Associated production of a Wboson and massive b quarks in NNLO QCD

Luca Rottoli

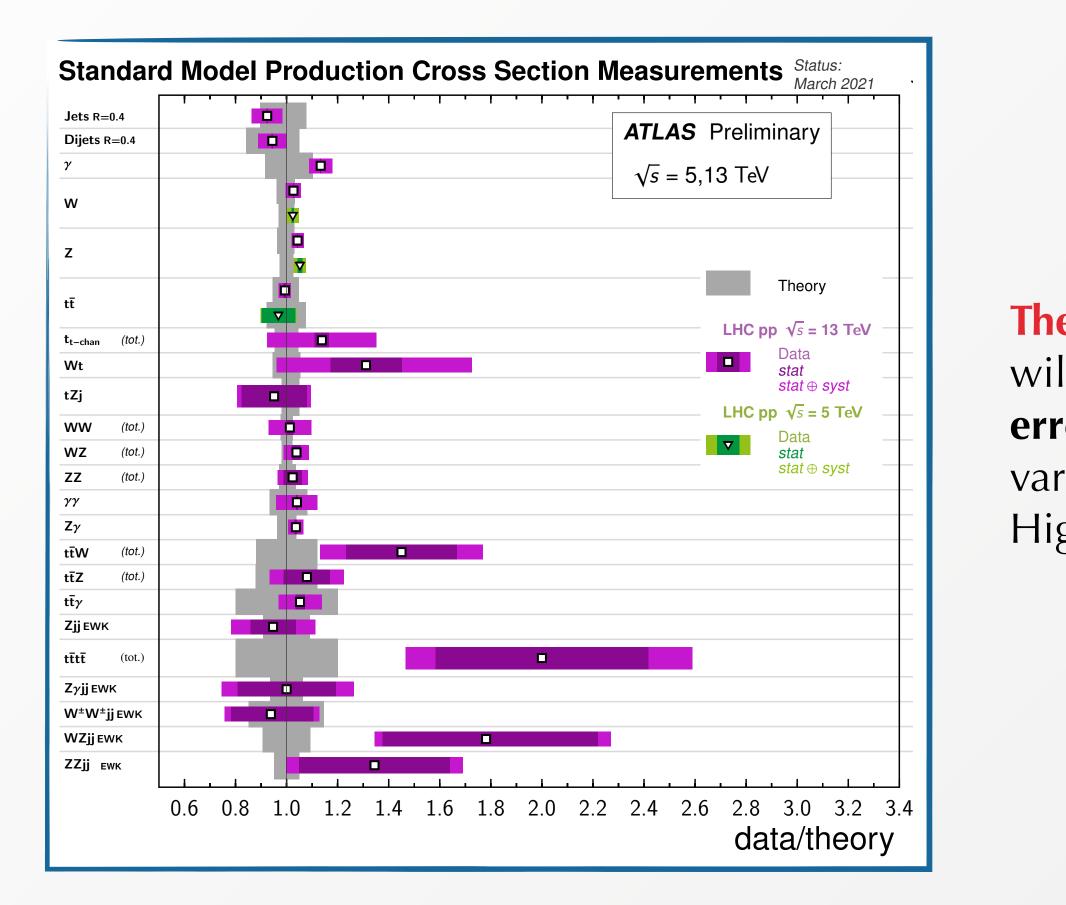
University of Zurich^{⊍z}

SWISS NATIONAL SCIENCE FOUNDATION

in collaboration with L. Buonocore, S. Devoto, S. Kallweit, J. Mazzitelli, and C. Savoini

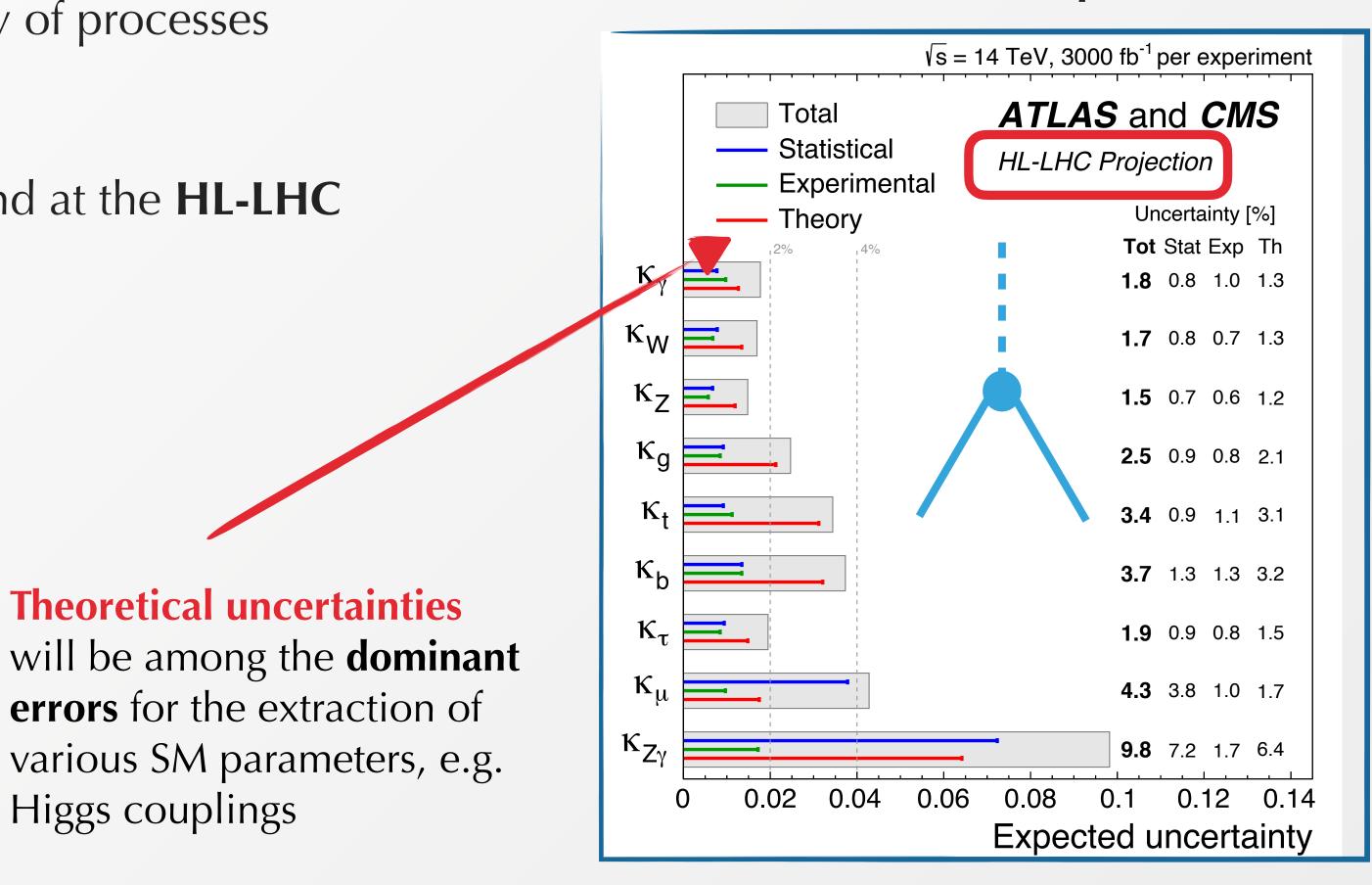
LHC: precision as a path to discovery

- Precision of experimental data across a variety of processes increased after run I and run II at the LHC
- Precision will be increased further at run III and at the **HL-LHC** (luminosity up to $\sim 3000 \text{ fb}^{-1}$)



Particle Physics Theory Journal Club, 23th March 2023, Manchester

Sensitivity to deviations of Higgs interactions from SM predictions



[Higgs Physics Report at HE/HL-LHC 2019]

Precise control of signal and backgrounds essential to constrain models for **new physics**

Precision physics at the LHC: the master formula

 $\sigma(s,Q^2) = \sum_{a,b} \int dx_1 dx_2 f_{a/h_1}(x_1,Q^2) f_{b/h_2}(x_2,Q^2) \hat{\sigma}_{ab \to X}(Q^2, x_1 x_2 s) + \mathcal{O}(\Lambda_{\text{QCD}}^p/Q^p)$ Input parameters: few percent strong coupling α_s uncertainty; improvable **PDFs**

Particle Physics Theory Journal Club, 23 March 2023, Manchester

Non-perturbative effects

percent effect; not yet under full control

Precision physics at the LHC: the master formula

 $\sigma(s,Q^2) = \sum_{a,b} \int dx_1 dx_2 f_{a/h_1}(x_1,Q^2) f_{b/h_2}(x_2,Q^2) \hat{\sigma}_{ab \to X}(Q^2, x_1 x_2 s) + \mathcal{O}(\Lambda_{\text{QCD}}^p/Q^p)$

 $\tilde{\sigma} = 1 + \alpha_{s}\tilde{\sigma}_{1} + \alpha_{s}^{2}\tilde{\sigma}_{2} + \alpha_{s}^{3}\tilde{\sigma}_{3} + \dots$

LO_{QCD} NLO_{QCD} NNLO_{QCD} N³LO_{QCD}

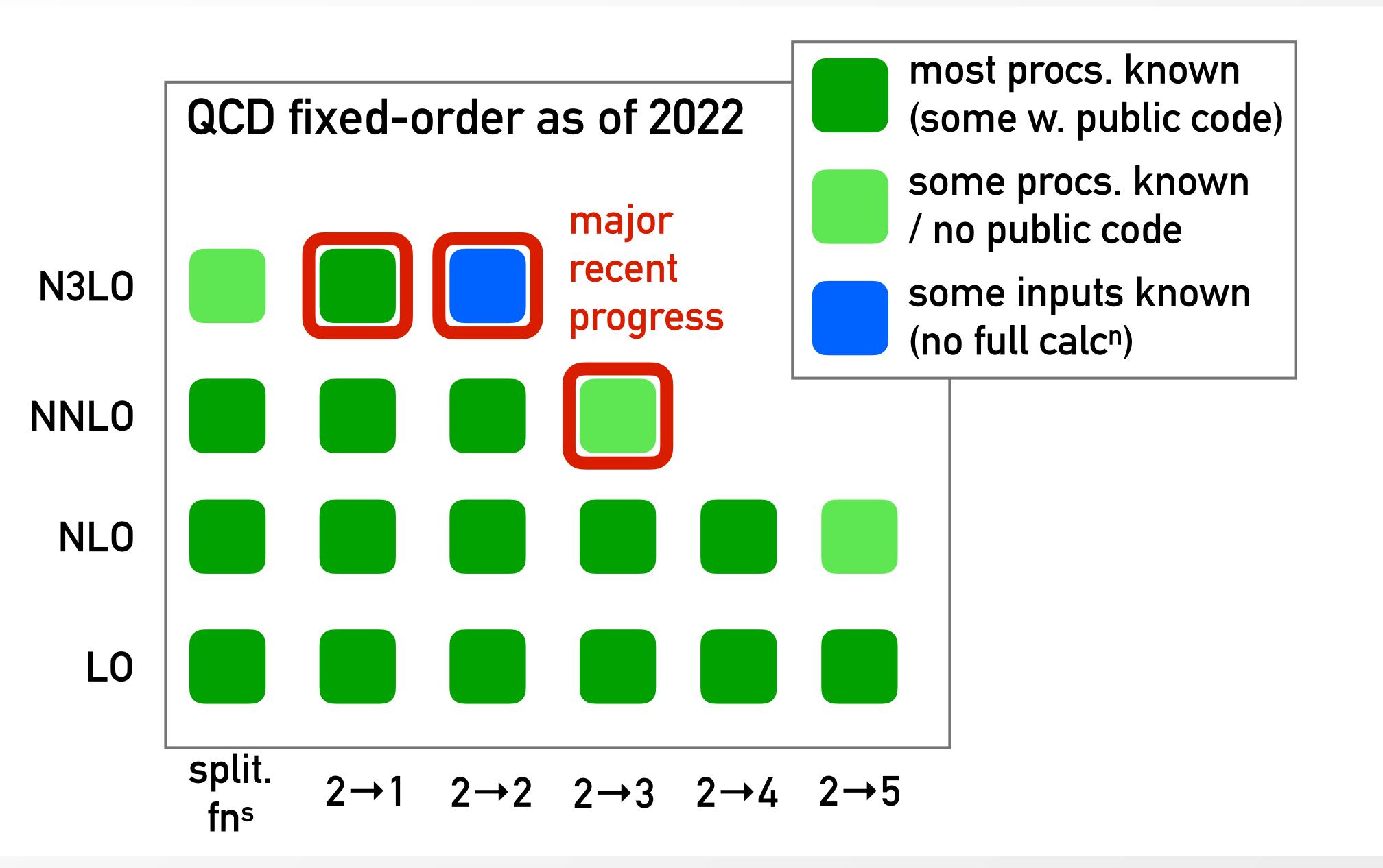
Particle Physics Theory Journal Club, 23 March 2023, Manchester

 $\alpha_{\rm s} \sim 0.1$

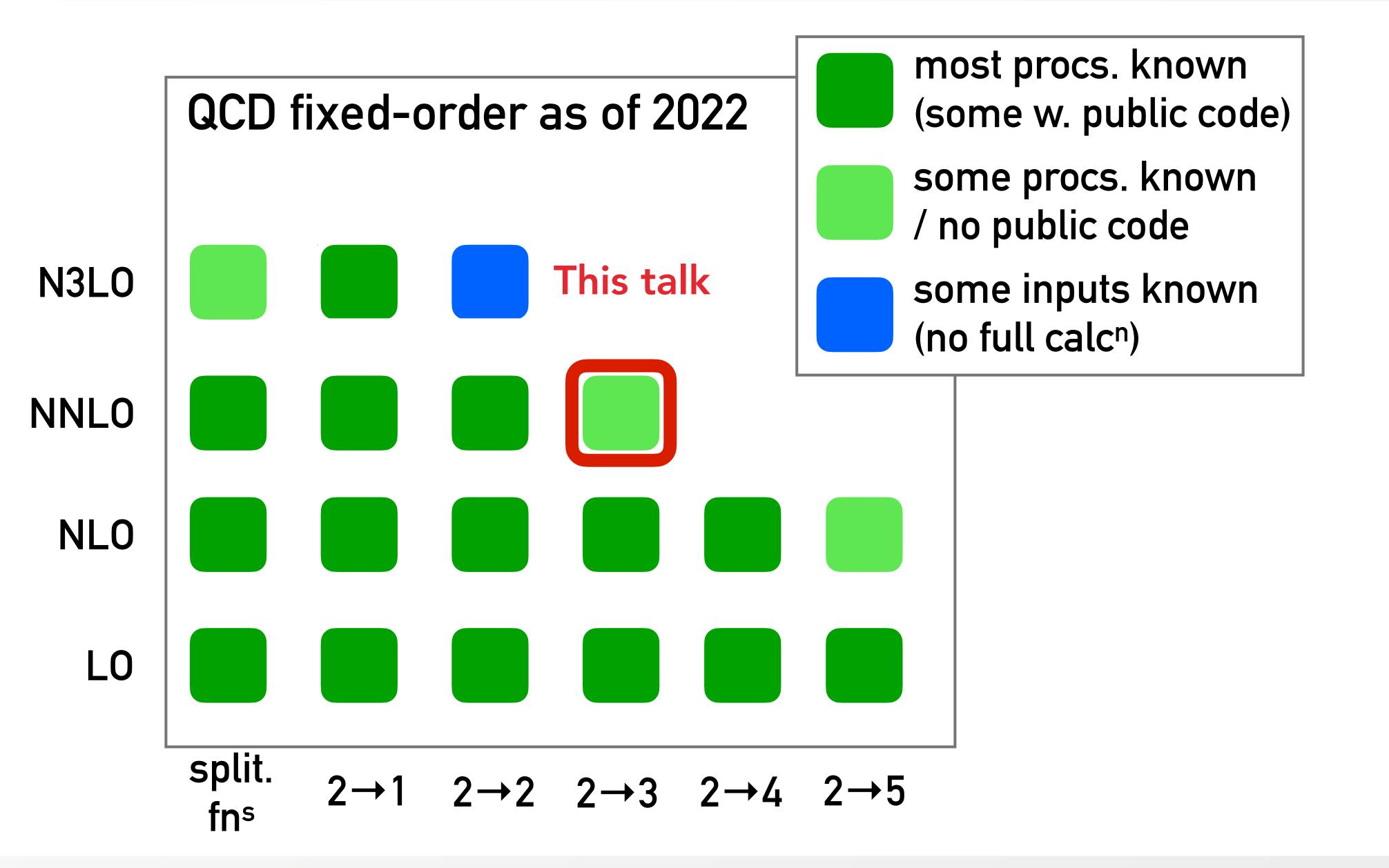
δ~10-20% δ~1-5%

NLO_{QCD} NNLO_{QCD} (or even N³LO_{QCD})

LHC in the precision era



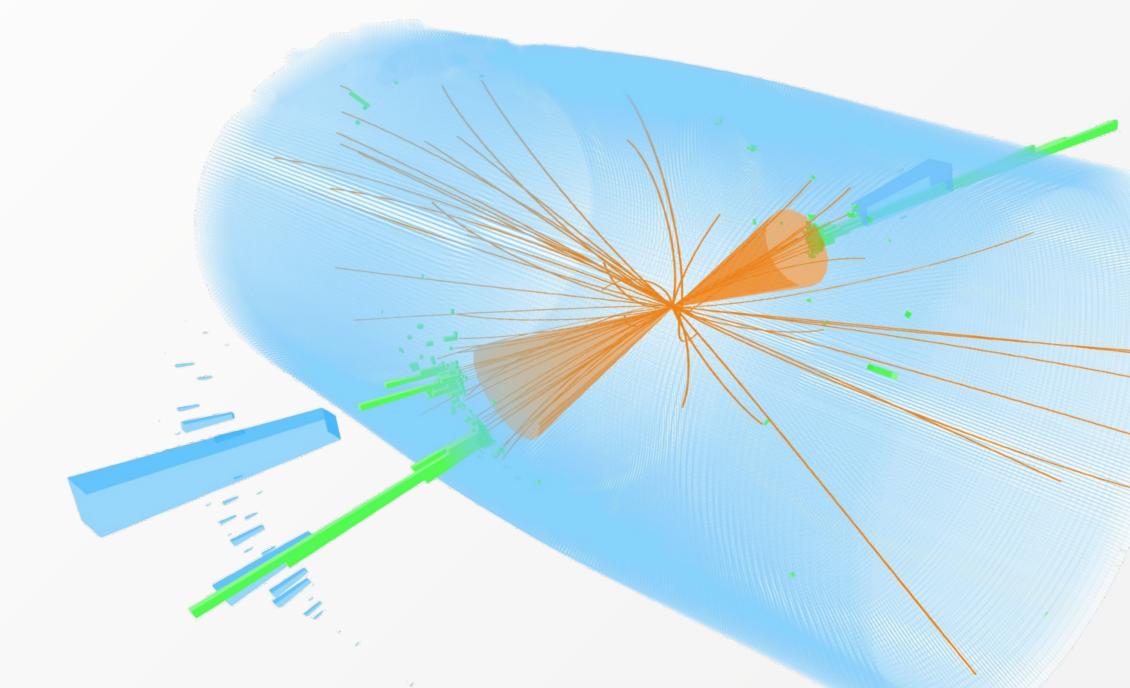
LHC in the precision era



Associated Wbb production

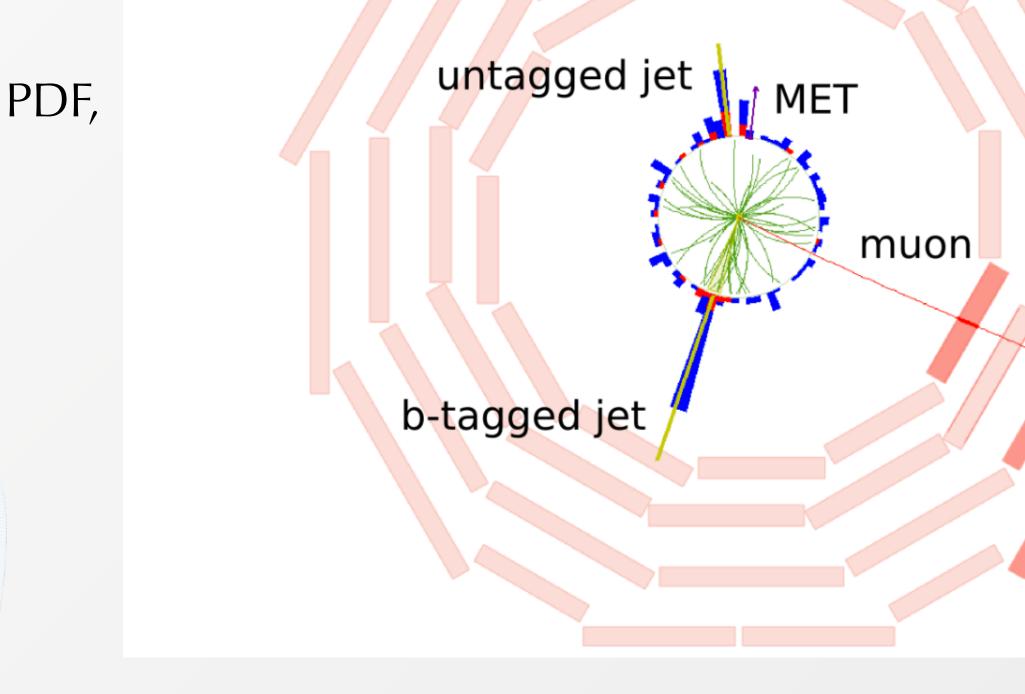
W+1*bj* and W+2*bj* interesting signatures

- tests of QCD at LHC
- background to $WH(H \rightarrow b\bar{b})$ and single top $\bar{b}t(t \rightarrow Wb)$
- bottom quarks modelling: massive effects, bottom in the PDF, flavour tagging



Picture: CMS Collaboration at the LHC, CERN

CMS Experiment at LHC, CERN Data recorded: Tue Jul 14 11:47:11 2015 CEST Run/Event: 251721 / 22303466 Lumi section: 21



Associated Wbb production

W+1*bj* and W+2*bj* interesting signatures

- tests of QCD at LHC
- background to $WH(H \rightarrow b\bar{b})$ and single top $\bar{b}t(t \rightarrow Wb)$
- bottom quarks modelling: massive effects, bottom in the PDF, flavour tagging

Large normalisation corrections with respect to **SM simulation**

Process	$Z(\nu\nu)H$	$W(\ell \nu)H$	$Z(\ell\ell)H \log p_T$	$Z(\ell\ell)H$ high- p_T
W + udscg	1.04 ± 0.07	1.04 ± 0.07	_	_
W + b	2.09 ± 0.16	2.09 ± 0.16	_	_
$W + b\overline{b}$	1.74 ± 0.21	1.74 ± 0.21		_
Z + udscg	0.95 ± 0.09	_	0.89 ± 0.06	0.81 ± 0.05
Z + b	1.02 ± 0.17	_	0.94 ± 0.12	1.17 ± 0.10
$Z + b\overline{b}$	1.20 ± 0.11	_	0.81 ± 0.07	0.88 ± 0.08
tī	0.99 ± 0.07	0.93 ± 0.07	0.89 ± 0.07	0.91 ± 0.07

from VH(→bb) analysis [CMS:arXiv:1808.08242]

Associated Wbb production: state of the art

NLO corrections for Wbb production with massless be quarks known since a long time [Ellis, Veseli '99]

NLO calculation with massive bottom quarks also long available [Febres Cordero, Reina, Wackeroth '06, 09]

Combination of 4FS and 5FS computed shortly after [Campbell, Ellis, Febres Cordero, Maltoni, Reina, Wackeroth, Willenrock '09] [Campbell, Caola, Febres Cordero, Reina, Wackeroth '11]

Matched calculation with parton shower available [Oleari, Reina '11] [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli '11] [Luisoni, Oleari, Tramontano '15]

More recently, calculation with higher jet multiplicities (Wbb + 3 jets) computed [Anger, Febres Cordero, Ita, Sotnikov, 2018]

Associated Wbb production: state of the art

NLO corrections for *Wbb* production with massless be quarks known since a long time [Ellis, Veseli '99]

NLO calculation with massive bottom quarks also long available [Febres Cordero, Reina, Wackeroth '06, 09]

Combination of 4FS and 5FS computed shortly after [Campbell, Ellis, Febres Cordero, Maltoni, Reina, Wackeroth, Willenrock '09] [Campbell, Caola, Febres Cordero, Reina, Wackeroth '11]

Matched calculation with parton shower available [Oleari, Reina '11] [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli '11] [Luisoni, Oleari, Tramontano '15]

More recently, calculation with higher jet multiplicities (*Wbb* + 3 jets) computed [Anger, Febres Cordero, Ita, Sotnikov, 2018]

Going beyond NLO requires computation of 2-loop virtual amplitude (W + 4 partons)

Associated Wbb production: state of the art

NLO corrections for Wbb production with massless be quarks known since a long time [Ellis, Veseli '99]

NLO calculation with massive bottom quarks also long available [Febres Cordero, Reina, Wackeroth '06, 09]

Combination of 4FS and 5FS computed shortly after [Campbell, Ellis, Febres Cordero, Maltoni, Reina, Wackeroth, Willenrock '09] [Campbell, Caola, Febres Cordero, Reina, Wackeroth '11]

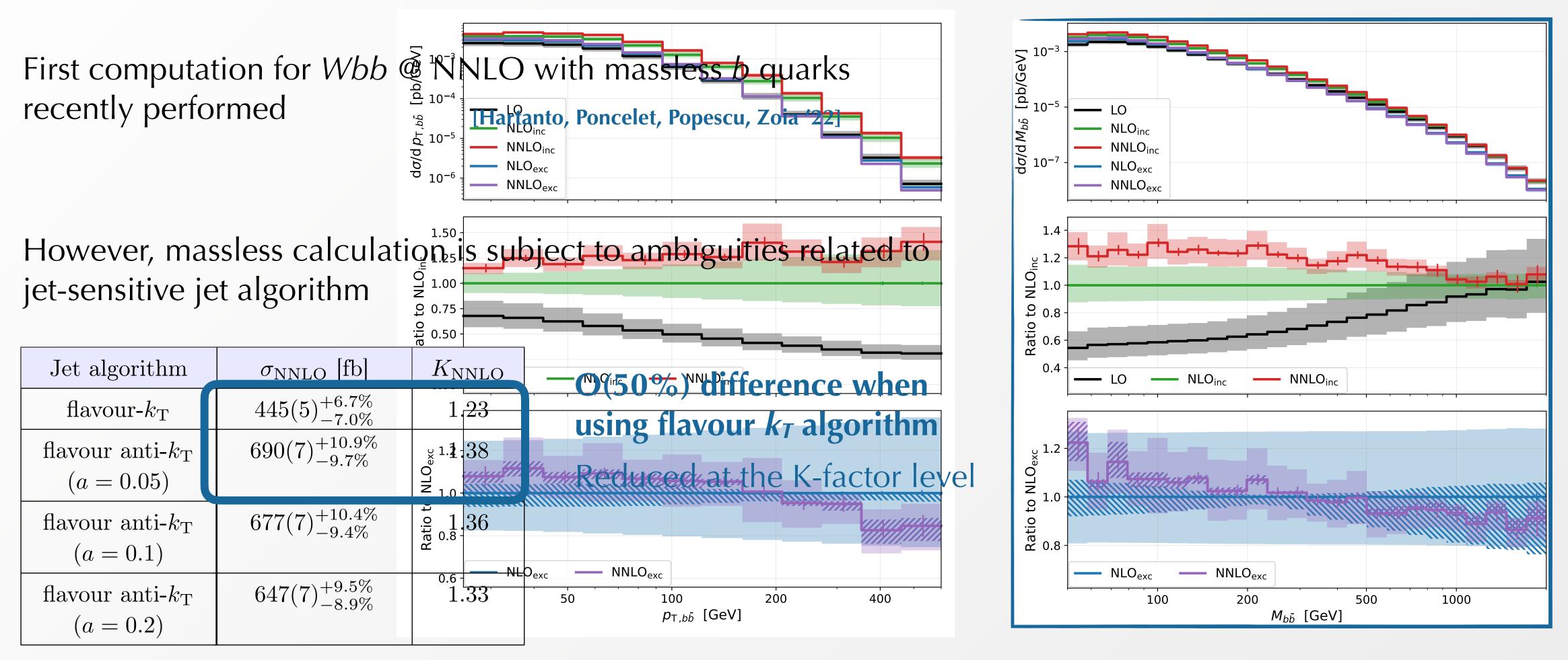
Matched calculation with parton shower available [Oleari, Reina '11] [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli '11] [Luisoni, Oleari, Tramontano '15]

More recently, calculation with higher jet multiplicities (Wbb + 3 jets) computed [Anger, Febres Cordero, Ita, Sotnikov, 2018]

Going beyond NLO requires computation of 2-loop virtual amplitude (W + 4 partons)

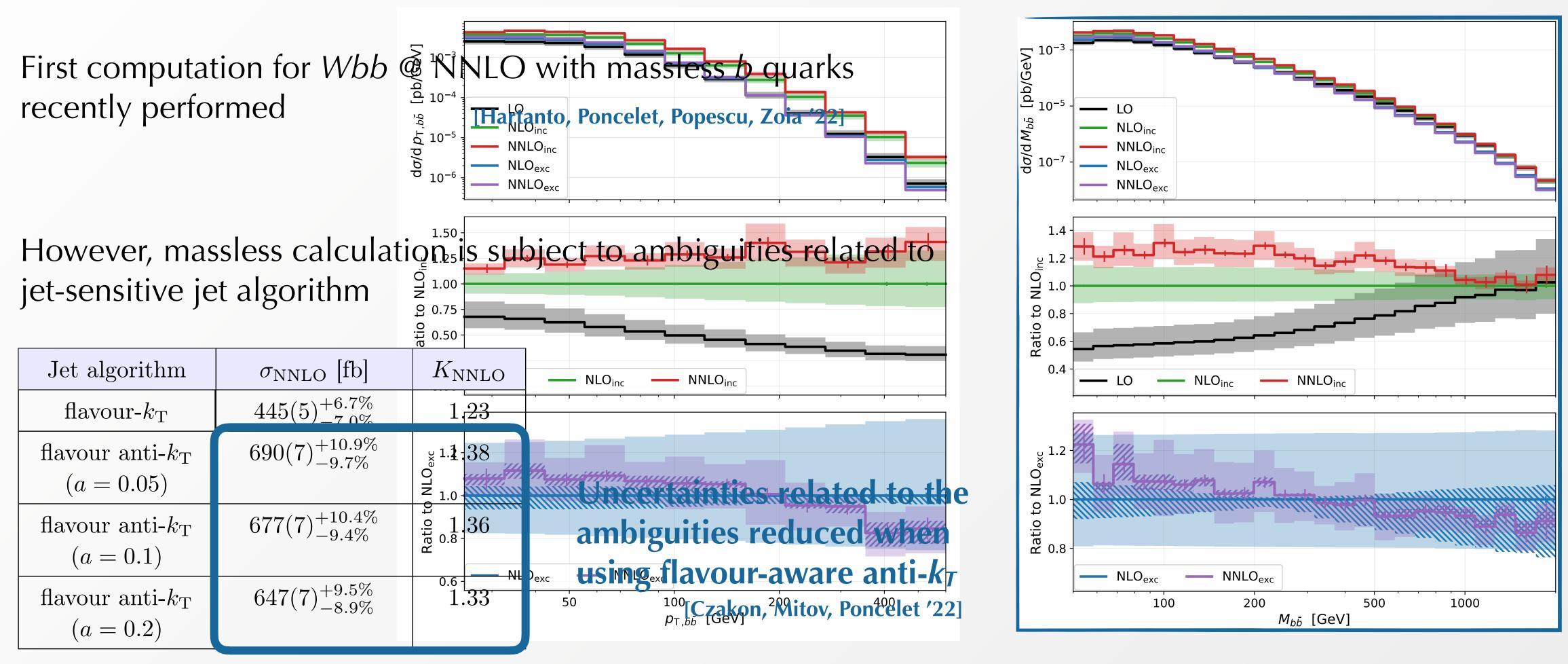
Analytical results for the 2-loop amplitude computed recently (in the leading colour approximation) [Badger, Hartanto, Zoia '21] [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov '21]

Wbb @ NNLO with massless b quarks



[Hartanto, Poncelet, Popescu, Zoia '22]

Wbb @ NNLO with massless b quarks



[Hartanto, Poncelet, Popescu, Zoia '22]

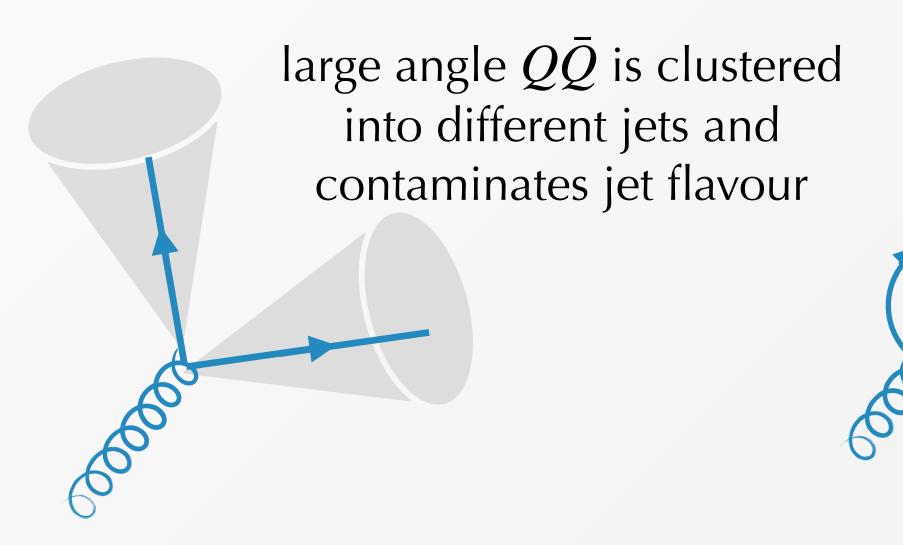
Infrared safety and flavour tagging

Jet algorithms belonging to the k_T family

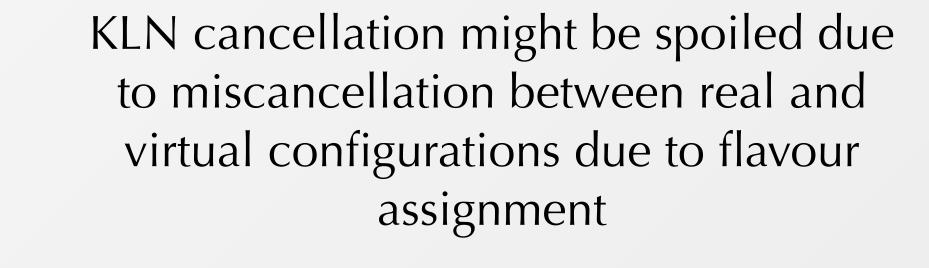
$$d_{ij} = \min\left(k_{T,i}^{2\alpha}, k_{T,j}^{2\alpha}\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^{2\alpha}$$

For observable sensitive to the flavour assignment, **infrared safety can be an issue**

Problem related to gluon splitting to quarks in the double soft limit (starting at NNLO)



$$R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$



cannot alter tagging

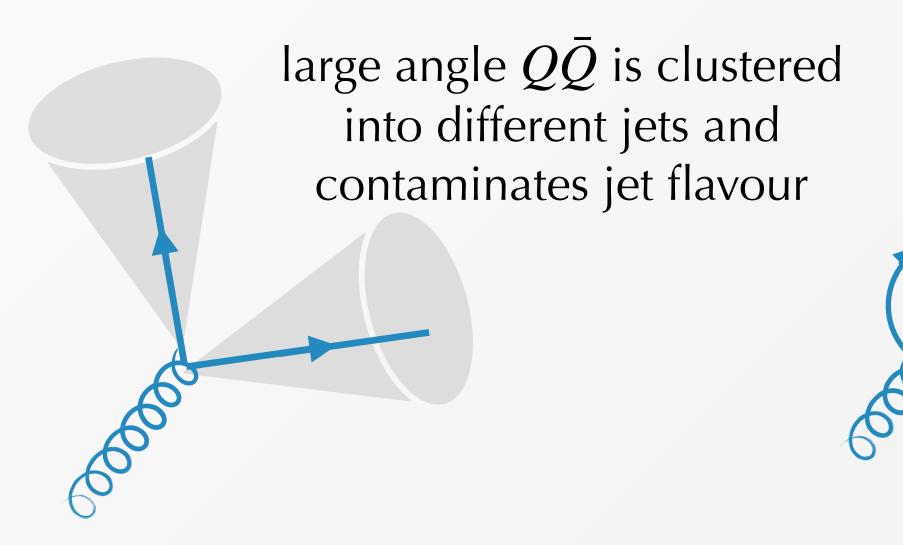
Infrared safety and flavour tagging

Jet algorithms belonging to the k_T family

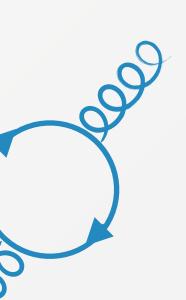
$$d_{ij} = \min\left(k_{T,i}^{2\alpha}, k_{T,j}^{2\alpha}\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^{2\alpha}$$

For observable sensitive to the flavour assignment, **infrared safety can be an issue**

Problem related to gluon splitting to quarks in the double soft limit (starting at NNLO)



$$R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$



KLN cancellation might be spoiled due to miscancellation between real and virtual configurations due to flavour assignment

cannot alter tagging

Can jet flavour be made infrared safe?

Infrared safety and flavour tagging

Jet algorithms belonging to the k_T family

$$d_{ij} = \min\left(k_{T,i}^{2\alpha}, k_{T,j}^{2\alpha}\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^{2\alpha}$$

For observable sensitive to the flavour assignment, **infrared safety can be an issue** Problem related to gluon splitting to quarks in the double soft limit (starting at NNLO)

flavoured parton *i* and *j* [Czakon, Mitov, Poncelet, 2022]

1.
$$d_{ij}$$
 vanishes for every R_{ij}

2. d_{ij} vanishes faster than the distance of either *i* or *j* to the remaining (hard) pseudojets

$$R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

To ensure infrared safety, two necessary conditions must hold for a wide-angle double-soft limit of two opposite

Flavour aware jet algorithms: flavour k_T

[Banfi, Salam, Zanderighi '06]

Standard k_T algorithm

$$d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^2$$

Flavour aware k_T algorithm (usually $\alpha = 2$): flavour information available at each step of the clustering procedure

$$d_{ij}^{(F)} = R_{ij}^2 \times \begin{cases} \left[\max\left(k_{T,i}^2, k_{T,j}^2\right) \right]^{\alpha} \left[\min\left(k_{T,i}^2, k_{T,j}^2\right) \right]^{2-\alpha}, & \text{if softer of } i, j \text{ is flavoured} \\ \min\left(k_{T,i}^2, k_{T,j}^2\right), & \text{if softer of } i, j \text{ is flavourles} \end{cases}$$

this ensures condition 2 among final state protojets, as soft flavoured quark-anti-quark pair clusters first

Particle Physics Theory Journal Club, 23 March 2023, Manchester

condition 1 automatically satisfied

S

Flavour aware jet algorithms: flavour k_T

[Banfi, Salam, Zanderighi '06]

Standard k_T algorithm

$$d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^2$$

Flavour aware k_T algorithm (usually $\alpha = 2$): flavour information available at each step of the clustering procedure

Also beam distance problematic: a soft flavoured parton can be identified as a protojet and removed from the list)

$$d_{iB(\bar{B})}^{(F)} = R_{ij}^2 \times \begin{cases} \left[\max\left(k_{T,i}^2, k_{T,B(\bar{B})}^2\right) \right] \\ \min\left(k_{T,i}^2, k_{T,B(\bar{B})}^2\right), \end{cases}$$

$$k_{T,B}(y) = \sum_{i} k_{T,i} \left(\Theta(y_i - y) + \Theta(y - y_i) e^{y_i - y} \right)$$

condition 1 automatically satisfied

 $\left[\min\left(k_{T,i}^{2}, k_{T,B(\bar{B})}^{2}\right)\right]^{2-\alpha}, \text{ if } i \text{ is flavoured}$

if *i* is flavourless

$$k_{T,\bar{B}}(y) = \sum_{i} k_{T,i} \left(\Theta(y - y_i) + \Theta(y_i - y)e^{y - y_i} \right)$$

Flavour aware jet algorithms: flavour k_T [Banfi, Salam, Zanderighi '06]

Theoretically sound, but problematic for data-theory comparison

- 1. Flavour assignment and jet reconstruction performed at the particle level experimentally 2. Analyses typically employ anti- k_T ad default jet algorithm

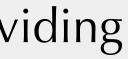
k_T algorithm

$$d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^2$$

anti-k_T algorithm

$$d_{ij} = \min\left(k_{T,i}^{(2)}, k_{T,j}^{(2)}\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^{(2)}$$

anti- k_T favours clustering of hard particles, thus providing a IRC safe algorithm that gives circular hard jets

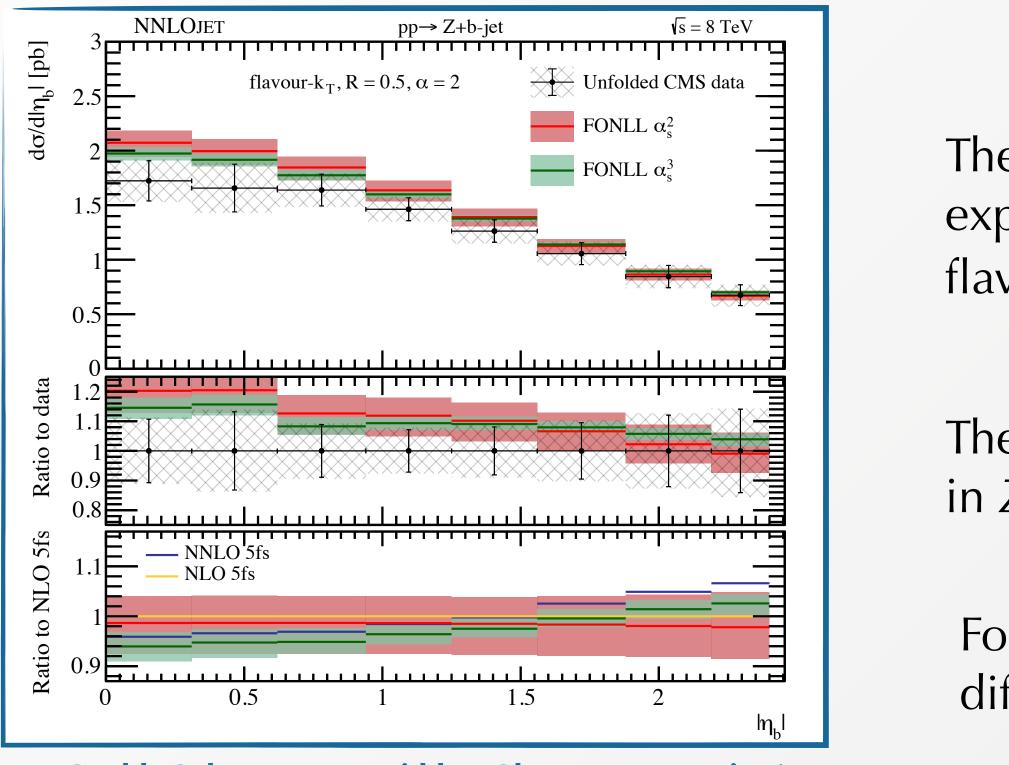


Flavour aware jet algorithms: flavour k_T

[Banfi, Salam, Zanderighi '06]

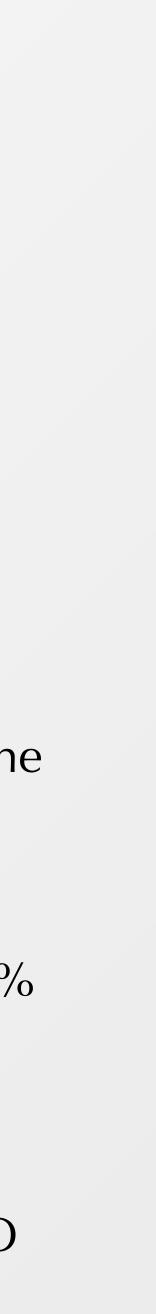
Theoretically sound, but problematic for data-theory comparison

- 1. Flavour assignment and jet reconstruction performed at the particle level experimentally 2. Analyses typically employ anti- k_T ad default jet algorithm



[Gauld, Gehrmann–De Ridder, Glover, Huss, Majer '20]

- Theory/data comparison requires the unfolding of the experimental data to the theory calculation performed with the flavour k_T algorithm
- The unfolding correction can be sizeable, e.g. larger than 10% in *Z*+*b* jet production (estimate using NLO+PS)
- For Wbb, which involves two jets at the lowest order, large differences between the two algorithms appear already at LO



Flavour aware jet algorithms: flavour anti- k_T

$$d_{ij} = \min\left(k_{T,i}^{-2}, k_{T,j}^{-2}\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^{-2}$$

 $d_{ij}^{(F)} = d_{ij} \times \begin{cases} \mathcal{S}_{ij}, & \text{if both } i \text{ and } j \text{ have non-zero flavour of opposite sign} \\ 1, & \text{otherwise} \end{cases}$

$$\mathcal{S}_{ij} \sim E^4 \implies d_{ij}^{(F)} \sim E^2$$
 the sup
diverge

Infrared safety **checked at NNLO**

Suppression factor depends on (unphysical) parameter a: in the limit $a \rightarrow 0$, the standard anti- k_T algorithm is recovered. Best choice of the parameter *a* from comparison at NLO+PS (aiming at minimising unfolding) Flavour-dependent metric, still needs some (possibly small) unfolding

Algorithm must be modified in the wide-angle double-soft limit of two opposite flavoured parton *i* and *j* to ensure infrared safety [Czakon, Mitov, Poncelet '22]

$$\mathcal{S}_{ij} = 1 - \theta(1 - \kappa) \cos\left(\frac{\pi}{2}\kappa\right)$$

$$\kappa = \frac{1}{a} \frac{k_{T,i}^2 + k_{T,j}^2}{2k_{T,max}^2}$$

opression factor overcompensates the ent behaviour in the double soft limit

Flavour aware jet algorithms: new proposals

In the past year several proposal have been brought forward to address the flavour problem

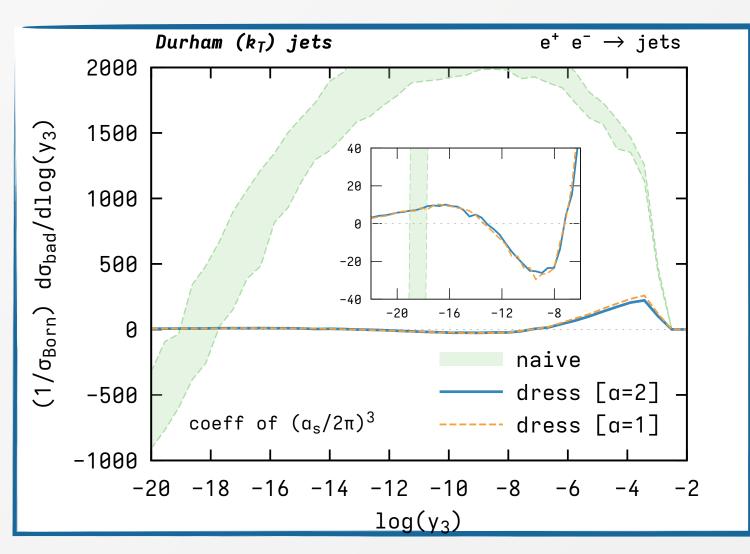
Use **Soft Drop** to remove soft quarks

No unfolding needed

Requires reclustering with JADE (issue with IRC safety beyond NNLO)

Assign a **flavour dressing** to jets reconstructed with any IRC flavour-blind jet algorithms

Requires flavour information of many particles in the event

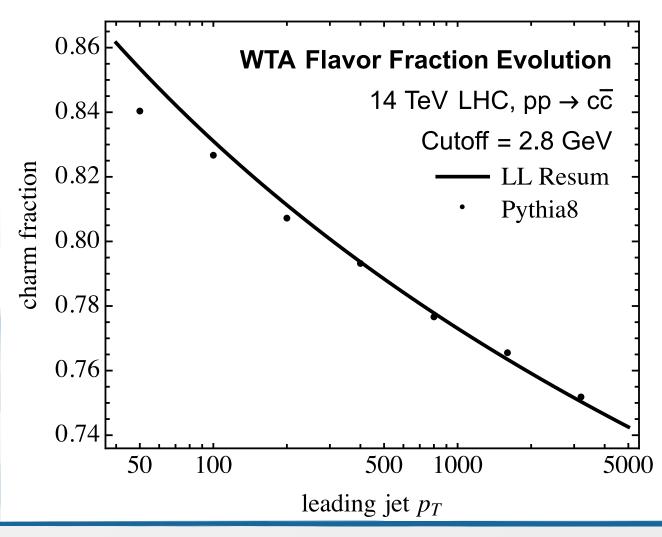


[Caletti, Larkoski, Marzani, Reichelt '22]

Recluster using the flavour aware Winner-Take-All (WTA) recombination scheme (**soft-safe**)

Requires fully perturbative WTA flavour fragmentation function (for **collinear safety**)

[Gauld, Huss, Stagnitto '22]



[Caletti, Larkoski, Marzani, Reichelt '22]

Massive calculation

In a massive calculation, the quark mass acts as a physical IR regulator suppressing naturally the double soft limit

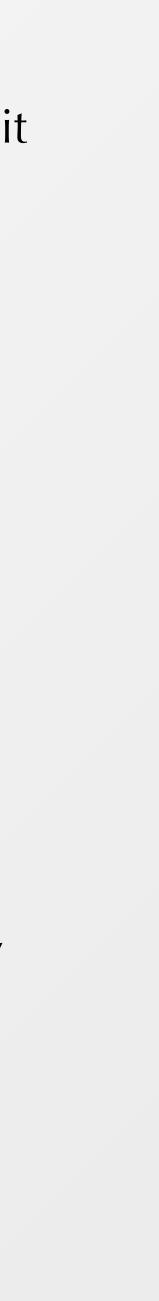
Ambiguities of the massless calculation avoided

Direct comparison with experimental data possible (unfolding corrections limited to non-perturbative modelling and hadronisation)

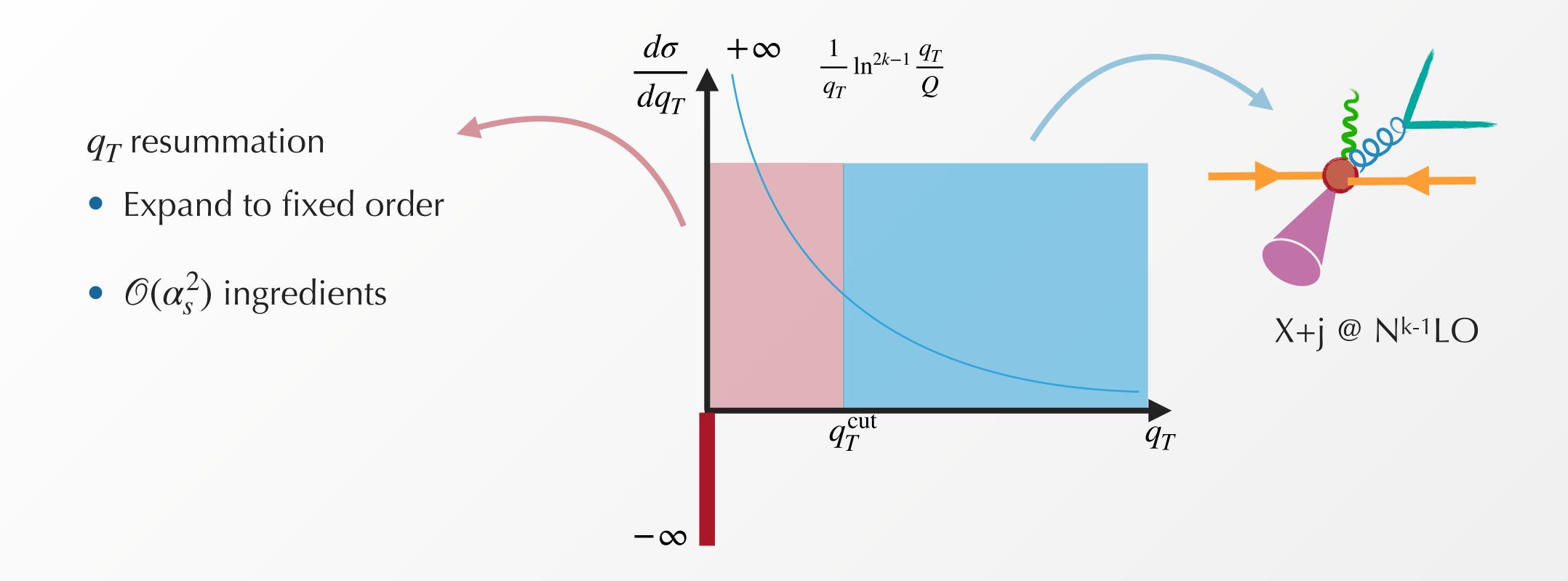
Caveat and challenges

Left over IR sensitivity in the form of logarithms of the heavy quark mass at each order in perturbative theory Calculation with massive quarks is challenging

No requirement for flavour-aware jet algorithms: any **flavour-blind algorithm** can be used, in particular **anti-k**_T



Methodology: q_T-subtraction formalism



All ingredients for Wbb+j @ NLO available and implemented in public libraries such as OpenLoops2 [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller '19]

 $d\sigma_X^{N^kLO} \equiv \mathscr{H}_X^{N^kLO} \otimes d\sigma_X^{LO} + \left[\frac{d\sigma_{X+jet}^{N^{k-1}LO}}{d\sigma_{X+jet}^{N^{k-1}LO}} - \left[d\sigma_X^{N^kLL} \right]_{\mathcal{O}(\alpha_s^k)} \right]_{q_T > q_t^{cut}} + \mathcal{O}((q_T^{cut}/M)^n)$



$$d\sigma_X^{N^kLO} \equiv \mathscr{H}_X^{N^kLO} \otimes d\sigma_X^{LO} + \left[d\sigma_{X+jet}^{N^{k-1}LO} - \left[d\sigma_X^{N^kLL} \right]_{\mathscr{O}(\alpha_s^k)} \right]_{q_T > q_t^{cut}} + \mathscr{O}((q_T^{cut}/M)^n)$$

 ${\mathscr H}$ contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

Beam functions

Two-loop virtual

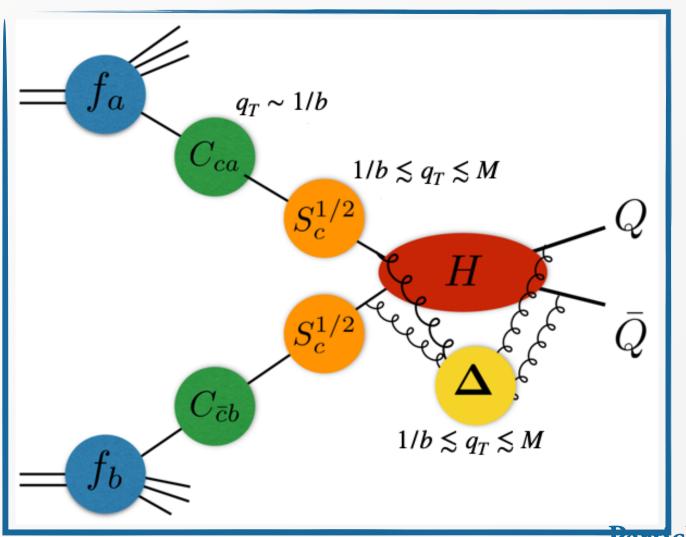
[Catani, Cieri, de Florian, Ferrera, Grazzini '12]
[Gehrmann, Luebbert, Yang '14]
[Echevarria, Scimemi, Vladimirov '16]
[Luo, Wang, Xu, Yang, Yang, Zhu '19]

$$d\sigma_X^{N^kLO} \equiv \mathscr{H}_X^{N^kLO} \otimes d\sigma_X^{LO} + \left[d\sigma_{X+jet}^{N^{k-1}LO} - \left[d\sigma_X^{N^kLL} \right]_{\mathscr{O}(\alpha_s^k)} \right]_{q_T > q_t^{cut}} + \mathscr{O}((q_T^{cut}/M)^n)$$

 \mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

Beam functions

- Soft function



The resummation formula for heavy quark production shows a **richer structure** because of additional soft singularities (four coloured partons at LO)

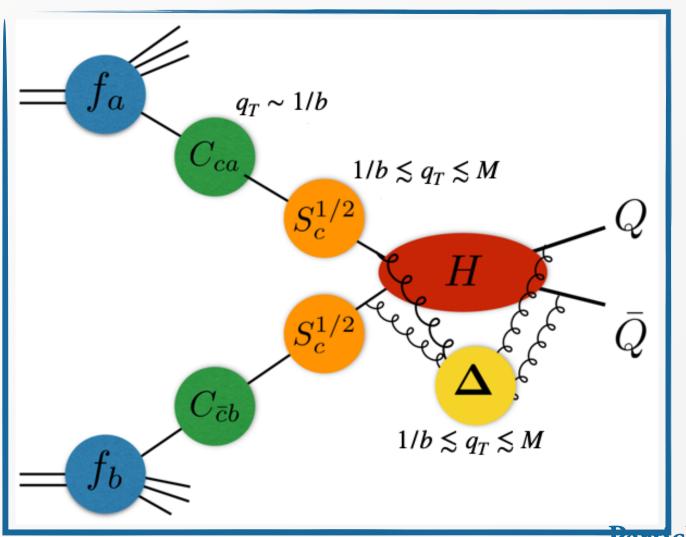
- Soft logarithms controlled by the **transverse momentum anomalous dimension** Γ_t known up to [Mitov, Sterman, Sung '09] [Neubert, et al '09] NNLO
- Hard coefficient gets a **non-trivial** colour structure (matrix in colour-space)
- Non trivial azimuthal correlations

$$d\sigma_X^{N^kLO} \equiv \mathscr{H}_X^{N^kLO} \otimes d\sigma_X^{LO} + \left[d\sigma_{X+jet}^{N^{k-1}LO} - \left[d\sigma_X^{N^kLL} \right]_{\mathscr{O}(\alpha_s^k)} \right]_{q_T > q_t^{cut}} + \mathscr{O}((q_T^{cut}/M)^n)$$

 \mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

Beam functions

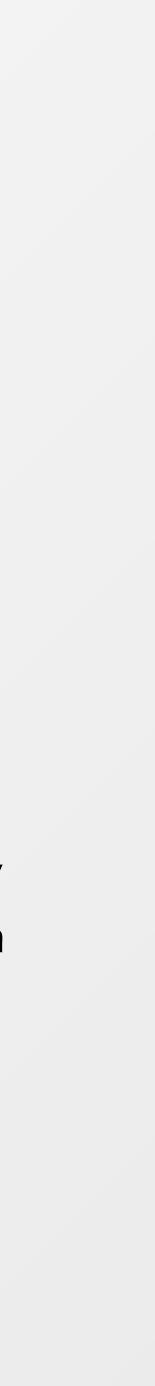
- Soft function



The resummation formula for heavy quark production shows a **richer structure** because of additional soft singularities (four coloured partons at LO)

 q_T subtraction formalism extended to the case of **heavy quarks** production and applied to $t\bar{t}$ and $b\bar{b}$ production [Catani, Grazzini, Torre '14]

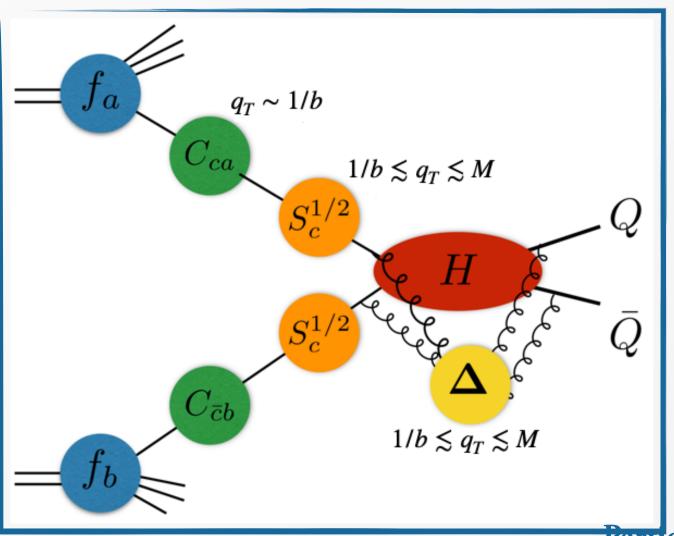
[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Sargsyan '19] [Catani, Devoto, Grazzini, Kallweit, Mazzitelli '21]



$$d\sigma_X^{N^kLO} \equiv \mathscr{H}_X^{N^kLO} \otimes d\sigma_X^{LO} + \left[d\sigma_{X+jet}^{N^{k-1}LO} - \left[d\sigma_X^{N^kLL} \right]_{\mathscr{O}(\alpha_s^k)} \right]_{q_T > q_t^{cut}} + \mathscr{O}((q_T^{cut}/M)^n)$$

 \mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

- Beam functions
- Soft function



To reach NNLO accuracy, the two-loop soft function for heavy quark production is needed

Two-loop soft function in back-to-back Born kinematics [Catani, Devoto, Grazzini, Mazzitelli '23]

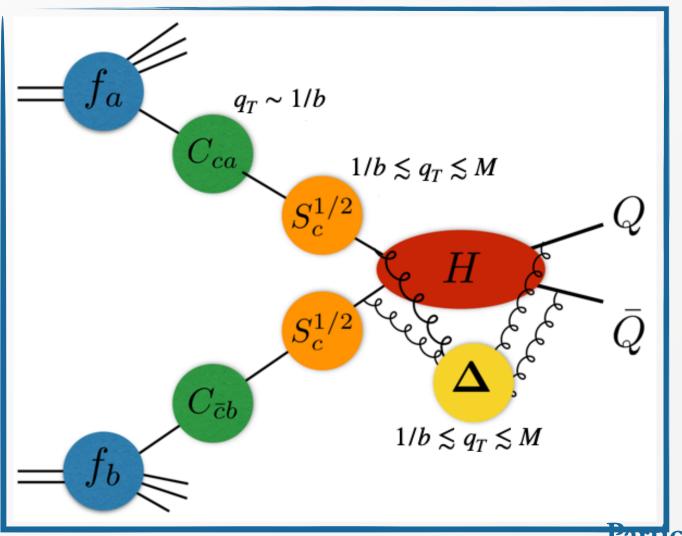
Recently generalized to arbitrary kinematics [Devoto, Mazzitelli in preparation]

$$d\sigma_X^{N^kLO} \equiv \mathscr{H}_X^{N^kLO} \otimes d\sigma_X^{LO} + \left[d\sigma_{X+jet}^{N^{k-1}LO} - \left[d\sigma_X^{N^{k}LL} \right]_{\mathscr{O}(\alpha_s^k)} \right]_{q_T > q_t^{cut}} + \mathscr{O}((q_T^{cut}/M)^n)$$

 \mathscr{H} contains virtual correction after subtraction of IR singularities and contribution of soft/collinear origin

Beam functions

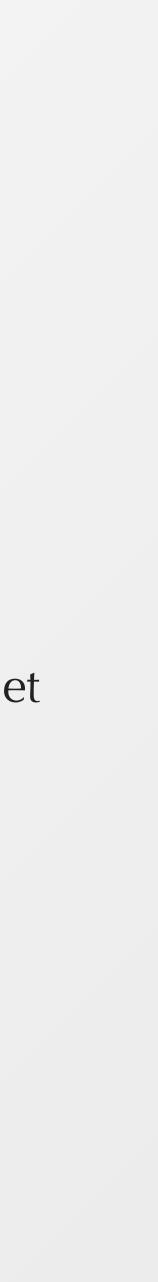
- Soft function
- Two-loop virtual



Once an expression for the two-loop virtual is provided, the formula yields the fully-differential NNLO correction for the associated production of a heavy quark pair and a colour singlet

First application $t\bar{t}H @ NNLO$ [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '23]

16



Two-loop virtual amplitude

Compute the born amplitude for two massless quarks into W and a pair of bottom quarks with Feyncalc, treating the bottom quarks as massive

To compute the Born amplitude for two massless quarks into a W and a pair of bottom quarks, we can use FeynCalc, a Mathematica package for high-energy physics calculations. We will treat the bottom quarks as massive, which means that we need to use the full propagator for the bottom quarks instead of the massless approximation.

Here is the FeynCalc code to compute the Born amplitude:

mathematica

<< FeynCalc`

SetOptions[FC, ScreenDumps -> False];

\$Dimension = D;

Two-loop virtual amplitude

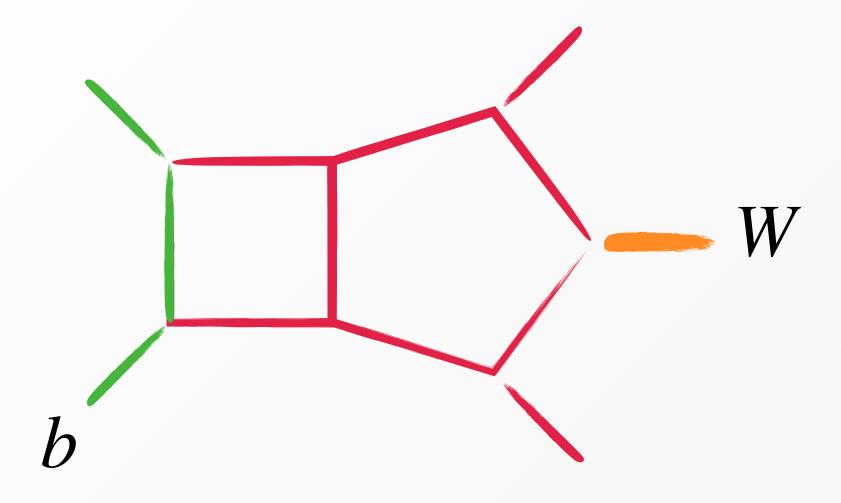
Calculate the amplitude at two loops

Calculating the amplitude at two loops is a very challenging task as it requires evaluating a large number of Feynman diagrams with many loops, which can quickly become computationally intractable.

In general, the calculation of multi-loop amplitudes requires the use of advanced techniques such as dimensional regularization, renormalization, and sophisticated algebraic manipulation tools like the integration-by-parts method or the differential equations method.

Therefore, it is beyond the scope of a simple answer in this Q&A format to provide a complete calculation of the two-loop amplitude for the given process. However, FeynCalc can be used to generate the Feynman diagrams for the two-loop amplitude, which can provide some insight into the complexity of the calculation.

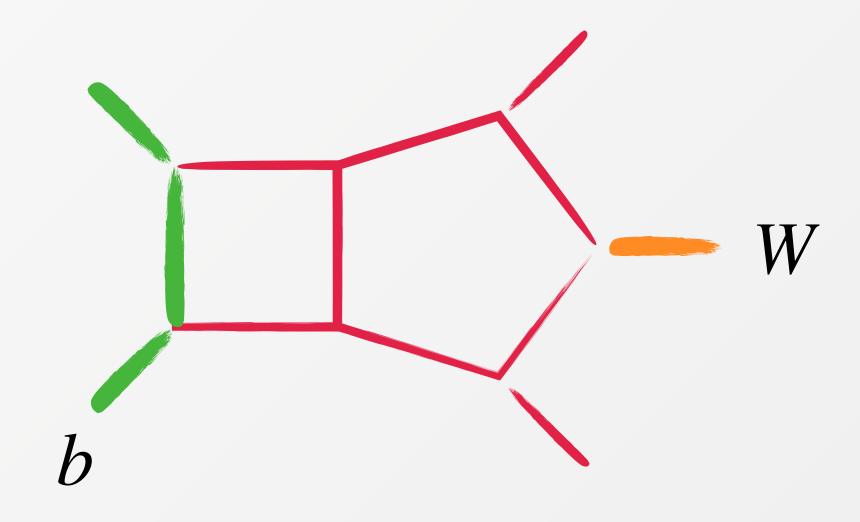
Two-loop virtual amplitude: massification procedure



5-point two loop amplitude with massless b quarks and Current technology does not allow for the analytical one external massive leg is the current state of the art computation of the amplitude with additional massive legs [Badger, Hartanto, Zoia '21] [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov '21]

However, the large hierarchy between the bottom mass and the W mass can be exploited

Massification of the massless amplitude up to power corrections $m_h/Q \ll 1$

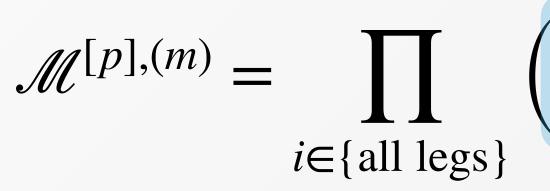


Massification procedure

Massification procedure is based on the **factorisation properties** of QCD amplitudes

mass

This can be viewed as a **change in the renormalisation scheme** which leads to a universal **"multiplicative renormalization**" relation between (*ultraviolet renormalised*) massive and massless amplitudes



$$Z_{[i]} = 1 + \sum_{k} \left(\frac{\alpha_s}{2\pi}\right)^k Z_{[i]}^k$$
$$\mathcal{M}^{[p],(m)} = \sum_{k=0}^{k} \left(\frac{\alpha_s}{2\pi}\right)^k \mathcal{M}^{[p],(m)}_{(k)}$$

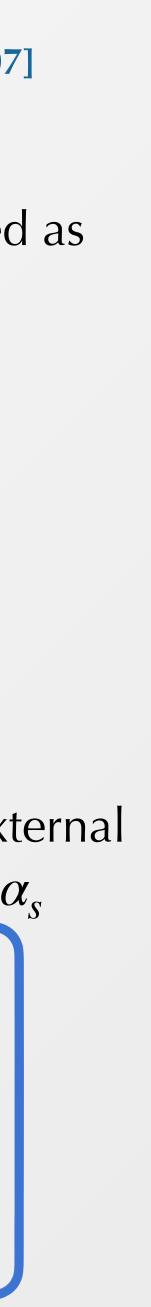
MWbi

Basic idea: in the small mass limit, the massive amplitude $\mathcal{M}^{[p],(m)}$ and the massless one $\mathcal{M}^{[p],(m=0)}$ are connected as the mass screens some collinear divergences "trading" poles in the dimensional regulator ϵ for logarithms of the

$$\left[Z_{[i]}^{(m|0)}\right]^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)} + \mathscr{O}(m^{k})$$

universal factors which depend only on the external parton and admit a perturbative expansion in α_s

$$\begin{split} bb,(m) &= \mathscr{M}_{0}^{Wbb,(m=0)} \\ bb,(m) &= \mathscr{M}_{(1)}^{Wbb,(m=0)} + Z_{[q]}^{(1)} \mathscr{M}_{(0)}^{Wbb,(m=0)} \\ bb,(m) &= \mathscr{M}_{(2)}^{Wbb,(m=0)} + Z_{[q]}^{(1)} \mathscr{M}_{(1)}^{Wbb,(m=0)} + Z_{[q]}^{(2)} \mathscr{M}_{(0)}^{Wbb,(m=0)} \end{split}$$

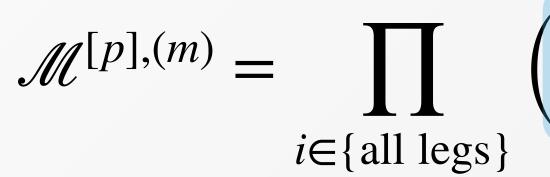


Two-loop virtual amplitude: massification

Massification procedure is based on the **factorisation properties** of QCD amplitudes

mass

This can be viewed as a **change in the renormalisation scheme** which leads to a universal **"multiplicative renormalization**" relation between (*ultraviolet renormalised*) massive and massless amplitudes



The massification procedure predicts poles, logarithms of mass and mass **independent terms (constants)** of $\mathcal{M}^{[p],(m)}$ while **power corrections** in the mass and the contribution of heavy loops cannot be retrieved using this approach

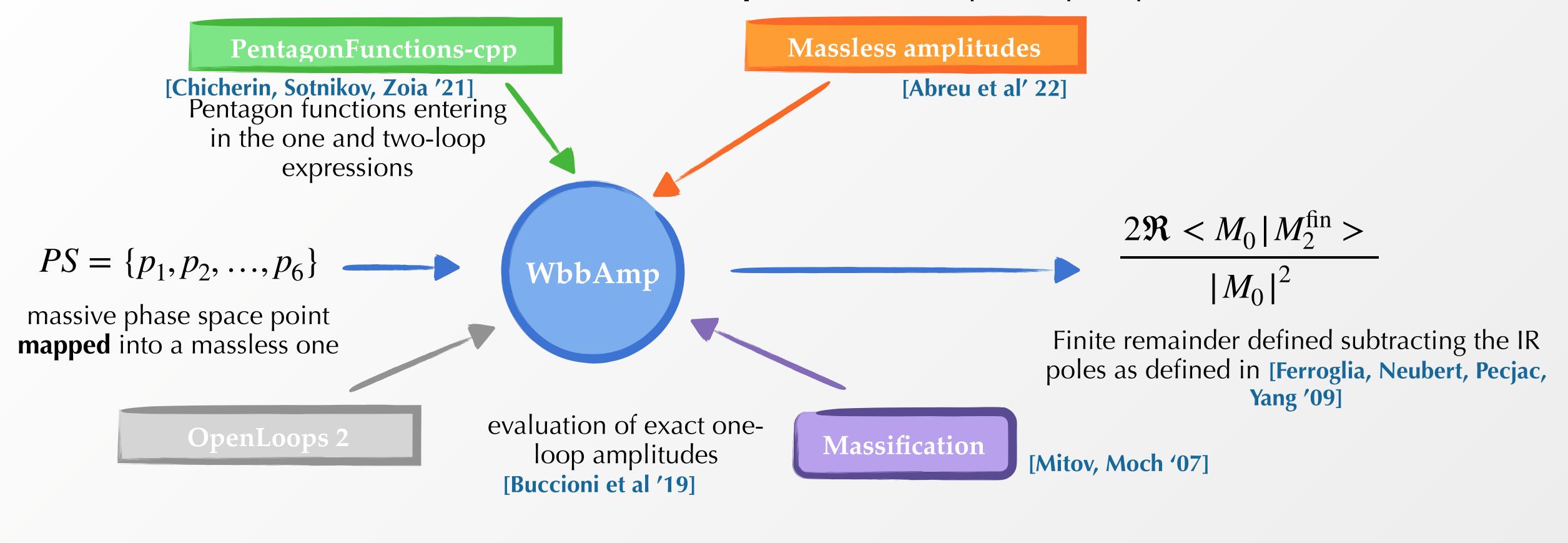
Basic idea: in the small mass limit, the massive amplitude $\mathcal{M}^{[p],(m)}$ and the massless one $\mathcal{M}^{[p],(m=0)}$ are connected as the mass screens some collinear divergences "trading" poles in the dimensional regulator ϵ for logarithms of the

$$\left(Z_{[i]}^{(m|0)}\right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)} + \mathscr{O}(m^{k})$$

universal factors which depend only on the external parton and admit a perturbative expansion in α_s

WQQAmp: a massive C++ implementation

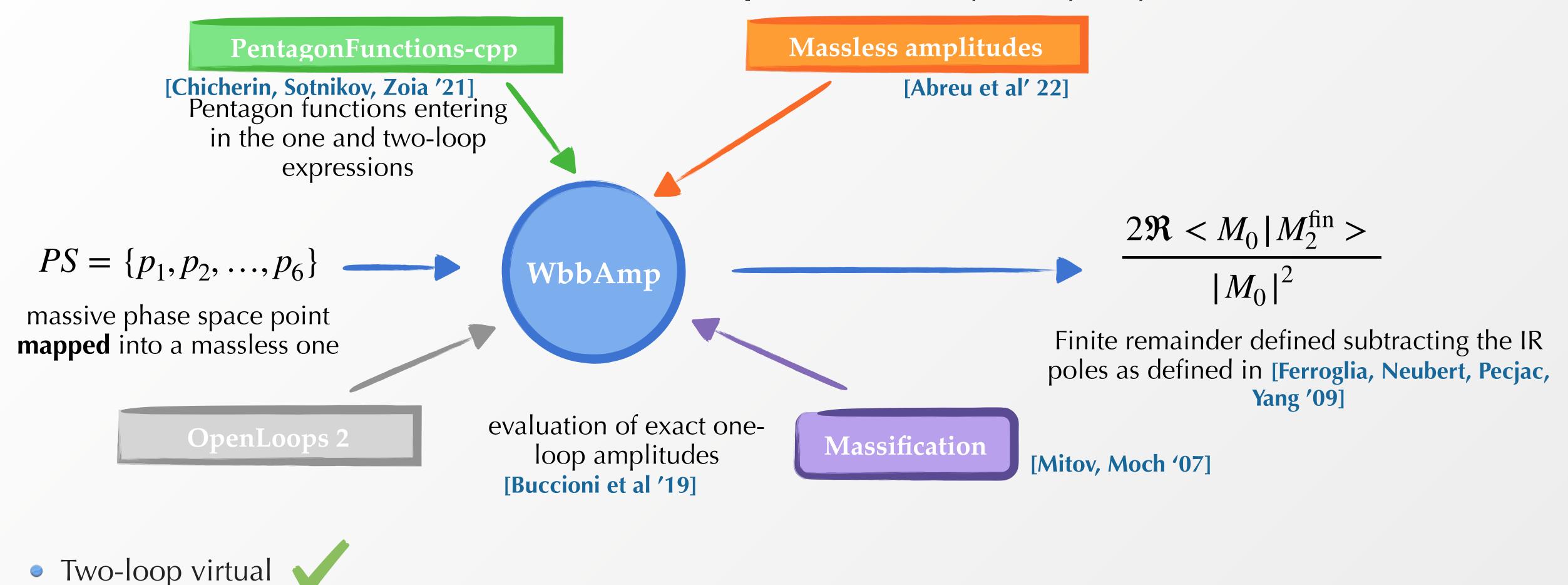
We have implemented the one-loop and two-loop amplitudes (in the leading colour approximation) of in a C++ library for the efficient numerical evaluation of the **massive amplitudes** (< 5s for phase-space point)



[Buonocore, <u>LR</u>, Savoini, https://gitlab.com/lrottoli/WQQAmp]

WQQAmp: a massive C++ implementation

We have implemented the one-loop and two-loop amplitudes (in the leading colour approximation) of in a C++ library for the efficient numerical evaluation of the **massive amplitudes** (< 5s for phase-space point)



Library interfaced to the MATRIX code which provides the underlying framework for the evaluation of *Wbb* production [Grazzini, Kallweit, Wiesemann 2018]

[Buonocore, <u>LR</u>, Savoini, https://gitlab.com/lrottoli/WQQAmp]

WQQAmp: a massive C++ implementation

One-Loop amplitudes: $\mathcal{O}(1000)$ source files of small-moderate size (< 100 Kb)

- algebraic expressions (rational function of the invariants) simplified using MultiVariate Apart [Heller, von Manteuffel, **2021**] at the level of Mathematica before exporting them
- automatised generation of C++ source files from the Mathematica expressions; very simple optimisation introducing abbreviations (<u>https://github.com/lecopivo/OptimizeExpressionToC</u>)

Two-Loop amplitudes: $\mathcal{O}(3000)$ source files of moderate size (< 250 Kb)

- algebraic expressions too long and complex; no pre-simplification step
- breakdown of each expression in small blocks (crucial for numerical stability)
- automatised generation of C++ source files for each block
- handling of **numerical instabilities a posteriori with a simple rescue system** (at integration time)

Numerous validations checks performed to test the numerical implementation:

- Phase-space check against Mathematica for crossed amplitudes, most point agree within single float precision. Occasionally it fails spectacularly (simple mechanism to remove problematic points)
- One-loop amplitudes in the LCA tested against MCFM
- Cancellation of the poles in the LCA for the massive amplitude against [Ferroglia, Neubert, Pecjac, Yang, 2009]

[Buonocore, <u>LR</u>, Savoini, https://gitlab.com/lrottoli/WQQAmp]

Phenomenology: setup

 $\alpha_{\rm s}$ and PDF scheme

Jet clustering algorithm

pdf sets

We consider two setups:

- (fully) inclusive (with a technical cut $m_{\ell\nu} > 5 \,\text{GeV}$): study the convergence of the perturbative series
- fiducial: inspired by ATLAS $VH(\rightarrow bb)$ boosted analysis [ATLAS:arXiv:2007.02873]

$$p_{T,\ell} > 25 \text{ GeV}$$
 $|\eta_{\ell}| < 2.5$ $p_T^W > 150 \text{ GeV}$
Jet selection
 $p_{T,j} > 20 \text{ GeV}$ and $|\eta_{\ell}| < 2.5$ or
 $p_{T,j} > 30 \text{ GeV}$ and $2.5 < |\eta_{\ell}| < 4.5$

Particle Physics Theory Journal Club, 23 March 2023, Manchester

$W + 2 b_{(jet)} + X @ \sqrt{s} = 13.6 \text{ TeV}$

4-flavour scheme (4FS), m_b =4.92 GeV G_{μ} -scheme, CKM diagonal anti- k_T (and k_T) algorithm with R = 0.4NNPDF30_as_0118_nf_4 (LO) NNPDF31_as_0118_nf_4 (NLO, NNLO)

Requirements on b-tagged jets $n_b = 2$, $p_{T,b_1} > 45 \text{ GeV}$, $0.5 < \Delta R_{bb} < 2$ *bin I* : $150 < p_T^W < 250 \,\text{GeV}$ *bin II* : $p_T^W > 250 \,\text{GeV}$

Inclusive cross section and perturbative convergence

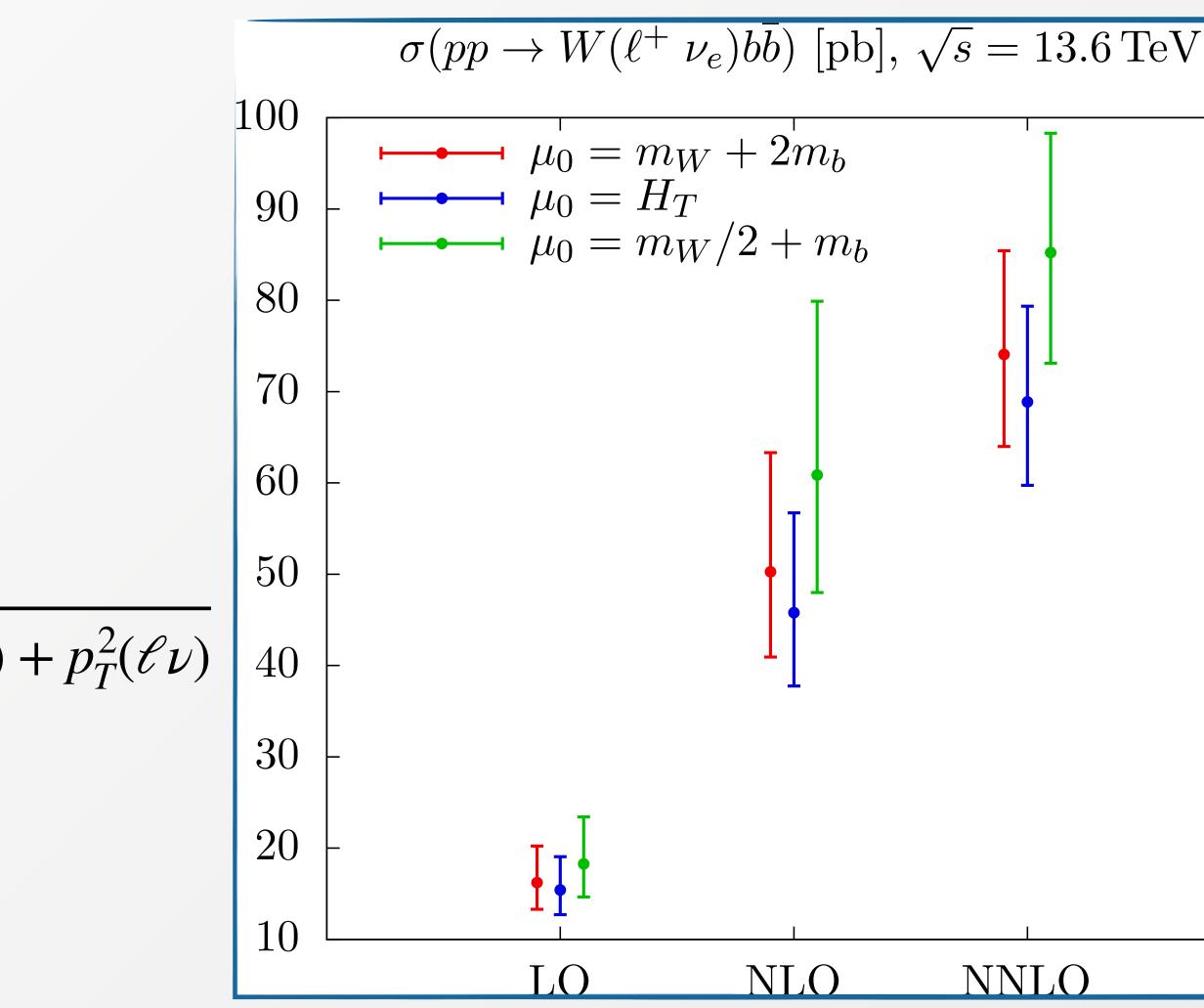
Fixed scale

$$\mu_0 = m_W + 2m_b$$

$$\mu_0 = m_W/2 + m_b$$

Dynamical scales

 $H_T = E_T(\ell\nu) + p_T(b_1) + p_T(b_2) \quad E_T(\ell\nu) = \sqrt{M^2(\ell\nu) + p_T^2(\ell\nu)}$



Inclusive cross section and perturbative convergence

Qualitatively similar results when using either scale choice

Very large NLO corrections, as already noted in the literature, due to the opening of the gluon channel

NLO cross section almost three times larger than the LO cross section. Uncertainty band at LO completely unreliable

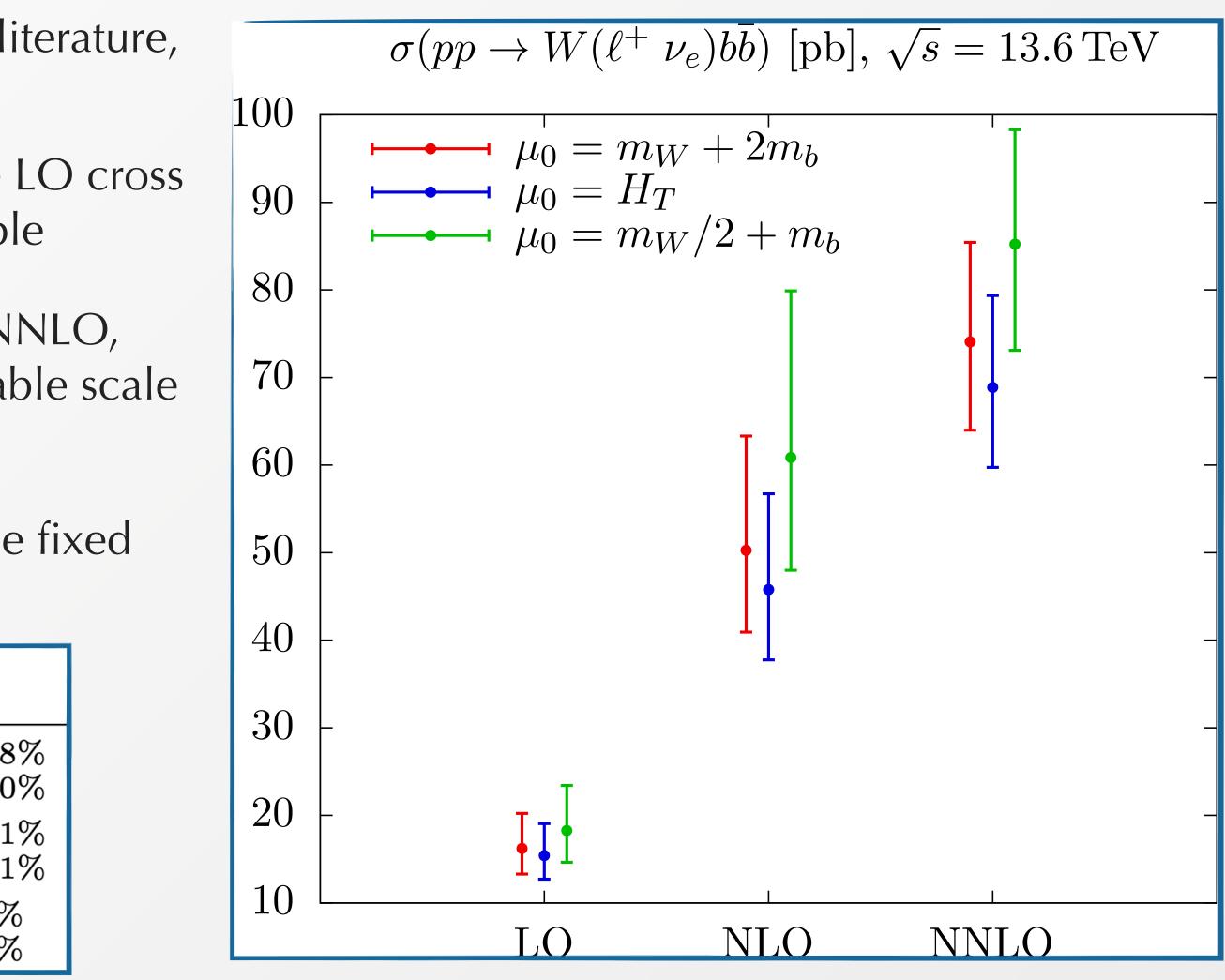
Signals of convergence of the perturbative series at NNLO, where the *K*-factor gets smaller (~1.5) and more reliable scale uncertainties

Convergence slightly improved when using half of the fixed scale (as noted in similar processes)

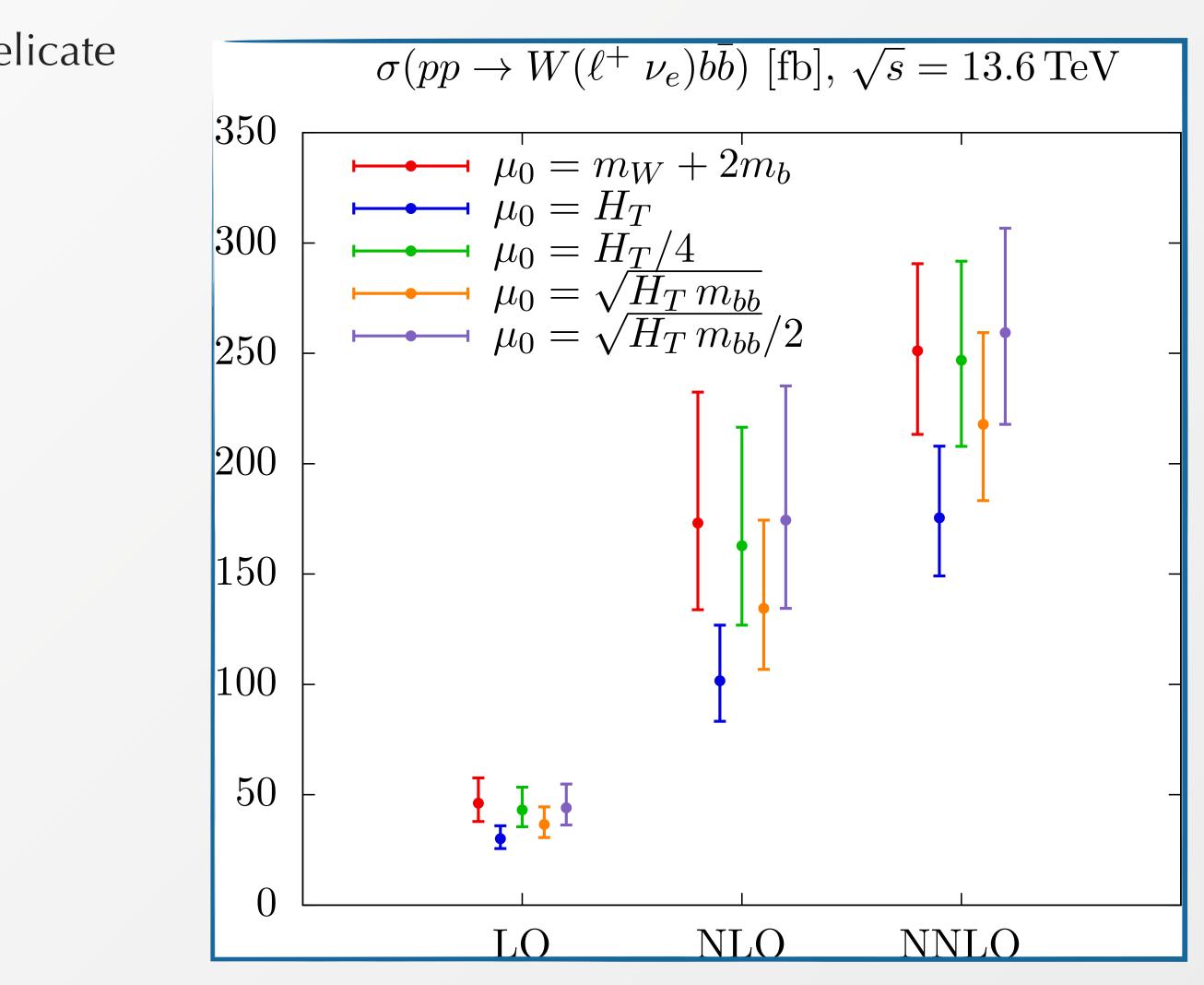
order	$\sigma_{ m incl}[m pb]$
LO	$18.270(2)^{+28}_{-20}$
NLO	$60.851(7)^{+31}_{-21}$
NNLO	$85.23(9)^{+15\%}_{-14\%}$

Partial reduction of scale uncertainties at NNLO

 $\mu_0 = m_W / 2 + m_h$



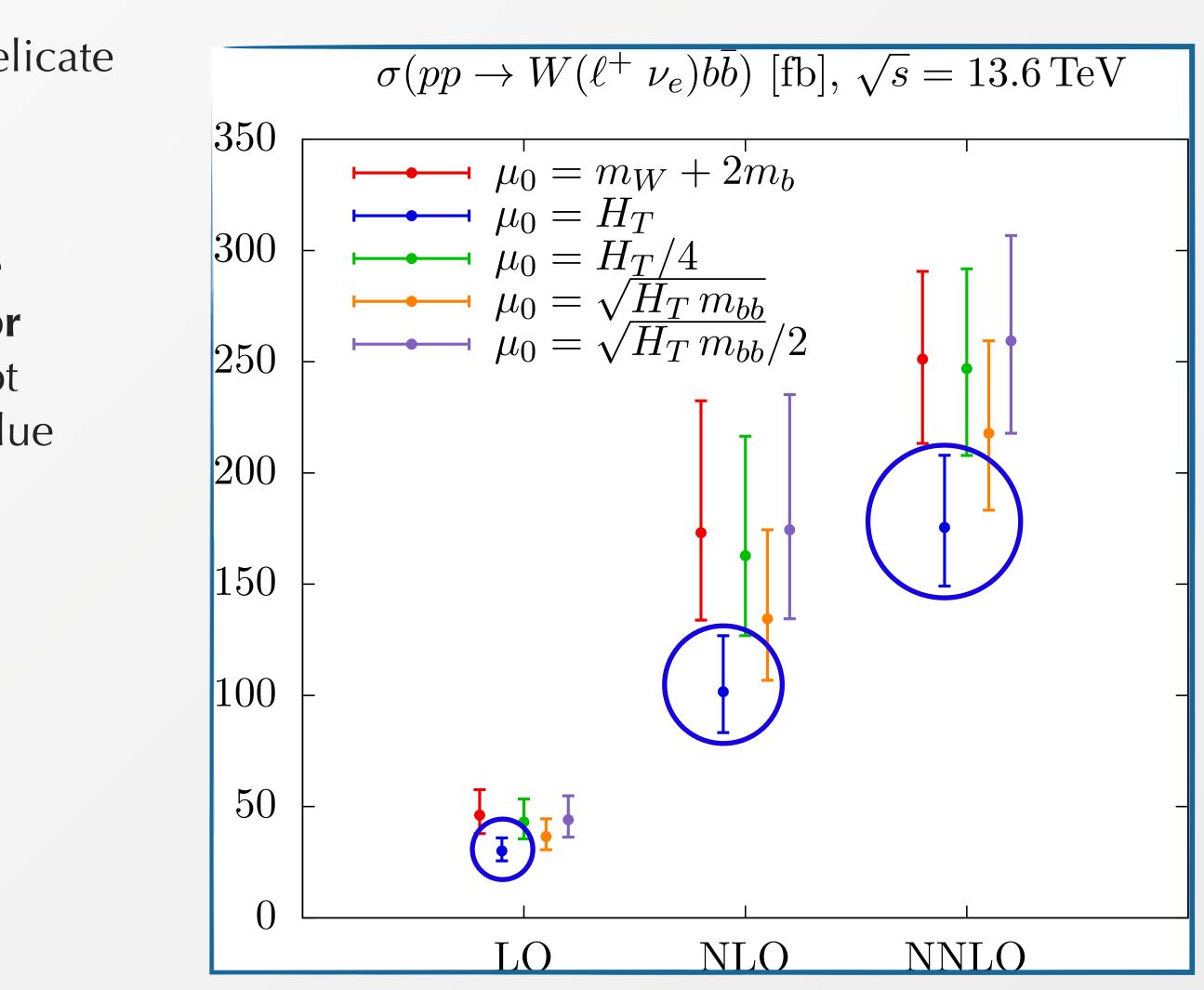
In the fiducial case, the choice of the scale is more delicate



In the fiducial case, the choice of the scale is more delicate

Fixed scale choice not well physically motivated

The choice of a dynamical scale such as H_T would be naively a better choice; nevertheless, it displays a poor perturbative convergence (NNLO and NLO bands not overlapping), alleviated when lowering the central value

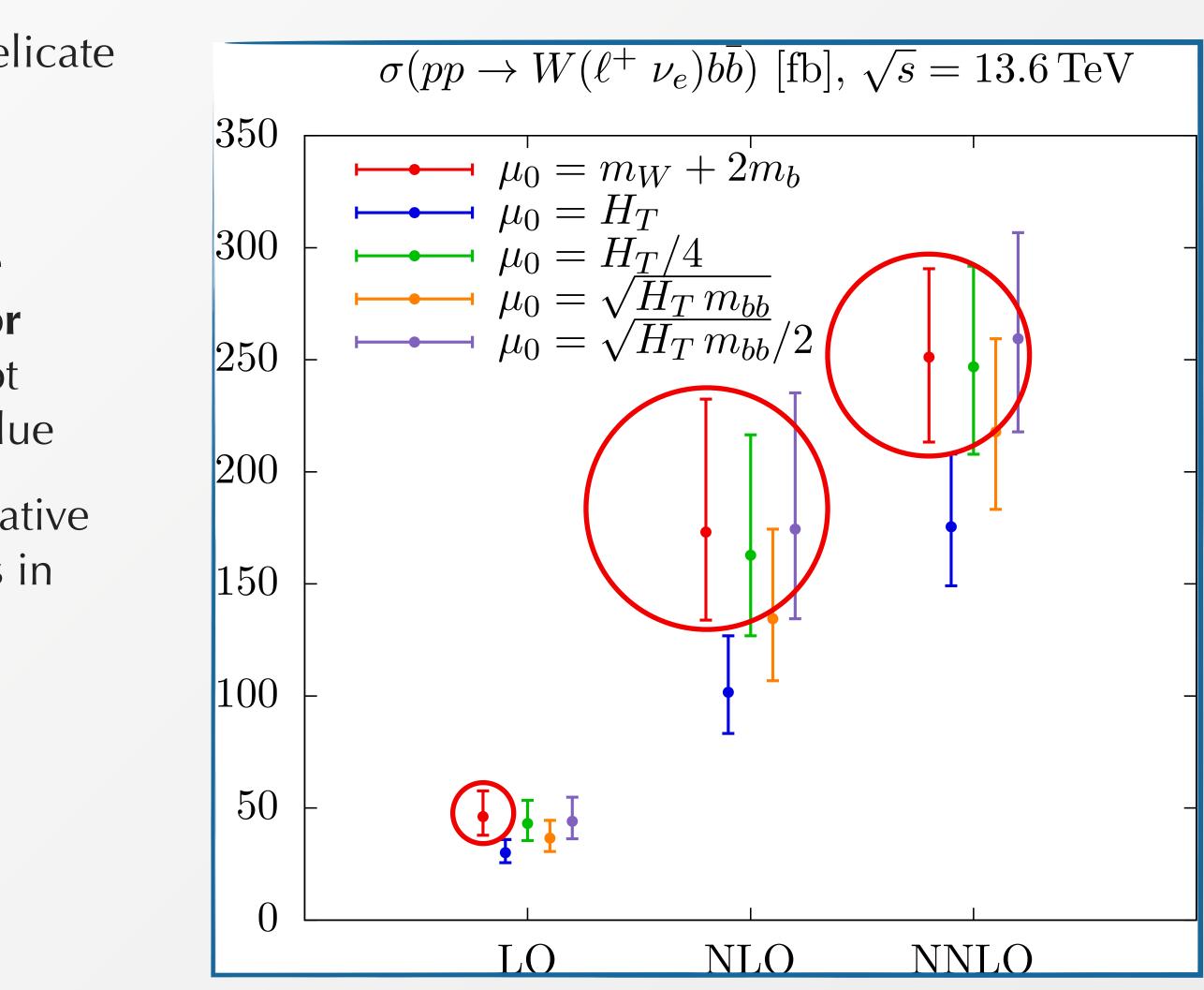


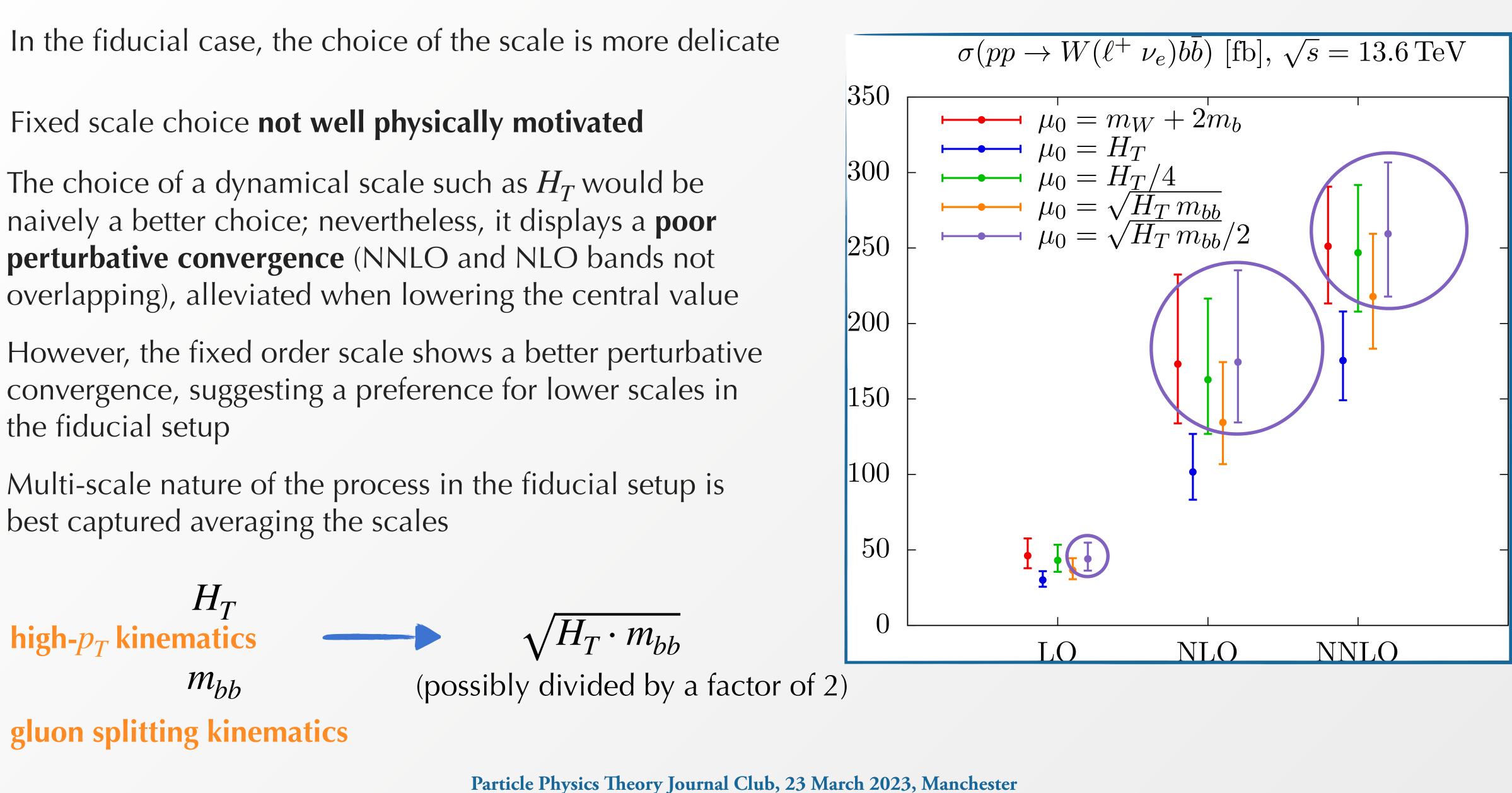
In the fiducial case, the choice of the scale is more delicate

Fixed scale choice **not well physically motivated**

The choice of a dynamical scale such as H_T would be naively a better choice; nevertheless, it displays a poor perturbative convergence (NNLO and NLO bands not overlapping), alleviated when lowering the central value

However, the fixed order scale shows a better perturbative convergence, suggesting a preference for lower scales in the fiducial setup





Fiducial cross section: results

Results

- Reference scale: $\sqrt{H_T \cdot m_{bb}}/2$
- Large NLO K-factors as in inclusive case: $K_{\rm NLO} \gtrsim 3$
- Relative large positive NNLO corrections, K_{NNLO} (comparable in size to the normalisation factors ap by experimentalists)
- More reliable theory uncertainties estimated by scale variations with a reduction to the 15 - 20% level

Other theoretical uncertainties are subdominant:

- Variation of bottom mass: $m_b = 4.91 \rightarrow 4.2 \,\text{GeV}$ =
- Impact of massification estimated at NLO: $\delta(\Delta \sigma_{\rm NI})$
- Leading-colour approximation responsible for an ad

3		
\sim	1.	5
pl	iec	

order	$\sigma^{bin~I}_{ m fid}[m fb]$	$\sigma_{ m fid}^{bin~II}[{ m fb}]$
LO	$35.49(1)^{+25\%}_{-18\%}$	$8.627(1)^{+25\%}_{-18\%}$
NLO	$137.20(5)^{+34\%}_{-23\%}$	$37.24(1)^{+38\%}_{-24\%}$
NNLO	$201.0(8)^{+17\%}_{-16\%}$	$58.5(1)^{+21\%}_{-18\%}$

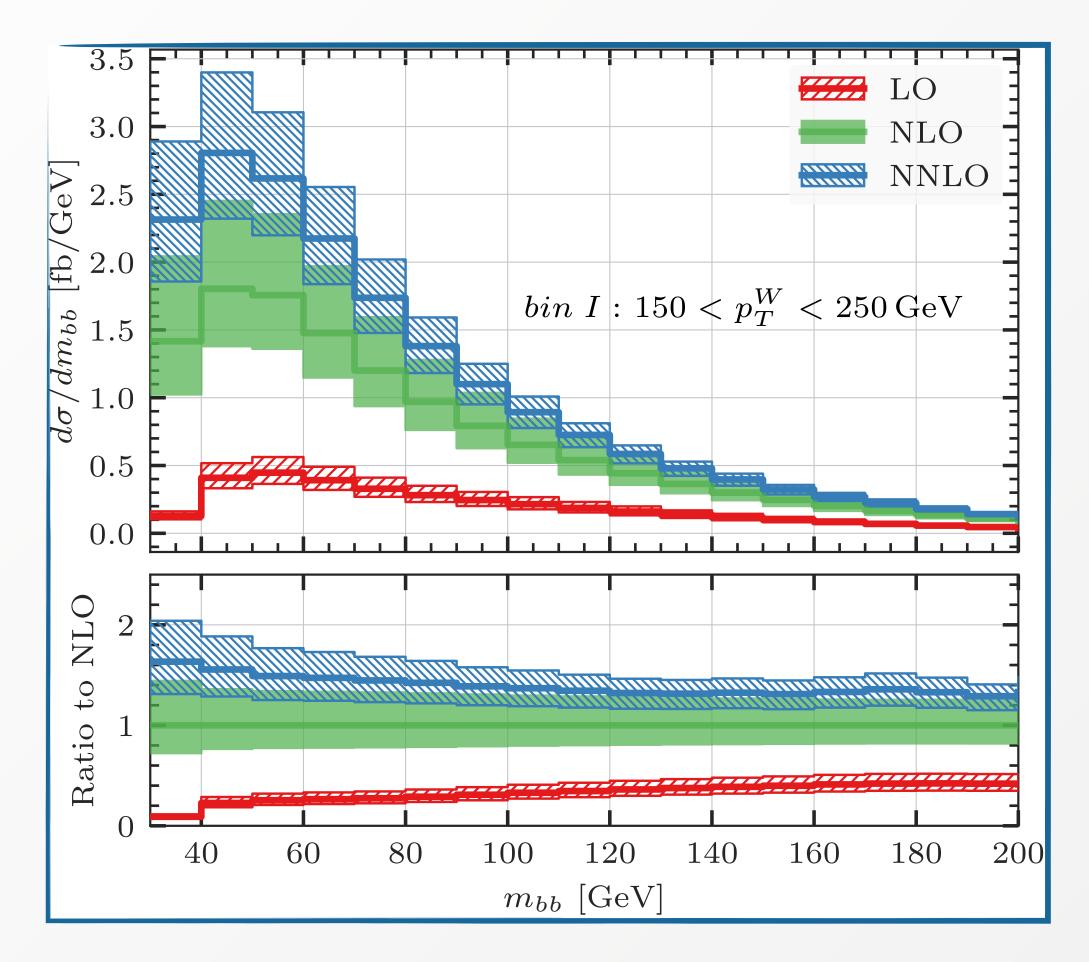
$$\Rightarrow \delta \sigma_{\text{NNLO}} / \sigma_{\text{NNLO}} = +2\%$$

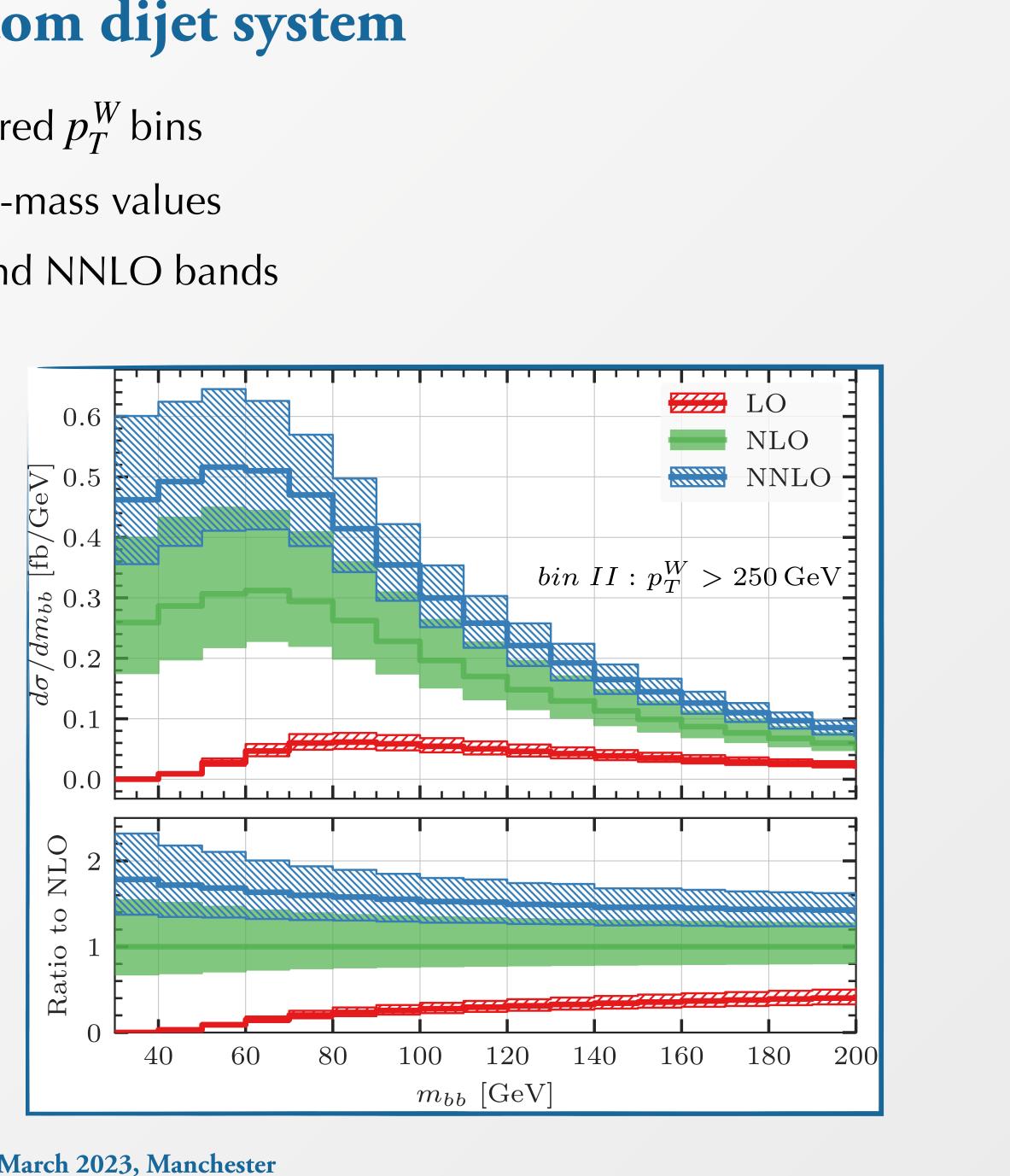
$$\int_{\mathcal{O}} / \Delta \sigma_{\text{NLO}}^{exact} | = 3\%$$

Iditional 1-2% uncertainty of the full NNLO correction

Phenomenology: invariant mass of the bottom dijet system

- Pattern of the NNLO corrections similar in the two considered p_T^W bins
- NNLO corrections **not uniform**, larger for smaller invariant-mass values
- Reduction of scale uncertainties, partial overlap of NLO and NNLO bands





Particle Physics Theory Journal Club, 23 March 2023, Manchester

Phenomenology: massless and massive calculations

$$W + 2 b_{jet} + X$$

Selection cuts

 $p_{T,\ell} > 30 \text{ GeV} |\eta_{\ell}| < 2.1$

 $n_b = 2: p_{T,b} > 25 \text{ GeV} |\eta_\ell| < 2.4$

 $p_{T,j} > 25 \text{ GeV} |\eta_{\ell}| < 2.4$

HPPZ

5FS

Jet clustering algorithm

 α_{s}

and PDF scheme

flavour k_T and flavour anti- k_T algorithm (R=0.5)

pdf sets

NNPDF31_as_0118 (LO, NLO, NNLO) [Hartanto, Poncelet, Popescu, Zoia '22]

Particle Physics Theory Journal Club, 23 March 2023, Manchester

(inclusive) @ $\sqrt{s} = 8 \,\mathrm{TeV}$

[CMS:arXiv:1608.07561]

Reference scale

$$H_T = E_T(\ell \nu) + p_T(b_1) + p_T(b_2)$$

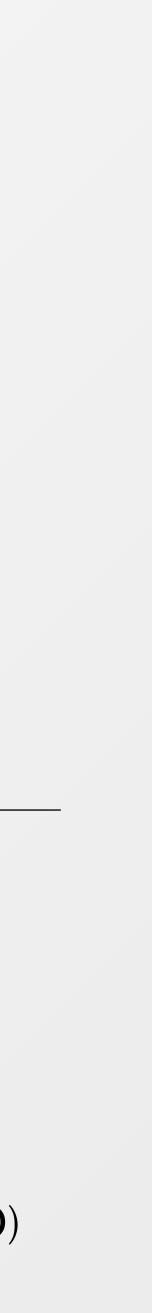
$$E_T(\ell\nu) = \sqrt{M^2(\ell\nu) + p_T^2(\ell\nu)}$$

This work

4FS

k_T and anti-k_T algorithm (R=0.5)

NNPDF30_as_0118_nf_4 (LO) NNPDF31_as_0118_nf_4 (NLO, NNLO) NNLO)



Phenomenology: massless and massive calculations

order	$\sigma^{ m 4FS}[{ m fb}]$	$\sigma^{ m 5FS}_{a=0.05}[{ m fb}]$	$\sigma_{a=0.1}^{5\mathrm{FS}}$ [fb]	$\sigma^{\mathrm{5FS}}_{a=0.2}\mathrm{[fb]}$
\mathbf{LO}	$210.42(2)^{+21.4\%}_{-16.2\%}$	$262.52(10)^{+21.4\%}_{-16.1\%}$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$261.71(10)^{+21.4\%}_{-16.1\%}$
NLO	$468.01(5)^{+17.8\%}_{-13.8\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$
NNLO	$636.4(1.6)^{+11.9\%}_{-10.5\%}$	$690(7)^{+10.9\%}_{-9.7\%}$	$677(7)^{+10.4\%}_{-9.4\%}$	$647(7)^{+9.5\%}_{-9.4\%}$

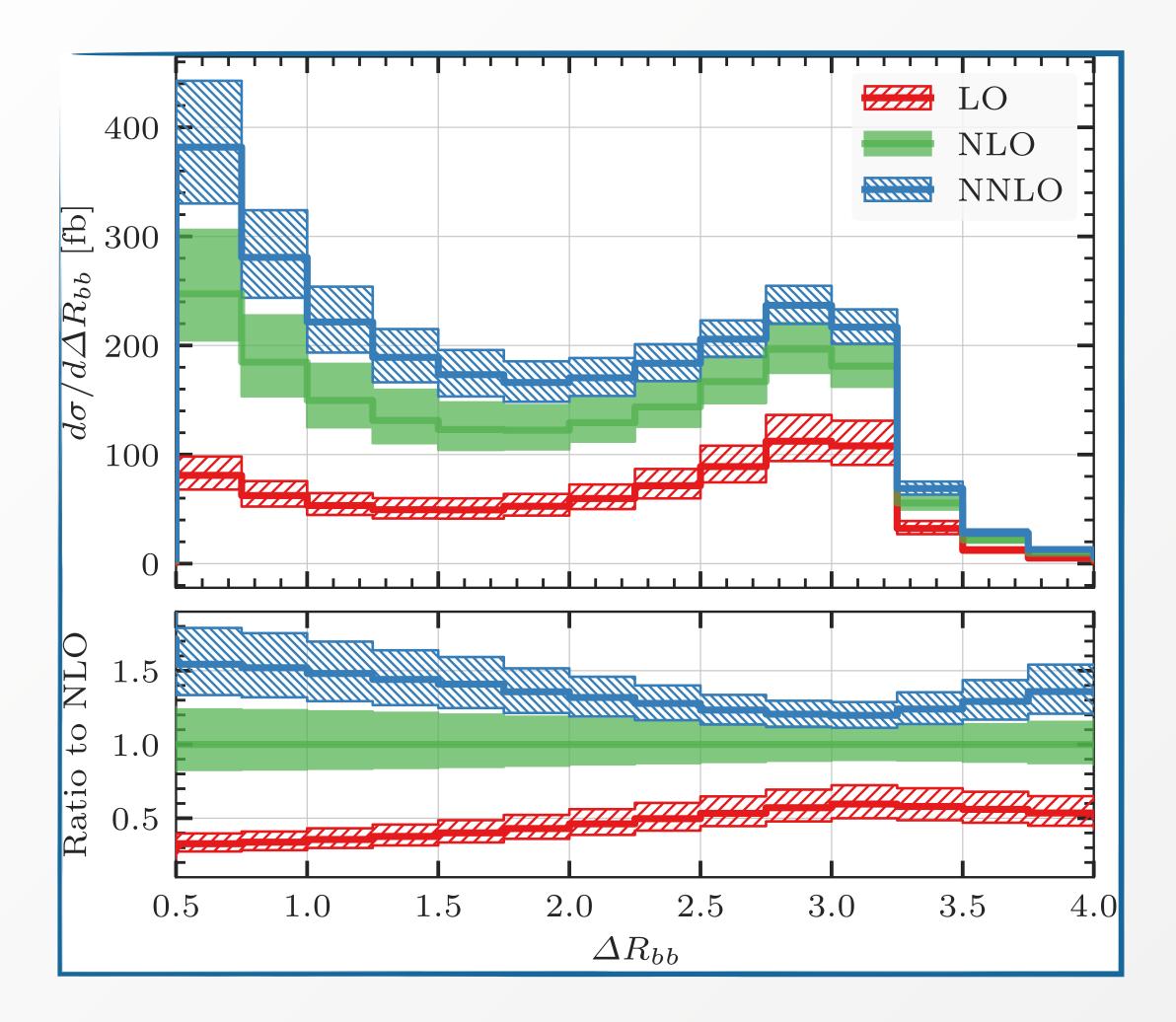
Remarks

- The parameter a of the flavour anti k_T algorithm plays a role similar to m_h in our massive calculation
- Uncertainty estimated by varying $a \in [0.05, 0.2]$ amounts to 7 %; considerably smaller uncertainty (2%) estimated by generously varying $m_h \in [4.2, 4.92]$
- below

• General agreement within scale variations, with the massive calculation performed in the 4FS systematically

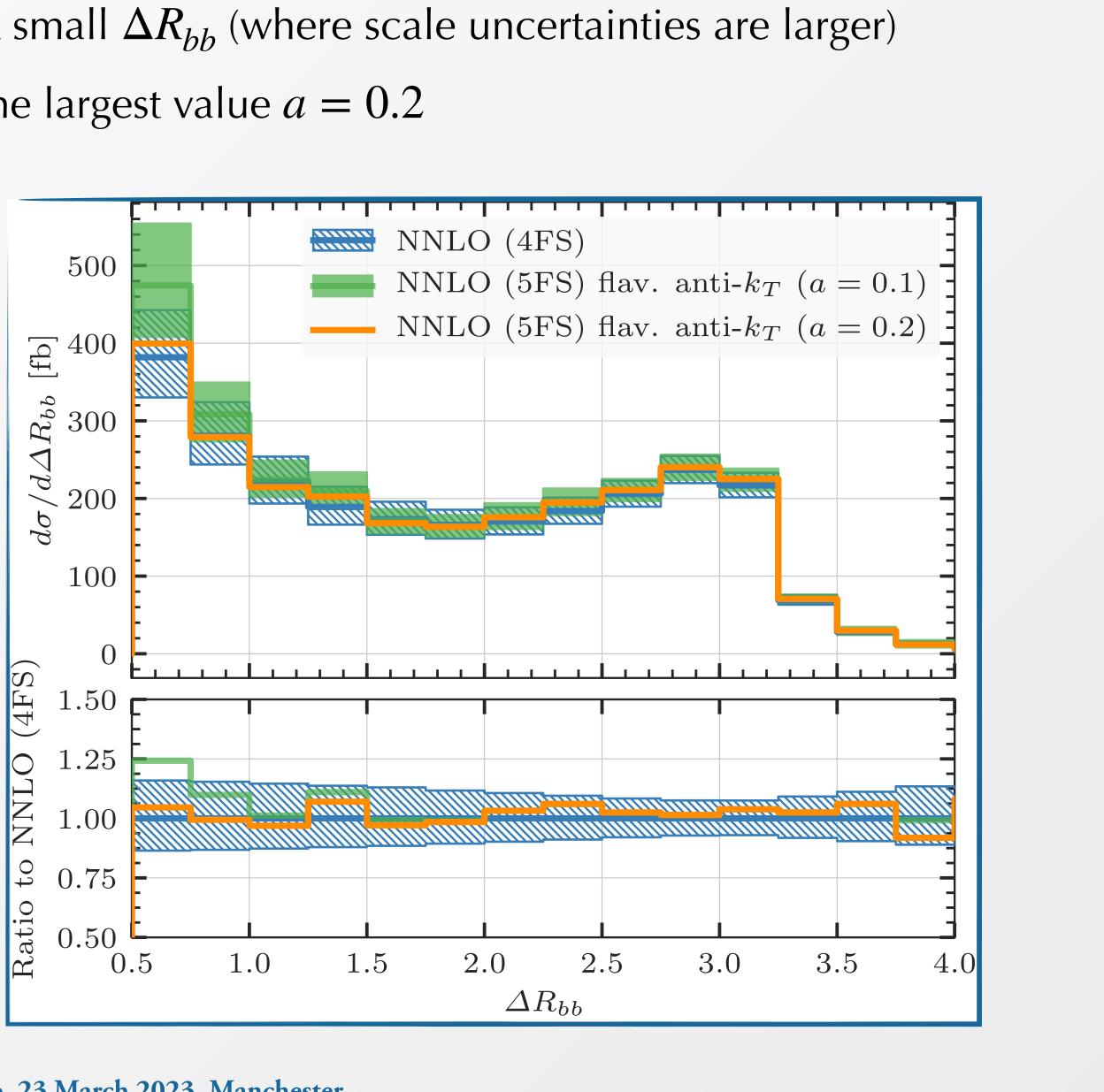
Phenomenology: massless and massive calculations

Good agreement between flavour and standard anti- k_T for the largest value a = 0.2



Particle Physics Theory Journal Club, 23 March 2023, Manchester

Sizeable NNLO corrections which lead to a steeper slope at small ΔR_{bb} (where scale uncertainties are larger)



Conclusion and outlook

- ingredients: soft function and two-loop virtual amplitude
- First calculation of Wbb production in NNLO QCD in the 4FS (massive b-quarks)
- two-loop virtual amplitude
- NNLO QCD corrections crucial for precision phenomenology

Future steps

- Matching to parton shower in a full NNLO+PS implementation
- Study of W production in association to a single b (comparison with the combined 4FS+5FS @NLO)

• Description of Wbb production process plays an important role in the physics precision programme at the LHC

• Calculation in the massive case possible using the q_T-subtraction methods thanks to recent availability of two-loop

• We rely on the **massification procedure** starting from the corresponding massless amplitude to obtain the missing

• Our calculation minimises problems related to flavour tagging allowing a more direct comparison to data

Amplitude factorisation in massless QCD

$$|\mathcal{M}^{[p]}\rangle = \mathcal{J}^{[p]}\left(\frac{Q^2}{\mu^2}, \alpha_S(\mu^2), \epsilon\right) \times \mathcal{S}^{[p]}\left(\{k_i\}\frac{Q^2}{\mu^2}, \alpha_S(\mu^2), \epsilon\right) \times |\mathcal{H}^{[p]}\rangle$$

Amplitude factorisation in QCD with a **massive** parton of mass $m^2 \ll Q^2$

$$\begin{aligned} |\mathscr{M}^{[p],(m)} \rangle &= \mathscr{J}^{[p]}\left(\frac{Q^2}{\mu^2}, \frac{m_i^2}{\mu^2}\alpha_S(\mu^2), \epsilon\right) \times \\ \mathscr{J}^{[p]}\left(\frac{Q^2}{\mu^2}, \frac{m_i^2}{\mu^2}\alpha_S(\mu^2), \epsilon\right) &= \prod_i \mathscr{J}^i\left(\frac{Q^2}{\mu^2}, \frac{Q^2}{\mu^2}, \frac{Q^2}{\mu^2},$$

Slide by L. Buonocore

[Catani, 1998][Sterman, Tejeda-Yeomans, 2003]

 $: \mathcal{S}^{[p]}\left(\{k_i\}\frac{Q^2}{\mu^2}, \alpha_S(\mu^2), \epsilon\right) \times |\mathcal{H}^{[p]} > + \mathcal{O}\left(\frac{m^2}{Q^2}\right)$ $\left(\frac{m_i^2}{\mu^2}\alpha_S(\mu^2),\epsilon\right) = \prod_i \left(\mathscr{F}^i\left(\frac{Q^2}{\mu^2},\frac{m_i^2}{\mu^2}\alpha_S(\mu^2),\epsilon\right)\right)^{1/2}$

space-like massive form factor

Master formula of "massification"

$$\begin{aligned} |\mathscr{M}^{[p],(m)} \rangle &= \prod_{i} \left[Z_{[i]} \left(\frac{m^2}{\mu^2}, \alpha_s(\mu^2), \epsilon \right) \right]^{1/2} \times |\mathscr{M}^{[p]} \rangle + \mathcal{O} \left(\frac{m^2}{Q^2} \right) \\ Z_{[i]} \left(\frac{m^2}{\mu^2}, \alpha_s(\mu^2), \epsilon \right) &= \mathscr{F}^i \left(\frac{Q^2}{\mu^2}, \frac{m_i^2}{\mu^2}, \alpha_s(\mu^2), \epsilon \right) \left[\mathscr{F}^i \left(\frac{Q^2}{\mu^2}, 0, \alpha_s(\mu^2), \epsilon \right) \right]^{-1} \end{aligned}$$

History & Remarks

- The formula retrieves mass logarithms and constant terms
- Consistent with previous results for NNLO QED correction to Bhabha scattering
- Successfully employed to derive and cross check results for $q\bar{q} \rightarrow Q\bar{Q}$ and $gg \rightarrow QQ$ amplitudes [Czakon, Mitov, Moch, 2007]
- Recently extended to the case of two different external masses ($M \gg m$)

Slide by L. Buonocore

[Glover, TauskandJ, VanderBij, 2001] [Penin 2005-2006]

[Engel, Gnendiger, Signera, Ulrich 2019]

The massification procedure is based on the **factorisation properties** of QCD amplitudes

mass

This can be viewed as a **change in the renormalisation scheme** which leads to a universal **"multiplicative renormalization**" relation between (*ultraviolet renormalised*) massive and massless amplitudes

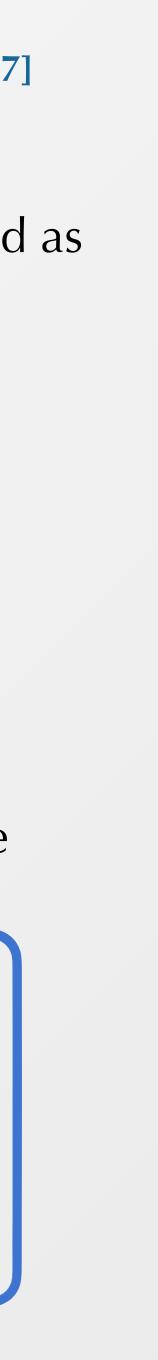
$$\mathscr{M}^{[p],(m)} = \prod_{i \in \{\text{all legs}\}} \left(Z^{(m|0)}_{[i]} \right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)} + \mathscr{O}(m^k)$$

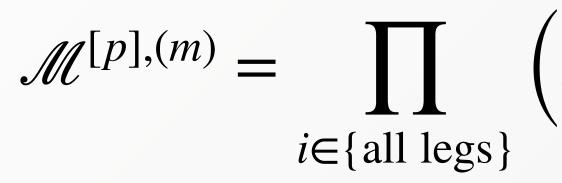
• The function $Z_{[i]}^{(m|0)}$ are universal, depend only on the external parton (quark or gluon) and admit a perturbative expansion in α_s :

$$Z_{[i]} = 1 + \sum_{k} \left(\frac{\alpha_s}{2\pi}\right)^k Z_{[i]}^k$$
$$\mathcal{M}^{[p],(m)} = \sum_{k=0} \left(\frac{\alpha_s}{2\pi}\right)^k \mathcal{M}^{[p],(m)}_{(k)}$$

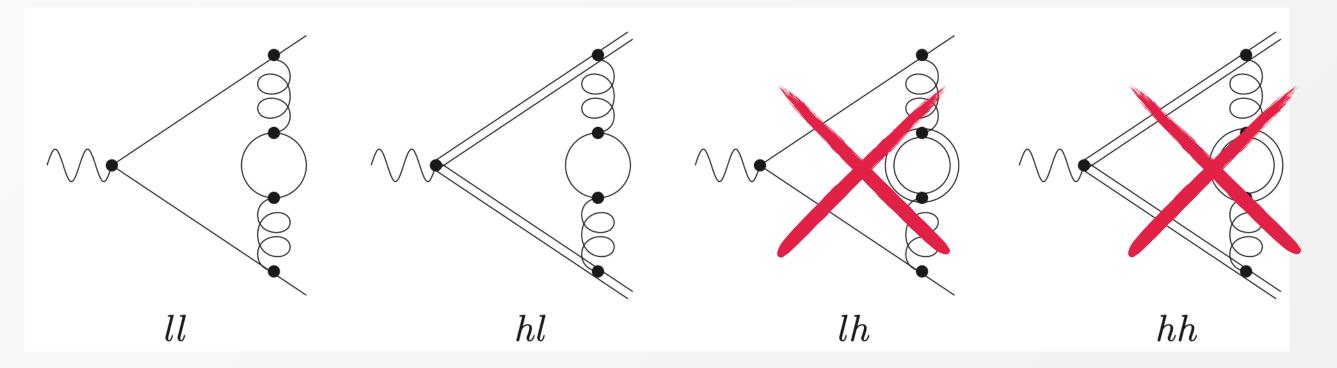
Basic idea: in the small mass limit, the massive amplitude $\mathcal{M}^{[p],(m)}$ and the massless one $\mathcal{M}^{[p],(m=0)}$ are connected as the mass screens some collinear divergences "trading" poles in the dimensional regulator ϵ for logarithms of the

$$\begin{split} bb,(m) &= \mathscr{M}_{0}^{Wbb,(m=0)} \\ bb,(m) &= \mathscr{M}_{(1)}^{Wbb,(m=0)} + Z_{[q]}^{(1)} \mathscr{M}_{(0)}^{Wbb,(m=0)} \\ bb,(m) &= \mathscr{M}_{(2)}^{Wbb,(m=0)} + Z_{[q]}^{(1)} \mathscr{M}_{(1)}^{Wbb,(m=0)} + Z_{[q]}^{(2)} \mathscr{M}_{(0)}^{Wbb,(m=0)} \end{split}$$





• The $Z_{[i]}^{(m|0)}$ are given by the ratio of massive and massless form factors ($\gamma^* q q$ for the quark case)



• Starting from two loops, contributions from heavy quarks loops (Ih and hh) arise. Their description requires additional process dependent terms and have been excluded from the definition of the $Z_{[i]}^{(m|0)}$

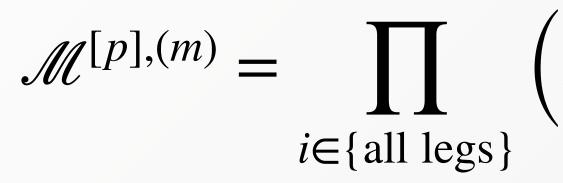
> **terms (constants)** of $\mathcal{M}^{[p],(m)}$ while **power corrections** in the mass and the contribution of **heavy loops** cannot be retrieved using this approach

Slide by L. Buonocore

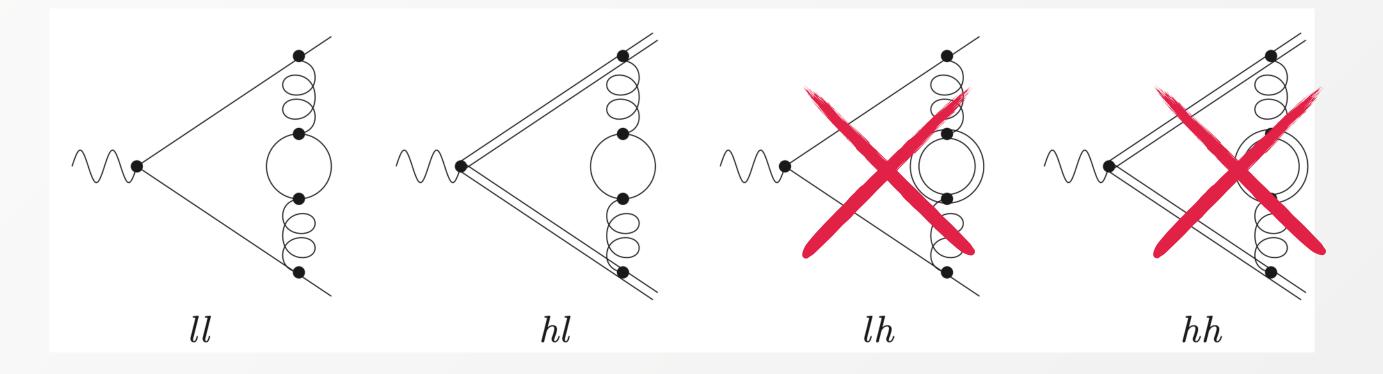
[Mitov, Moch, 2007]

 $\mathcal{M}^{[p],(m)} = \prod \left(Z_{[i]}^{(m|0)} \right)^{\frac{1}{2}} \mathcal{M}^{[p],(m=0)} + \mathcal{O}(m^k)$

The massification procedure predicts **poles**, logarithms of mass and mass independent



• The $Z_{[i]}^{(m|0)}$ are given by the ratio of massive and massless form factors ($\gamma^* q q$ for the quark case)



Remarks

- The functions $Z_{[i]}^{(m|0)}$ are trivial objects in colour space and are expressed in terms of colour Casimir
- At each perturbative order, $Z_{[i]}^{(k)}$ is given by a Laurent series in ϵ

$$Z_{[q]}^{(1)} = C_F \left[\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \left(\ln \frac{\mu^2}{m^2} + \frac{1}{2} \right) + \dots \right]$$

Slide by L. Buonocore

Particle Physics Theory Journal Club, 23 March 2023, Manchester

[Mitov, Moch, 2007]

 $\mathscr{M}^{[p],(m)} = \prod \left(Z_{[i]}^{(m|0)} \right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)} + \mathscr{O}(m^k)$

requires knowledge of the massless one-loop amplitude $\mathcal{M}^{Wbb,(m=0)}_{(1)}$ up to $\mathcal{O}(\epsilon^2)$

Two-loop massless amplitudes

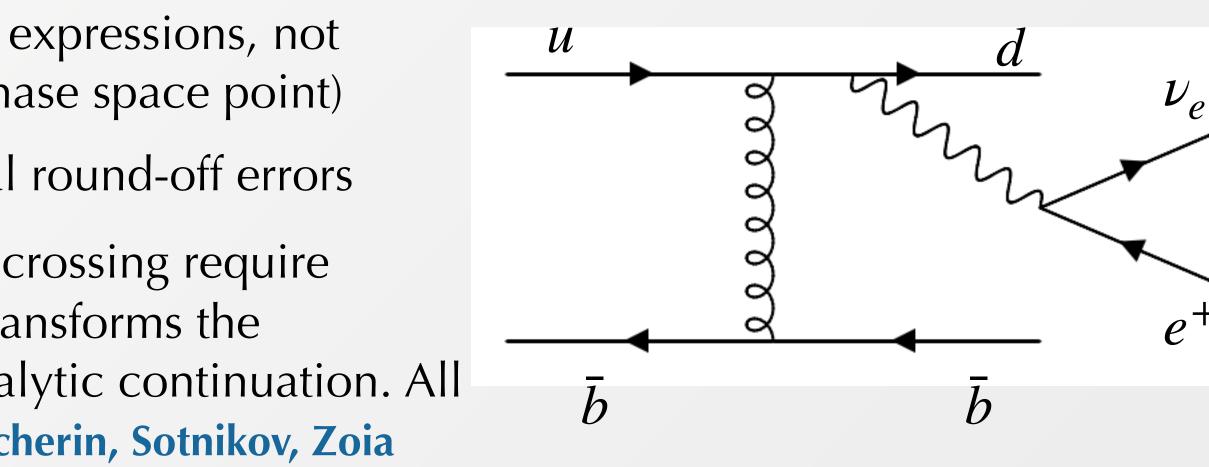
- Analytical expressions obtained within the framework of numerical unitary (using numerical samples)
- [Chicherin, Sotnikov, Zoia 2021]
- Final results are expressed as a function of **one-mass pentagon functions** • W boson treated off-shell (exact treatment of leptonic decays)
- publicly available <u>http://www.hep.fsu.edu/~ffebres/W4partons</u>
- analytical expressions of the one-loop amplitudes up to $\mathcal{O}(\epsilon^2)$ available in LCA

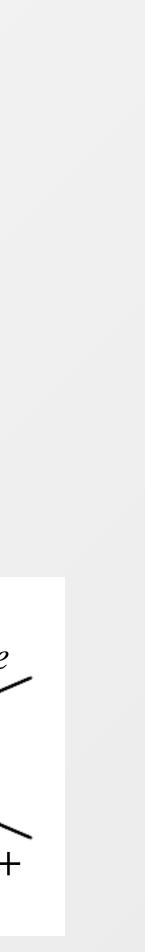
Remarks

- Amplitudes only available as (lengthy) mathematical expressions, not usable directly for computations (~1-2 minute per phase space point)
- Rather long algebraic expressions prone to numerical round-off errors
- Reference process is $u\bar{b} \rightarrow \bar{b}de^+\nu_{\rho}$. Initial-final state crossing require suitable permutation the action of the permutation transforms the pentagon functions into each others, no need for analytic continuation. All permutations available in a Mathematica script [Chicherin, Sotnikov, Zoia] 2021]

[Abreu, Febres-Cordero, Ita, Klinkert, Page, Sotnikov, 2022]

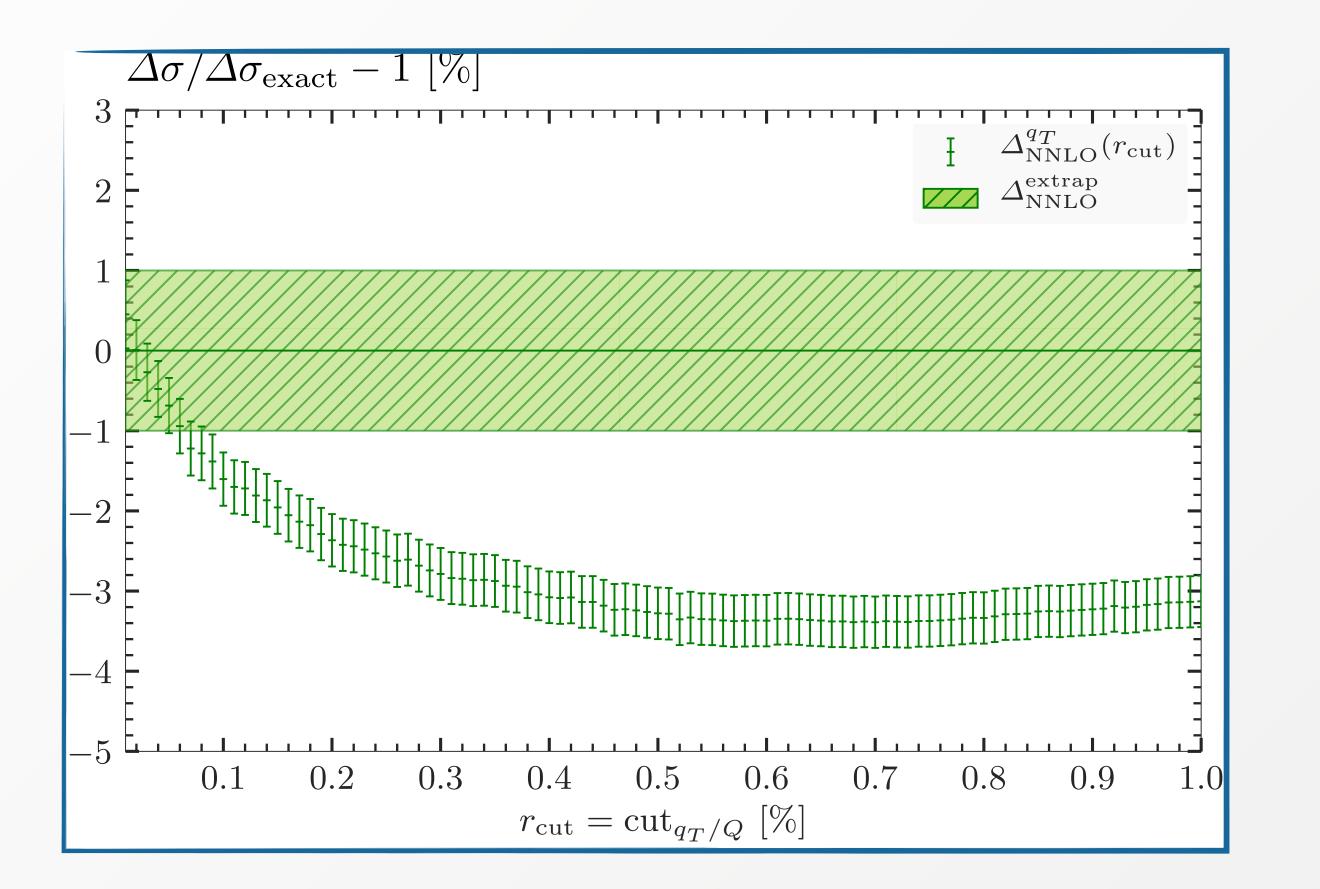
Two-loop helicity virtual amplitudes for W boson and four partons only available in leading colour app. (LCA)





r_{cut} dependence

 $d\sigma_X^{N^kLO} \equiv \mathscr{H}_X^{N^kLO} \otimes d\sigma_X^{LO} + \left[d\sigma_{X+j}^{N^{k-j}} \right]$



$$\int_{\text{jet}}^{-1} \text{LO} - \left[d\sigma_X^{\text{N}^k\text{LL}} \right]_{\mathcal{O}(\alpha_s^k)} \Big]_{q_T > q_t^{\text{cut}}} + \mathcal{O}((q_T^{\text{cut}}/M)^n)$$

Behaviour of the power corrections compatible with a **linear scaling** as expected from processes with massive final state

Overall mild power corrections

Control of the NNLO correction at $\mathcal{O}(1\%)$ $\rightarrow \mathcal{O}(0.2\%)$ at the level of the total cross section

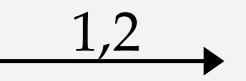
Comparison with HPPZ: fiducial cross sections

order	$\sigma^{ m 4FS}[{ m fb}]$	$\sigma_{a=0.05}^{5\mathrm{FS}}\mathrm{[fb]}$	$\sigma_{a=0.1}^{5\mathrm{FS}}$ [fb]	$\sigma_{a=0.2}^{5\mathrm{FS}}\mathrm{[fb]}$
LO	$210.42(2)^{+21.4\%}_{-16.2\%}$	$262.52(10)^{+21.4\%}_{-16.1\%}$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$261.71(10)^{+21.4\%}_{-16.1\%}$
NLO	$468.01(5)^{+17.8\%}_{-13.8\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$
NNLO	$636.4(1.6)^{+11.9\%}_{-10.5\%}$	$690(7)^{+10.9\%}_{-9.7\%}$	$677(7)^{+10.4\%}_{-9.4\%}$	$647(7)^{+9.5\%}_{-9.4\%}$

Remarks

Change of scheme @NLO [Cacciari, Nason, Greco, 1998]

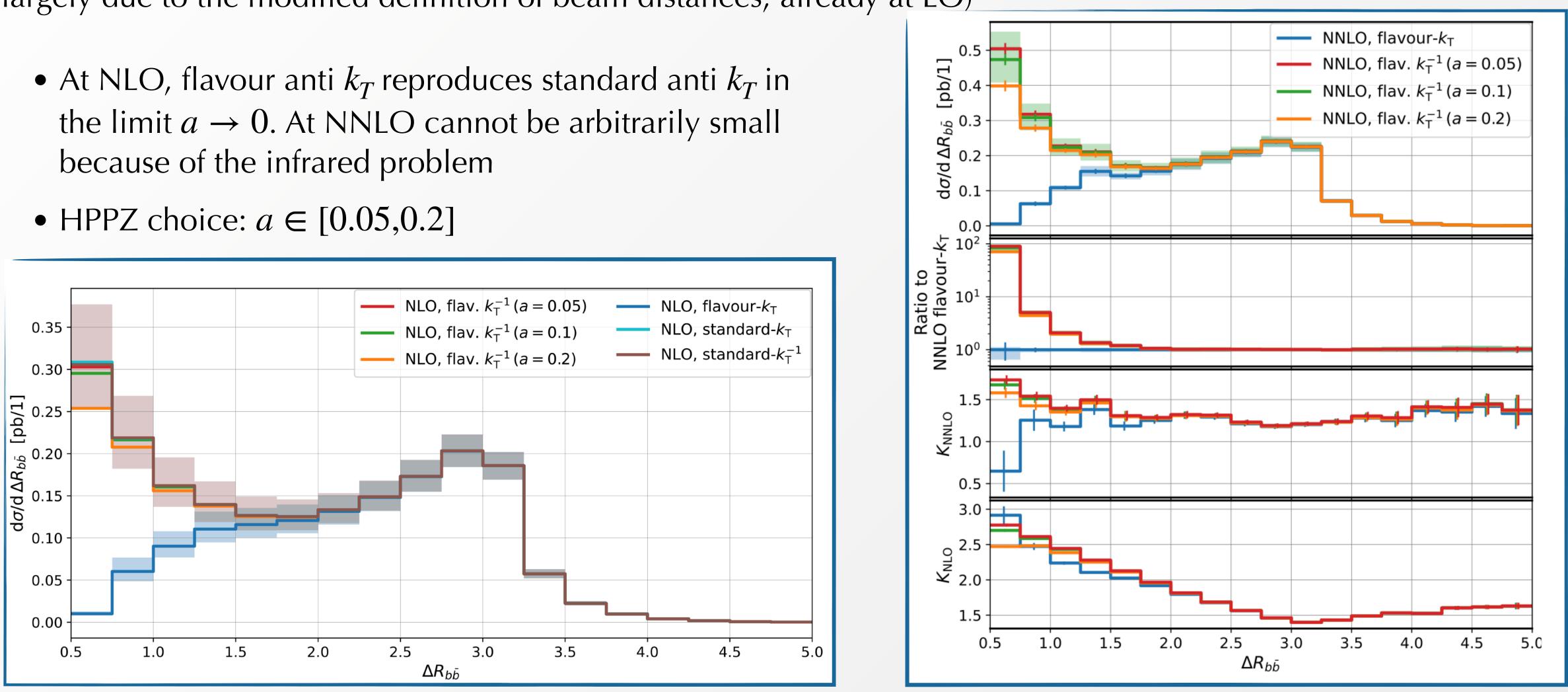
- Use same running coupling and PDF set of the 5FS calculation 1.
- Add the extra factor (due to the conversion between \overline{MS} and decoupling schemes): $-\alpha_s \frac{2T_R}{3\pi} \ln \frac{\mu_R^2}{m^2} \sigma_{q\bar{q}}^{\text{LO}}$ 2. No corrective term for pdfs at this order
- Take the massless limit $m_h \rightarrow 0$ 3.



Comparison with HPPZ: fiducial cross sections

Flavour k_T favours the clustering of the two bottom quarks in the same jet, leading to a suppression at small ΔR_{bb} (largely due to the modified definition of beam distances, already at LO)

- because of the infrared problem

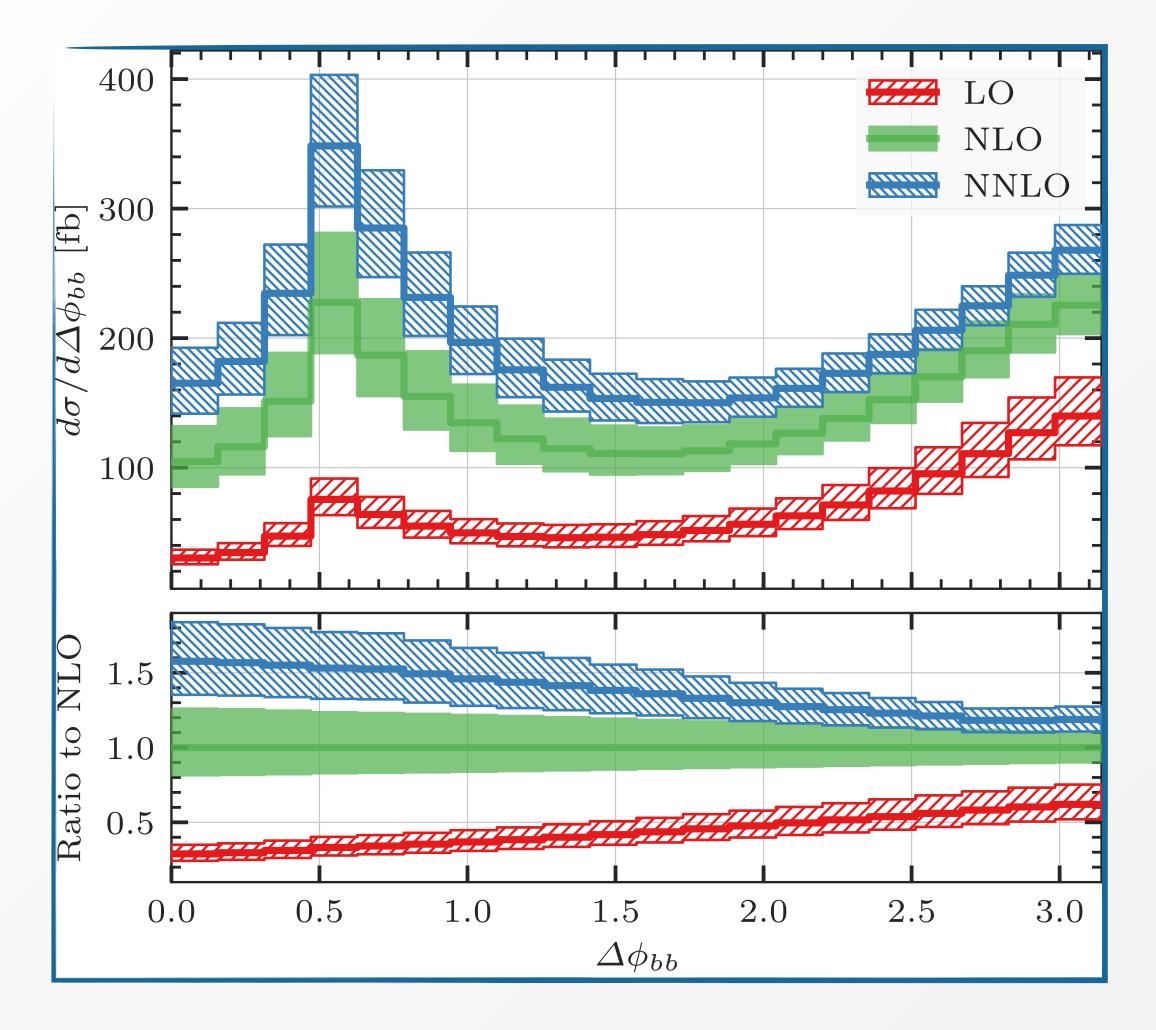


Particle Physics Theory Journal Club, 23 March 2023, Manchester

Comparison with HPPZ: differential distributions

Other distributions display similar pattern of the higher-order corrections

quarks and back-to-back leptons)



- The process features two dominant configurations: gluon splitting and t-channel enhancement (back-to-back bottom

