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FIG. 9: The 68%(red), 95%(orange) and 99%(green) CL
ranges in the ⇤q� � ⇤�g plane, corresponding to �µf

hj ⌘���µf
hj � 1

���  0.05, 0.1 and 0.15, respectively, with pcutT = 400

GeV and for f�g = 1 (upper plot) and f�g = �1 (lower plot).
In both cases |fu�| = 1, see text.

A. The case of Higgs + light-jet production

Let us consider first the operators Ou� and O�g, which,
as seen from Eq. 34, modify the SM uuh and ggh cou-
plings in a way that is equivalent to the kappa-framework
(we will focus below only on the case of the 1st genera-
tion u-quark operator Ou�). In particular, using Eq. 34
and the analysis performed in the previous section for NP
in the kappa-framework, we plot in Fig. 9 the 68%, 95%
and 99% CL sensitivity ranges in the ⇤u��⇤�g plane, for

pcutT = 400 GeV, assuming that µf
hj ⇠ 1± 0.05(1�). The

sensitivity ranges are shown for the two cases f�g = ±1,
where in both cases we set |fu�| = 1, since the cross-
section if / 2

q (see Eq. 18) so that there is no dependence

FIG. 10: Sample of tree-level diagrams for gq ! hq, q =
u, d, c, s, b generated by the CMDM-like e↵ective operator
Oqg, where the heavy dot represents the CMDM-like vertices.
There are additional diagrams for the subprocess qq̄ ! hg
and gq̄ ! hq̄ that can also be obtained by crossing symmetry.
In the case of a Higgs + light jet production, pp ! h + j,
diagrams (b) and (c) are essentially absent (i.e., yq ! 0).

on the sign of fu� for ySM
u /ySM

b ! 0 (see Eq. 34).

We see that a measured value of µf
hj which is consis-

tent with the SM at 3� (i.e, with 0.85  µf
hj  1.15) will

exclude NP with typical scales of ⇤�g
<
⇠ 15 TeV (equiva-

lent to u
>
⇠0.6) and ⇤u�

<
⇠2 TeV (equivalent to g

>
⇠1.1),

for f�g = �1. In the case of f�g = 1, there is an allowed
narrow band in the ⇤u� �⇤�g plane, stretching down to
NP scales of ⇤�g ⇠ 5 TeV and ⇤u� ⇠ 1 TeV, which are

consistent with 0.85  µf
hj  1.15. We study next the

FIG. 11: The di↵erential pT (h) distribution, d�(pp ! h +
j)/dpT (h), in the SM and with NP in the form of Oug, for
⇤ug = 1 and 2 TeV with fug = 1 and with an invariant mass
cut of mh+j  1 TeV.
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[Cohen et al., 1705.09295]
[Bizon et al.,1610.05771 ]
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this direction were taken in [28, 29].
On the other hand, in the small-Q regime that will

be probed at future runs of the LHC, the distribution
is dominated by the gg ! hj channel. For small values
of Q the ln

�
p2T /m

2
Q

�
terms are of moderate size and

a good assessment of these e↵ects comes from the NLO
calculation of mass corrections in gg ! hj [52–54]. Fur-
thermore, achieving a perturbative uncertainty of a few
percent in the considered pT region would also require im-
proving the accuracy of the resummed ln (pT /mh) terms
beyond NNLL. Progress in this direction [46, 55] suggests
that this will be achieved in the near future. Incorporat-
ing higher-order corrections to the full SM process will
both reduce the theoretical uncertainties and improve the
sensitivity to Q.

Figure 1 illustrates the impact of the Yukawa modifi-
cation c on the normalised pT,h spectrum in inclusive
Higgs production. The results are divided by the SM
prediction and correspond to pp collisions at a centre-of-
mass energy (

p
s) of 8TeV,2 central choice of scales and

MSTW2008NNLO PDFs [56]. Notice that for pT,h & 50GeV,
the asymptotic behaviour (1) breaks down and conse-
quently the gQ ! hQ, QQ̄ ! hg channels control the
shape of the pT,h distributions.

We stress that for the pT,h distribution, non-
perturbative corrections are small and in the long run,
pT,h will be measured to lower values than pT,j . While
the latter currently gives comparable sensitivity, it is
mandatory to study pT,h to maximise the constraints on
Q in future LHC runs. Therefore, we use pT,h in the
rest of this letter.

Current constraints. At
p
s = 8TeV, the ATLAS

and CMS collaborations have measured the pT,h and pT,j

spectra in the h ! �� [57, 58], h ! ZZ⇤
! 4` [59, 60]

and h ! WW ⇤
! eµ⌫e⌫µ [61, 62] channels, using around

20 fb�1 of data in each case. To derive constraints on b
and c, we harness the normalised pT,h distribution in
inclusive Higgs production [63]. This spectrum is ob-
tained by ATLAS from a combination of h ! �� and
h ! ZZ⇤

! 4` decays, and represents at present the
most precise measurement of the di↵erential inclusive
Higgs cross section. In our �2 analysis, we include the
first seven bins in the range pT,h 2 [0, 100]GeV whose
experimental uncertainty is dominated by the statisti-
cal error. This data is then compared to the theoretical
predictions for the inclusive pT,h spectrum described in
the previous section. We assume that all the errors are
Gaussian in our fit. The bin-to-bin correlations in the
theoretical normalised distributions are obtained by as-

2
The ratio of the pT,h spectra to the SM prediction at

p
s =

13TeV is slightly harder than the
p
s = 8TeV counterpart, which

enhances the sensitivity to b and c at ongoing and upcoming

LHC runs as well as possible future hadron colliders at higher

energies.
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Figure 2: The ��2 = 2.3 and ��2 = 5.99 regions in the
c–b plane following from the combination of the ATLAS
measurements of the normalised pT,h distribution in the h !
�� and h ! ZZ⇤ ! 4` channels. The SM point is indicated
by the black cross.

suming that the bins of the unnormalised distributions
are uncorrelated and modelled by means of linear error
propagation. This accounts for the dominant correla-
tions in normalised spectra. For the data, we used the
correlation matrix of [63].
Figure 2 displays the ��2 = 2.3 and ��2 = 5.99

contours (corresponding to a 68% and 95% confidence
level (CL) for a Gaussian distribution) in the c–b
plane. We profile over b by means of the profile like-
lihood ratio [64] and obtain the following 95% CL bound

c 2 [�16, 18] (LHC Run I) . (2)

Our limit is significantly stronger than the bounds from
exclusive h ! J/ � decays [10], a recast of h !

bb̄ searches and the measurements of the total Higgs
width [2, 65], which read |c| . 429 [9], |c| . 234 and
|c| . 130 [13], respectively. It is however not competi-
tive with the bound |c| . 6.2 from a global analysis of
Higgs data [13], which introduces additional model de-
pendence.
Turning our attention to the allowed modifications of

the bottom Yukawa coupling, one observes that our pro-
posal leads to b 2 [�3, 15]. This limit is thus signifi-
cantly weaker than the constraints from the LHC Run I
measurements of pp ! W/Zh (h ! bb̄), pp ! tt̄h (h !

bb̄) and h ! bb̄ in vector boson fusion that already re-
strict the relative shifts in yb to around ±50% [1, 2].
Future prospects. As a result of the expected reduc-

tion of the statistical uncertainties for the pT,h spectrum
at the LHC, the proposed method will be limited by sys-
tematic uncertainties in the long run. Recent studies

[Bishara et al.,1606.09253]

‣ ~40 inverse femtobarns collected in 2016 
‣ Increase in statistics enables study of 

differential distributions in detail  
‣ Transverse momentum distribution of the 

Higgs boson is sensitive to new physics
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Figure 6. Comparison of the pT,h (left) and mWh (right) spectrum in Wh production. The upper
panels show the SM predictions (black) as well as the cases c̄6 = �10 (blue) and c̄6 = 10 (red). The
ratios between the case c̄6 = �10 and the SM (blue) and the case c̄6 = 10 and the SM (red) are
displayed in the lower panels. All results correspond to pp collisions at

p
s = 13TeV.

panel), one observes instead a richer pattern of possible deviations. While Brbb̄ and Brcc̄

receive only corrections at the few percent level for c̄6 2 [�15, 15], the modifications in all
other branching ratios can reach or slightly exceed 10% in the same c̄6 range. The impact
of O(�) corrections is thus generically smaller in the branching ratios than in the partial
decay widths, since in the former quantities the universal Higgs wave function corrections
partially cancel. Notice finally that only Brgg is enhanced with respect to the SM, while
the ⌧+⌧�, WW , ZZ and �� branching ratios all tend to be suppressed.

7.3 Modifications of the V h and VBF Higgs distributions

Since the vertex corrections (3.1) depend in a non-trivial way on the external 4-momenta,
the O(�) corrections not only change the overall size of the cross sections in V h and VBF
Higgs production but also modify the shape of the corresponding kinematic distributions.
In this subsection we present results for the spectra that are most sensitive to modifications
in the trilinear Higgs coupling. All results shown below correspond to

p
s = 13 TeV,

PDF4LHC15_nnlo_mc PDFs and the default scale choices introduced in Section 7.1. Off-shell
effects in Higgs-boson production are taken into account by modelling the width of the
Higgs with a Breit-Wigner line shape.

We begin our discussion with pp ! Wh. In Figure 6 the distributions of the Higgs-
boson transverse momentum (pT,h) and the invariant mass of the Wh system (mWh) are
shown. The black curves in the panels represent the SM predictions, while the blue and
red curves correspond to a new-physics scenario with c̄6 = �10 and c̄6 = 10, respectively.
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Figure 1: The 1/�h · d�h/dyh (left) and 1/�h · d�h/dpT (right) normalized distributions at
p
s =

13 TeV collision energy for several values of up quark Yukawa couplings, ̄u = 0 (SM, blue), ̄u = 1

(orange), ̄u = 4 (green).

is under much better control than the absolute value of the cross section [52]. This is

illustrated in the top panels of Fig. 2, where we compare LO, NLO and NNLO theoretical

predictions for the normalized and unnormalized yh distributions at
p
s = 13 TeV collision

energy [53]. Similar cancellation of theoretical uncertainties is observed for normalized pT

distribution, illustrated in the bottom panels of Fig. 2, although the reduction of theoretical

uncertainties is not as dramatic as in the rapidity distribution. Normalized distribution also

help reduces many of the experimental uncertainties. For un-normalized distribution, the

total systematic uncertainties due to, e.g., luminosity and background estimates range from

4% to 12% [37]. However, most of the systematic uncertainties cancel in the normalized shape

distribution. The dominant experimental uncertainties for the shape of the distribution are

statistical ones, ranging from 23% to 75% [37], and can be improved with more data.

In this work we perform an initial study using the rapidity and pT distributions to con-

strain the light-quark Yukawa couplings. In the study we use Monte Carlo samples of events

on which we impose the experimental cuts in Section III. We generate the parton level,

pp ! h + n jets, including the SM gluon fusion (the background) and qq̄ and qg, q̄g fusion

(the signal) using MadGraph 5 [56] with LO CT14 parton distribution function (PDF) [57]

and Pythia 6.4 [58] for the showering, where q = u, d, s, c and n = 0, 1, 2. Events of di↵erent

multiplicities are matched using the MLM scheme [59]. Further re-weighting of the generated

tree-level event samples is necessary because of the large k-factor due to QCD corrections to

the Higgs production [60]. We re-weight the LO cross section of di↵erent jet multiplicities

5
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76 I.4.3. Benchmarks for cross sections and differential distributions
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Figure 25: Same as Figure 24, but for the Higgs boson transverse momentum distribution at low pT .

I.4.3.b.ii Differential distributions

In Figure 24 we compare Higgs boson rapidity distributions, both at the inclusive level (left) and with
a jet cut (right) defined as above. At the inclusive level, as before, the NLO MG5_aMC@NLO result
undershoots the predictions from HNNLO and Powheg NNLOPS which by construction agree with each
other. Note that the K-factor is not flat: NNLO corrections are more important for large rapidity. Also in
the presence of a jet the NLO result from GoSam+Sherpa is somewhat low. The BFGLP and NNLOJET
results substantially differ in shape, especially at high rapidity, and the BFGLP result seems to have very
small scale uncertainties. However, it should be noted that the BFGLP setup is different to the default
(see Section I.4.3.a.i), and in particular different PDFs are used.

Next, in Figure 25 we show the Higgs boson transverse momentum distribution at low pT . Note
that all predictions but CuTe have bins with width of 10 GeV. The CuTe, MRT and HRes results are in
good agreement throughout the pT range, with some differences appearing for pT ⇠

< 10 GeV. Again the
NLO prediction from MG5_aMC@NLO is lower and with a somewhat different shape; similar consid-
erations apply to NRV at high pT which has the same fixed-order accuracy. At low pT NRV does not
appear to have a Sudakov peak at the same pT value as other results. NNLOPS follows closely the HRes
result, with only minor differences in the smallest pT bin.

The high pT region for the same distributions is shown in Figure 26. Note that predictions should
be taken with care for pT

>
⇠ mT , as they are all obtained in the infinite top mass approximation. As

above, HRes and Powheg NNLOPS agree well within uncertainties for all pT values. At high pT MRT
and NNLOJET display a somewhat harder spectrum because they include NNLO corrections to the one-
jet configuration. The CuTe prediction agrees well with HRes for all pT values. The NRV prediction
appears to have a somewhat different shape, and it overshoots the HRes prediction at the largest pT

despite not including NNLO corrections. Uncertainties are all comparable, with the MRT uncertainty
smallest as expected since it includes the N3LO correction to the inclusive result.

We now turn to the leading and subleading jet pT distributions, shown in Figure 27. For the lead-
ing jet (left plot) the NNLOJET result, which is NNLO, is higher and with smaller uncertainty than
GoSam+Sherpa and MG5_aMC@NLO, which agree well with each other. The Powheg prediction is af-

not all predictions include the same 
set of “uncertainties”

(all include QCD scale variations)
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Figure 26: Same as Figure 25 for pT,H > 60 GeV.
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Figure 27: Leading (left) and subleading (right jet pT distributions.

fected by large statistical fluctuations, but the shape can be understood by noting that at low pT it agrees
with NNLOJET as it includes the NNLO correction to Higgs boson production, while at high pT it re-
produces the behaviour of the other NLO Monte Carlos. For the subleading jet (right plot) all predictions
but Powheg NNLOPS have the same NLO accuracy and agree within uncertainties. Powheg NNLOPS
on the other hand is leading-order only and its uncertainty is known to be somewhat underestimated, yet
it is in reasonable agreement with the other results.

In Figure 28 we show the transverse momentum of the third jet (left) and of the Hjj system (right).
These two distributions start at O(↵5

s) and thus they coincide in the NNLOJET computation, which
provides a purely leading-order description of these quantities and is thus affected by a large uncertainty.
On the other hand, the pT of the third jet (left plot) is described by GoSam+Sherpa at NLO, and in this

NLL N3LLNNLL
formal FO accuracy formal RES accuracy

LL�3
s �4
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diphoton invariant mass 

‣ Signal fitted in each 
differential bin 

‣ Good agreement with Standard 
Model predictions
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Fixed-order predictions: state-of-the-art
Fixed-order predictions available through NNLO QCD in the EFT 
NNLO correction ~ 10-20%

[Caola et al.1508.02684] [Boughezal et al. 1505.03893]
[Chen et al. 1607.08817]

‣ sector- improved residue 
subtraction approach 

‣ fiducial cross sections

4

Figure 3: The transverse momentum of the leading jet at LO,
NLO, and NNLO in the strong coupling constant. The lower
inset shows the ratios of NLO over LO cross sections, and
NNLO over NLO cross sections. Both shaded regions in the
upper panel and the lower inset indicate the scale-variation
errors.

Figure 4: The transverse momentum of the Higgs boson at
LO, NLO, and NNLO in the strong coupling constant. The
lower inset shows the ratios of NLO over LO cross sections,
and NNLO over NLO cross sections. Both shaded regions
in the upper panel and the lower inset indicate the scale-
variation errors.

CONCLUSIONS

We have presented in this manuscript a complete cal-
culation of Higgs production in association with a jet
through NNLO in perturbative QCD. Our computation
uses the recently proposed method of jettiness subtrac-
tion, a general technique for obtaining higher-order cor-
rections to processes containing final-state jets. We con-
firm and extend a recent calculation of the dominant

gg and qg partonic channels through NNLO [11], and
present additional phenomenological results for 8 TeV
LHC collisions. We also present several distributions for
the Higgs and the leading jet that can be measured with
LHC data. Our results indicate that the perturbative se-
ries is under good control after the inclusion of the NNLO
corrections. We look forward to the comparison of our
theoretical prediction with the upcoming data from Run
II of the LHC.
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‣ jettiness subtraction 

pTcut= 30 GeV

‣ antenna subtraction 
‣ comparison with ATLAS 
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Figure 10. Transverse momentum distribution of the Higgs boson compared to preliminary 13
TeV ATLAS [20]. Left panel is the absolute cross section, right panel is normalized to �H .

The currently ongoing Run 2 of the LHC will produce a dataset at 13 and 14 TeV

corresponding to about 25 times the integrated luminosity of the data analysed by ATLAS

for the preliminary study [20] discussed in this section.

4 Higgs boson production at large transverse momentum

Although not yet very precise, the ATLAS and CMS measurements of the Higgs boson

transverse momentum distribution at 8 TeV [2, 3], as well as the preliminary ATLAS

results at 13 TeV [20], illustrate the potential of this observable once higher statistics

are available. The current Run 2 of the LHC at 13 TeV will allow these observables to

be studied with much higher precision, and will extend the kinematic range that can be

probed to larger values of the transverse momentum.

To quantify the impact of the top quark mass e↵ects, we use the CMS fiducial cuts

and the theory parameters described in Section 3.1 at 13 TeV. As discussed earlier, we

consider two approximate approaches to estimating the mass e↵ects defined in Eqs. (2.15)

and (2.16), the multiplicative EFT⌦M and additive EFT�M approximations respectively

in addition to the EFT in the large quark mass limit. To quantify the uncertainty on these

procedures, we compare in Figure 11 the EFT�M (green) and the EFT⌦M (red) predic-

tions obtained according to Eqs. (2.16) and (2.15). The EFT and EFT⌦M predictions (and

the corresponding scale uncertainty) are simply related by R(pT ) as shown in Fig. 1(right).

For Higgs transverse momentum p
H
T > 200 GeV, the EFT distribution is much harder than

the EFT⌦M prediction, and as a result, the EFT�M prediction lies between the two.

The inclusion of quark mass e↵ects at LO leads to a damping of the transverse momen-

tum spectrum. Consequently, in the EFT�M prediction at large transverse momenta, the

harder higher order EFT corrections dominate over the softer LO contribution with exact

mass dependence. Even if the yet unknown NLO corrections to the exact mass dependence
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Figure 2: Higgs boson rapidity (left) and transverse momentum (right) distributions at the 8 TeV

LHC. The insets show ratios of di↵erential cross sections at di↵erent orders in perturbation theory

for the factorization and the renormalization scales set to the mass of the Higgs boson.

in perturbation theory. An acceptance is defined as the ratio of a fiducial to total cross

section A = �fid/� for H + j production. When ratios of cross sections are computed,

many sources of theoretical uncertainties cancel out and it is in general not possible to

properly estimate the uncertainty of the result by changing factorization and renormalization

scales within a prescribed interval. For this reason, it is useful to know several orders in

the perturbative expansion of the acceptance, to estimate the precision with which it can

actually be predicted. For the 8 TeV LHC and the ATLAS setup, we find

ALO = 0.594(4), ANLO = 0.614(3), ANNLO = 0.614(4). (3)

The perturbative expansion for the acceptances exhibits good convergence. Indeed, by com-

paring the central values, we find that the NLO acceptance is larger than the LO acceptance

by 3 percent, whereas there is no change going from NLO to NNLO.

Another interesting quantity is the exclusive cross section for fixed number of jets. The

corresponding results are shown in the right pane of Fig. 1. We observe good convergence

of the perturbative expansion for the exclusive H + j and H + 2j production cross sections

at 8 TeV LHC. We can not discuss the perturbative behavior of the H + 3j cross section

since it enters our computation only at leading order in perturbative QCD.

We now turn to kinematic distributions studied by the ATLAS collaboration. They can

be divided into three categories: transverse momentum and rapidity distributions of the

Higgs boson; transverse momentum, rapidity and the transverse energy distributions of the

accompanying QCD radiation and, finally, kinematic distributions of individual photons.
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Resummation in the small-pT region



Resummation
Fixed-order results are crucial to obtain reliable theoretical predictions away from the soft and collinear 
regions of the phase space

However, regions dominated by soft and collinear QCD radiation affected by large logarithms

�n
s lnk(pT/M), k � 2n � 1

Perturbative series spoiled All-order resummation of the 
logarithmically enhanced terms 

Effects propagate away from the singularity, resummation is necessary to obtain a good control of the 
small-pT region

NLL NNLL

Logarithmic counting commonly defined at the level of the logarithm of the integrated cross section

LL
�(v) =

� v

0

d�

dv� dv� � e�n
s Ln+1+�n

s Ln+�n
s Ln�1+... v = pT/M

1
pT



Zeros in the small-pT region and b-space formulation
Two different mechanisms give a contribution in the small pT region

‣ configurations where the transverse momenta of the radiated 
partons is small (Sudakov limit)  

‣ configurations where pT tends to zero because of cancellations 
of non-zero transverse momenta of the emissions (azimuthal 
cancellations)

Exponential suppression

O(p2
T)

Power-law scaling at very small pT

For inclusive observables the vectorial nature of the cancellations can be handled via a Fourier transform  

d2�(v)
d�Bdpt

= �
c1,c2

d|MB|2c1c2

d�B

�
b db pt J0(ptb) fT(b0/b)Cc1;T

N1
(�s(b0/b))HCSS(M)Cc2

N2
(�s(b0/b))f(b0/b)

� exp

�
�

2

�
�=1

� M

0

dkt
kt

R�
CSS,� (kt) �(kt � b0

b
)

�

RCSS(b) =
2

�
l=1

� M

b0/b

dkT
kT

R�
CSS,l(kT) =

2

�
l=1

� M

b0/b

dkT
kT

�
ACSS,�(�s(kT)) ln

M2

k2
T

+ BCSS,�(�s(kT))

�

coefficient functions

anomalous dimensions

hard-virtual corrections 

[Parisi, Petronzio ’78; Collins, Soper, Sterman ’85]

Power suppression

Sudakov peak 
region

pT → 0 limit
� �

[Catani, Grazzini ’11][Catani et al. ’12,Gehrmann][Luebbert, Yang ‘14]

[Davies, Stirling ‘84] [De Florian, Grazzini ’01] [Becher, Neubert ‘10][Li, Zhu ’16][Vladimirov ’16]



Momentum space

Why? A naive logarithmic counting at small pT is not sensible, as one loses the correct power-suppressed 
scaling if only logarithms are retained: it’s not possible to reproduce a power behaviour with logs of pT/M

Since b-space formulation works well, why should one bother so much for a single observable?
‣ No need to have a factorization theorem established (more observable independent than b-

space formulation) 
‣ Important to understand the dynamics of the radiation to improve generators 
‣ What we learn will have a broader application range, possible generalisation beyond the simple 

inclusive-observable case  
‣ Possibility to perform joint resummation of observables 
‣ As a byproduct, the result in momentum space can be implemented in a code fully differential 

in the Born phase space (easy to introduce cuts, dynamical scales, etc)

[Frixione, Nason, Ridolfi ’98] 
Not possible to find a closed analytic expression in direct space which is both a) free of logarithmically 
subleading corrections and b) free of singularities at finite pT values

Necessary to establish a well defined logarithmic counting in momentum space in order 
to reproduce the correct behaviour of the observable at small pT

 (logarithms of b do not correspond to logarithms of pT)

Is it possible to obtain a formulation in momentum space?
 talk by Markus [Ebert, Tackmann 1611.08610] 

[Monni, Re, Torrielli, Phys.Rev.Lett. 116 (2016) no.24, 242001]
[Bizon, Monni, Re, LR, Torrielli, 1705.09127]



Logarithmic counting
[Monni, Re, Torrielli, Phys.Rev.Lett. 116 (2016) no.24, 242001]
[Bizon, Monni, Re, LR, Torrielli, 1705.09127]

Necessary to establish a well defined logarithmic counting: possibile to do that by decomposing the squared 
amplitude in terms of n-particle correlated blocks (nPC)

e.g. pp → H + emission of up to 2 (soft) gluons O(αs2)  

outgoing partons 2
x

�

Analogue structure with n gluon emissions

Logarithmic counting defined in terms of nPC blocks (owing to rIRC safety of the observable)

+

+ perm

�

=

�
+ perm

+

O(�s)

O(�2
s )

1PC0 1PC0 1PC0 2PC0

�

+ ++

+

+

only gluons for simplicity

+

1PC1

|M(p1, p2, k1, k2)|2 =

2
x

NLLLL NLLNLL



Resolved and unresolved emissions
For inclusive observables (such as Higgs pT) V(p1, p2, k1, . . . , kn) = V(p1, p2, k1 + · · · + kn)

|M(p1, p2, k1, . . . ,kn)|2 = |MB(p1, p2)|2

� 1
n!

�
n

�
i=1

�
|M(ki)|2 +

�
[dka][dkb]|M̃(ka, kb)|2�(2)(�kta +�ktb ��kti)�(Yab � Yi)

+
�

[dka][dkb][dkc]|M̃(ka, kb, kc)|2�(2)(�kta +�ktb +�ktc ��kti)�(Yabc � Yi) + . . .
� �1PC 2PC

3PC
Introduction of a resolution scale εkT1

… kT1
εkT1

unresolved emission resolved emission
can be integrated inclusively to 
cancel the divergences of the 
virtuals (rIRC): exponential factor

Sudakov form factor
e�R(�kt1) ε dependence cancels 

against the resolved 
real corrections

treated exclusively: for 
inclusive observables can 
be parametrised exactly as 
a Sudakov unintegrated 
in kt and azimuthal angle

kT ordering



Momentum space formulation

d�(v)
d�B

=
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1 x�N2

2 �
c1,c2

d|MB|2c1c2

d�B
fT

N1
(µ0)�̂c1,c2

N1,N2
(v)fN2(µ0)

�̂c1,c2
N1,N2

(v) =
�
Cc1;T

N1
(�s(µ0))H(µR)Cc2

N2
(�s(µ0))

� � M

0

dkt1
kt1

� 2�

0

d�1
2�

� e�R(�kt1) exp

�
�

2

�
�=1

�� µ0

�kt1

dkt
kt

�s(kt)
�

�N�
(�s(kt)) +

� µ0

�kt1

dkt
kt

�
(C)
N�

(�s(kt))

��

2

�
�1=1

�
R�

�1
(kt1) +

�s(kt1)
�

�N�1
(�s(kt1)) + �

(C)
N�1

(�s(kt1))

�

�
�

�
n=0

1
n!

n+1

�
i=2

� 1

�

d�i
�i

� 2�

0

d�i
2�

2

�
�i=1

�
R�

�i
(kti) +

�s(kti)
�

�N�i
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� � (v � V({ p̃}, k1, . . . , kn+1))

Result can be expressed as

Result valid for all 
inclusive observables 
(e.g. pT, φ*)
V(k) = dl gl(�)

kT
M

unresolved  
emission + virtual 
corrections

resolved 
emission

DGLAP anomalous dimensions

RG evolution of coefficient functions

need some care in the 
treatment of the hard-
collinear emissions

Formulation equivalent to b-space result (up to a scheme change in the anomalous dimensions)

d2�(v)
d�Bdpt
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�
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12
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Resummation in momentum space

In previous formula, resummation of logarithms of kT,i/M

kTi/kT1 ~ O(1) 

Integrands can be expanded about kTi~kT1 to the desired accuracy: more efficient(everywhere in the resolved phase 
space, due to rIRC safety) 

Sudakov region: kT1~ pT
ln(M/pT) resummed at 
the desired accuracy

+ additional subleading terms 
that cannot be neglected

azimuthal region: kTi~kT1
correct scaling of the 
cumulant O(pT2)

correct description of the 
kinematics after expansion kTi~kT1 

dσ
/d

p T

pT

subleading logarithms in pT  
free of singularity at low pT values

(power-law scaling)

Formulation in Mellin space already implementable. However, it is convenient to perform the evaluation 
entirely in momentum space



Result at NLL accuracy

�R�(kt1)
�

�
n=0

1
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n+1
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� 1
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d�i
�i

� 2�

0

d�i
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�

LNLL(kt1) = �
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d|MB|2cc�

d�B
fc(kt1, x1) fc�(kt1, x2)

we expanded around kT1

parton luminosity at NLL reads

At higher logarithmic accuracy, it includes 
coefficient functions and hard-virtual corrections

= e�R�(kT1) ln 1
�

The divergences cancel with the terms 
contained in the resolved real radiation

�i = kti/kt1
resolved emission

This formula can be evaluated by means of fast Monte Carlo methods

NLL

R� =
d

d ln(M/kt1)
R

RadISH (Radiation off Initial State Hadrons)



where we simplified the notation by using

R
0(kt1) =

X

`=1,2

R
0
`
(kt1). (3.15)

The dependence on the regulator ✏ cancels exactly in Eq. (3.14).
We can transform back to momentum space, thus abandoning the matrix notation used so far. We
define the derivatives of the parton densities by means of the DGLAP evolution equation

@f(µ, x)

@ lnµ
=

↵s(µ)

⇡

Z
1

x

dz

z
P̂ (z,↵s(µ))f(µ,

x
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where P̂ (z,↵s(µ)) is the regularised splitting function
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Including terms up to N3LL, we can therefore recast Eqs. (3.12), (2.47) as
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where we defined @L = d/dL.
Until now we have explicitly considered the case of flavour-conserving real emissions, for which we
derived Eq. (3.18). We now turn to the inclusion of the flavour-changing splitting kernels, that
enter purely in the hard-collinear limit and contribute to the DGLAP evolution. In order to include
an arbitrary number of these splittings, one is forced to relax the assumption of kt ordering that
we made in our discussion of Section 2.3.7 Indeed, if some soft radiation occurs after the flavour-
changing collinear emission has taken place, then it becomes quite cumbersome to determine the

7
We are grateful to A. Banfi for a discussion about this aspect.
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Result at NLL accuracyN3LL



Checks and remarks

‣ b-space formulation reproduced analytically at the resummed level 

‣ correct scaling at small pT computed analytically 

‣ numerical checks down to very low pT against b-space codes (HqT, CuTe)  

‣ check that the FO expansion of the final expression in momentum space up to O(α5) yields the 
corresponding expansion in b-space (CSS) 

‣ expansion checked against MCFM up to O(α4)

[Grazzini et al.][Becher et al.]

[Campbell et al.]



Matching to fixed order

RadISH, 13 TeV, mH = 125 GeV

µR = µF = mH, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations (x 3/2)
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RadISH, 13 TeV, mH = 125 GeV

µR = µF = mH, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations (x 3/2)
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‣ Pure N3LL correction amounts to 10-15% (partly 
induced by the inclusion of the two-loop 
coefficient functions) 

‣ Residual scale dependence (μR,μF,Q) ~10%

‣ When matched at NLO, N3LL 
correction is O(10%) near the 
peak of the distribution; 
somewhat larger at small pT 

‣ Scale uncertainties variations 
almost halved below 10 GeV, 
unchanged for larger pT

nb: Cusp anomalous dimension at order α4  
currently unknown set to zero



RadISH, 13 TeV, mH = 125 GeV

µR = µF = mH, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations (x 3/2)

Fixed order from PRL 115 (2015) 082003
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‣ When matched to NNLO, the 
N3LL correction is a few % at the 
peak, and O(10%) at smaller 
values of pT 

‣ Rather moderate reduction of 
scale dependence at 
N3LL+NNLO. Need for very 
stable NNLO distributions below 
15 GeV to appreciate reduction. 
Further runs ongoing 

‣ Mass effects corrections 
necessary to improve further 
(see Claudio later) ‣ Integral of the matched curves yields the N3LO  

total cross section 

‣ Constant terms at N3LO recovered thanks to a 
multiplicative scheme matching

Matching to fixed order

[Anastasiou et al.]

[Caola et al.]



Conclusions Part 1

‣ New formalism for all-order resummation up to N3LL accuracy for inclusive, transverse 
observables. 

‣ Method formulated in momentum space, does not rely on any specific factorization theorem 

‣ Formally equivalent to the standard b-space formalism 

‣ Method allows for an efficient implementation in a computer code. Code RadISH can 
process any colour singlet with arbitrary cuts in the Born phase space. Public release soon. 

‣ Extension to more general transverse observables possible thanks to the universality of the 
Sudakov radiator

‣  N3LL+NLO correction to the NNLL+NLO spectrum is O(10%) at the peak and below; reduction of 
scale dependence below the peak.  

‣ N3LL+NNLO correction to NNLL+NNLO is a few % at the peak and  ~10% level below. Moderate 
reduction of scale dependence, which is now ~10% for the whole spectrum at small pT

V(k) = dl gl(�)

�
kT
M

�a

Phenomenological results for the Higgs pT spectrum:



Resummation in the high-pT region



Mass effects


