

resummation before passing the same threshold.
In Fig. 10 we show resummed predictions obtained us-

ing 2D profiles with p = 3 and k = 10, which results
in a earlier and smoother switch-o↵ of the resummation
around T1/T0 ⇠ 1/3. As one can see by comparing the
results with the left panel of Fig. 2, by doing so the

convergence of successive perturbative orders is slightly
worsened. Alternatively, we have explored the usage of
1D profile scales, either by removing the suppression in
the T1/T0 direction, see Fig. 11, or by switching o↵ the
resummation in the T1/T0 direction by means of a 1D
hybrid profile, see Fig. 12. The hybrid profile approach
has previously been successfully used in enforcing multi-
di↵erential profile scales switch-o↵s [70]. In our case it is
defined by

µS

�
T1/µFO,T1/T0

�
(A1)

= µFOfrun(T1/T0) + T1

�
1� frun(T1/T0)

�
,

where now the argument of frun is the ratio T1/T0 rather
than T1/µFO. The formula in eq. (A1) smoothly inter-
polates between T1 and µFO on a diagonal slice of the
(T1/T0, T1/mT ) plane. In Fig. 11 we observe that remov-
ing the T1/T0 suppression has very small e↵ects on the
T1 distribution, maintaining a good perturbative conver-
gence across orders. This, however, does not provide the
correct suppression of the resummation e↵ects past the
kinematic endpoint in the T1/T0 direction. The usage of
the hybrid profile shows instead a much poorer conver-
gence (see Fig. 12). In particular, we notice a change in
the resummed predictions also in the peak region, which
should follow a canonical scaling. This is easily explained
by the fact that for the hybrid profiles in eq. (A1) the µS

[Alioli et al, ’23]
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Conclusion and open questions

• A new generation of tools with higher formal accuracy are being developed, led by the 
advancement in the understanding of perturbative QCD 

• Comparisons between different formalisms and alternative resolution variables lead to 
challenging open questions regarding the reliability of current uncertainties at NNLO+PS 
level, even for ‘simple’ candle processes such as Drell-Yan (how about the Higgs?) 

• Will these differences persists when matching with parton showers with higher logarithmic 
accuracy? 

• Essential to delve deeper into the methods and understand better our tools if we aim to 
establish NNLO+PS matching as a novel standard of precision for LHC processes
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