Power Corrections in transverse observables

Luca Buonocore
University of Zurich

in collaboration with M. Grazzini, F. Guadagni, J. Haag, L. Rottoli and C. Savoini

Gearing up for High-Precision LHC Physics MIAPbP 2022
16th August 2022

University of

Outline

- Intro\&Motivations
- Transverse observables for jet cross sections: q_{T} imbalance
- Transverse observables for jet cross sections: $k_{T}^{\text {ness }}$
- Case study: $e^{+} e^{-} \rightarrow 2$ jets $+X$ detour
- Conclusions\&Outlook

Outline

- Intro\&Motivations
- Transverse observables for jet cross sections: q_{T} imbalance
- Transverse observables for jet cross sections: $k_{T}^{\text {ne }}$
- Case studyy $\mathrm{e}^{+} \mathrm{e}^{-}$- 2 jets + V detour
- Conclusions\&Outlook

Intro\&Motivations

Precise predictions for collider observables are based on collinear factorisation, systematically improved by the inclusion of higher-order radiative corrections

$$
\begin{array}{rrc}
\sigma=\int d x_{1} d x_{2} f_{a / h_{1}}\left(x_{1}, \mu_{F}\right) f_{b / h_{2}}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b}\left(\hat{s}, \mu_{R}, \mu_{F}\right)+\mathcal{O}\left((\Lambda / Q)^{k}\right) \\
\hat{\sigma}_{a b}=\hat{\sigma}_{a b}^{(0,0)}+\hat{\sigma}_{a b}^{(1,0)}+\hat{\sigma}_{a b}^{(2,0)}+\hat{\sigma}_{a b}^{(3,0)}+\ldots & \text { QCD } \tag{QCD}\\
+\hat{\sigma}_{a b}^{(0,1)}+\ldots & \text { EW } \\
& +\hat{\sigma}_{a b}^{(1,1)}+\ldots & \text { QCD-EW }
\end{array}
$$

power corrections to factorisation are not the focus of this talk!

Nowadays, there are general and flexible methods for computing NLO cross sections
Going to higher orders, the situation is less established. Technical problems:

- computation of multi-loop virtual amplitudes
- subtraction scheme for handling infrared divergences at intermediate steps of the calculation

Intro\&Motivations

Precise predictions for collider observables are based on collinear factorisation, systematically improved by the inclusion of higher-order radiative corrections

$$
\begin{array}{rrc}
\sigma=\int d x_{1} d x_{2} f_{a / h_{1}}\left(x_{1}, \mu_{F}\right) f_{b / h_{2}}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b}\left(\hat{s}, \mu_{R}, \mu_{F}\right)+\mathcal{O}\left((\Lambda / Q)^{k}\right) \\
\hat{\sigma}_{a b}=\hat{\sigma}_{a b}^{(0,0)}+\hat{\sigma}_{a b}^{(1,0)}+\hat{\sigma}_{a b}^{(2,0)}+\hat{\sigma}_{a b}^{(3,0)}+\ldots & \text { QCD } \\
+\hat{\sigma}_{a b}^{(0,1)}+\ldots & \text { EW } \\
& +\hat{\sigma}_{a b}^{(1,1)}+\ldots & \text { QCD-EW }
\end{array}
$$

power corrections to factorisation are not the focus of this talk!

Nowadays, there are general and flexible methods for computing NLO cross sections
Going to higher orders, the situation is less established. Technical problems:

- computation of multi-loop virtual amplitudes
- subtraction scheme for handling infrared divergences at intermediate steps of the calculation

Intro\&Motivations

Different subtraction schemes available on the market
Antenna, ColorFull, Nested, Sector, Local, projection to Born, q_{T} and jettiness slicing ...

We consider slicing/Mon Local subtractions

CONs

- large global cancellation
- residual power corrections

PROS

- usually simpler (allowed to reach $\mathrm{N}^{3} \mathrm{LO}$ for color singlet production)
- connection with factorisation theorems and resummation
- implications for higher-order matching (MiNNLO/GENEVA)

Intro\&Motivations: slicing formalism

Introduce a resolution variable X that discriminates a region with 1-resolved emission from an unresolved region

$$
\sigma_{N^{k} L O}=\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)+\int d \sigma_{N^{k-1} L O}^{R} \Theta\left(X-X_{\mathrm{cut}}\right)
$$

In the unresolved region, approximate the cross section by an expansion in the soft-collinear limits (factorisation theorems in EFT, resummation formula)

$$
\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)=\int d \sigma_{N^{k} L O}^{\operatorname{sing}} \Theta\left(X_{\mathrm{cut}}-X\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{N^{k} L O}^{C T} \Theta\left(X-X_{\mathrm{cut}}\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
$$

Intro\&Motivations: slicing formalism

Introduce a resolution variable X that discriminates a region with 1-resolved emission from an unresolved region

$$
\sigma_{N^{k} L O}=\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)+\int d \sigma_{N^{k-1} L O}^{R} \Theta\left(X-X_{\mathrm{cut}}\right)
$$

In the unresolved region, approximate the cross section by an expansion in the soft-collinear limits (factorisation theorems in EFT, resummation formula)

$$
\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)=\int d \sigma_{N^{k} L O}^{\operatorname{sing}} \Theta\left(X_{\mathrm{cut}}-X\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{N^{k} L O}^{C T} \Theta\left(X-X_{\mathrm{cut}}\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
$$

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{X>X_{\mathrm{cut}}}+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
$$

Intro\&Motivations: slicing formalism

Introduce a resolution variable X that discriminates a region with 1-resolved emission from an unresolved region

$$
\sigma_{N^{k} L O}=\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)+\int d \sigma_{N^{k-1} L O}^{R} \Theta\left(X-X_{\mathrm{cut}}\right)
$$

In the unresolved region, approximate the cross section by an expansion in the soft-collinear limits (factorisation theorems in EFT, resummation formula)

$$
\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)=\int d \sigma_{N^{k} L O}^{\operatorname{sing}} \Theta\left(X_{\mathrm{cut}}-X\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{N^{k} L O}^{C T} \Theta\left(X-X_{\mathrm{cut}}\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
$$

Virtual correction after subtraction
of IR singularities and contribution
of soft / collinear origin (beam, soft, jet functions)

Intro\&Motivations: slicing formalism

Introduce a resolution variable X that discriminates a region with 1-resolved emission from an unresolved region

$$
\sigma_{N^{k} L O}=\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)+\int d \sigma_{N^{k-1} L O}^{R} \Theta\left(X-X_{\mathrm{cut}}\right)
$$

In the unresolved region, approximate the cross section by an expansion in the soft-collinear limits (factorisation theorems in EFT, resummation formula)

$$
\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)=\int d \sigma_{N^{k} L O}^{\operatorname{sing}} \Theta\left(X_{\mathrm{cut}}-X\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{N^{k} L O}^{C T} \Theta\left(X-X_{\mathrm{cut}}\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
$$

Real contribution: $N^{k-1} L O$
calculation, divergent in the

$$
\operatorname{limit} X_{\mathrm{cut}} \rightarrow 0
$$

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{X>X_{\mathrm{cut}}}+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
$$

Intro\&Motivations: slicing formalism

Introduce a resolution variable X that discriminates a region with 1-resolved emission from an unresolved region

$$
\sigma_{N^{k} L O}=\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)+\int d \sigma_{N^{k-1} L O}^{R} \Theta\left(X-X_{\mathrm{cut}}\right)
$$

In the unresolved region, approximate the cross section by an expansion in the soft-collinear limits (factorisation theorems in EFT, resummation formula)

$$
\begin{gathered}
\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)=\int d \sigma_{N^{k} L O}^{\text {sing }} \Theta\left(X_{\mathrm{cut}}-X\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{N^{k} L O}^{C T} \Theta\left(X-X_{\mathrm{cut}}\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right) \\
\\
\begin{array}{l}
\text { Counterterm cancels the infrared } \\
\text { behaviour of the real calculation in } \\
\text { the limit } X_{\text {cut }} \rightarrow 0
\end{array} \\
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{X>X_{\mathrm{cut}}}+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
\end{gathered}
$$

Intro\&Motivations: slicing formalism

Introduce a resolution variable X that discriminates a region with 1-resolved emission from an unresolved region

$$
\sigma_{N^{k} L O}=\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)+\int d \sigma_{N^{k-1} L O}^{R} \Theta\left(X-X_{\mathrm{cut}}\right)
$$

In the unresolved region, approximate the cross section by an expansion in the soft-collinear limits (factorisation theorems in EFT, resummation formula)

$$
\int d \sigma_{N^{k} L O} \Theta\left(X_{\mathrm{cut}}-X\right)=\int d \sigma_{N^{k} L O}^{\operatorname{sing}} \Theta\left(X_{\mathrm{cut}}-X\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{N^{k} L O}^{C T} \Theta\left(X-X_{\mathrm{cut}}\right)+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
$$

Missing power corrections below the slicing cut-off

$$
\int d \sigma_{N^{k} L O}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{X>X_{\mathrm{cut}}}+\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right)
$$

Intro\&Motivations: slicing formalism

REMARKs

The computation can be carried out only for a finite value of the cut-off!
Size of power corrections crucial for the performance of the method
Systematic improvement is difficult, it requires going beyond soft and/or collinear factorisation

We consider the power scaling behaviour as the main qualitative criterium
Numerical efficiency of the actual implementation may be a different story.
For example, a simple LL argument suggests that the efficiency ϵ should scales as

$$
X \sim k_{T}^{a} e^{-b|\eta|} \quad \rightarrow \quad \epsilon \sim X^{\frac{1}{a+b}}
$$

Scaling of the leading power correction determined at NLO

$$
\mathcal{O}\left(X_{\mathrm{cut}}^{\ell}\right) \quad \text { at } \mathrm{NLO} \rightarrow \mathcal{O}\left(X_{\mathrm{cut}}^{\ell} \ln ^{2(k-1)} X_{\mathrm{cut}}\right) \quad \text { at } \mathrm{N}^{k} \mathrm{LO}
$$

0 -jet case: inclusive color singlet production

The simplest case is provided by color singlet production
Prominent examples of variables able to discriminate the $0 \rightarrow 1$ transition are

- $p_{T}^{\text {jet }}, q_{T}, \tau_{0}$ which inclusively describe initial-state radiation

In the case of q_{T}, τ_{0}, the knowledge of all $\mathcal{O}\left(\alpha_{s}^{2}\right)$ ingredients (anomalous dimensions and constant terms) allows for the formulation of non-local subtraction methods for QCD calculations at NNLO
[Catani, Grazzini] [Gaunt, Stahlhofen, Tackmann, Walsh]

Scaling of power corrections
(confirmed by various analytical calculations)

- $q_{T}:$ quadratic $r_{\mathrm{cut}}^{2} \ln r_{\mathrm{cut}}$
- τ_{0} : linear $\quad r_{\text {cut }} \ln r_{\text {cut }}$
q_{T} displays a faster convergence and so better performance

Very efficient for (N)NNLO calculation

0 -jet case: inclusive color singlet production

Very recently, also the $\mathcal{O}\left(\alpha_{s}^{2}\right)$ constant terms (soft and beam functions) for $p_{T}^{\text {jet }}$ have been computed [Abreu, Gaunt, Monni, Rottoli, Szafron]

one emission resolved

$$
\text { for } X / Q>r_{\text {cut }}
$$

Power corrections in $p_{T}^{\text {jet }}$ display a quadratic scaling as expected from the fact that $p_{T}^{\text {jet }} \sim q_{T}$ at NLO

0 -jet case: beyond inclusive color singlet production

As usual, life is not that simple...
The power corrections in q_{T} subtraction may get worse when fiducial cuts and / or emission off a massive final state emitter are considered

2-body fiducial culs

Examples: symmetric cuts on
Drell-Yan and Higgs 2-body
decay products
Kinematical origin

- q_{T} : linear r_{cut}

Photon isolation

Examples: vector bosons pair
production involving photons, tri-
photon
Kinematical and Dynamical origin

- q_{T} : linear $\quad r_{\mathrm{cut}} \ln r_{\mathrm{cut}}$

Massive final state emillers Examples: heavy quarks, NLO EW and mixed QCD-EW corrections to Drell-Yan

Kinematical and Dynamical origin

- q_{T} : linear r_{cut}

0 -jet case: beyond inclusive color singlet production

As usual, life is not that simple...
The power corrections in q_{T} subtraction may get worse when fiducial cuts and / or emission off a massive final state emitter are considered

2-body fiducial cuts

Examples: symmetric cuts on
Drell-Yan and Higgs 2-body
decay products
Kinematical origin

- q_{T} : linear $r_{\text {cut }}$

Photon isolation

Examples: vector bosons pair production involving photons, triphoton
Kinematical and Dynamical origin

- q_{T} : linear $r_{\mathrm{cut}} \ln r_{\mathrm{cut}}$

Massive final state emillers Examples: heavy quarks, NLO EW and mixed QCD-EW corrections to Drell-Yan

Kinematical and Dynamical origin

- q_{T} : linear $r_{\text {cut }}$

Linear power corrections can be efficiently computed numerically and the quadratic scaling restored!

Wait for Luca's Talk

Transverse observables for the N-jet case

Beyond the 0 -jet case, \mathbf{N}-jettiness is the most studied resolution variable
NNLO calculations for $V+1$ jet using 1-jettines subtraction have been performed
[Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams]
Soft-function for 2-jettiness at NNLO also available, allows for potential computation of dijet at NNLO
[Jin, Liu]

It may prove worthwhile to consider other classes of transverse observables which may have

- a better power corrections scaling
- a more direct experimental relevance
- a simpler relation with parton shower ordering variables

for comparison of resummed prediction with data
for NNLO+PS matching

Outline

- Intro\&Motivations
- Transverse observables for jet cross sections: q_{T} imbalance
- Transverse observables for jet cross sections: $k_{T}^{\text {ne }}$
- Case study: $e^{+} e^{-} \rightarrow 2$ jets $+X$ detour
- Conclusions\&Outlook

q_{T} imbalance: definition

Consider production of boson V in association with a jet

$$
h_{1}\left(P_{1}\right)+h_{2}\left(P_{2}\right) \rightarrow V\left(p_{V}\right)+j\left(p_{j}\right)+X
$$

Define q_{T}-imbalance as

$$
\vec{q}_{T}=\left(\vec{p}_{V}+\vec{p}_{J}\right)_{T}
$$

Variable depends on the jet definition: jet defined through anti- k_{t} algorithm with a finite jet radius R

Fixed-order calculation develops large logarithms of $\ln \left(q_{T}\right)^{2} / Q^{2}$ in the limit $q_{T} \rightarrow 0$.
Perturbative expansion rescued by the all-order resummation of logarithmically enhanced terms

q_{T} imbalance: resummation

Resummation already considered both in direct QCD and in SCET, but performed in the narrow jet approximation
[LB, Haag, Grazzini, Rottoli]
[Sung, Yan, Yuan, Yuan] [Chien, Shao, Wu]

In view of potential applications for e.g. subtraction scheme, it is important to assess the impact of such an approximation

In our calculation:

- Full R dependence in the anomalous dimensions
- Full azimuthal dependence

- Inclusion of all finite contributions (NLL' accuracy)

q_{T} imbalance: fixed order analysis at 1-loop

Decompose in contribution inside/outside the jet cone of radius R

$$
d \sigma=d \sigma^{\mathrm{out}}+d \sigma^{\mathrm{in}}=d \sigma^{\mathrm{out}} \Theta\left(r_{\mathrm{cut}}-q_{T} / Q\right)+d \sigma^{\mathrm{out}} \Theta\left(q_{T} / Q-r_{\mathrm{cut}}\right)+d \sigma^{\mathrm{in}} \delta\left(q_{T}\right)
$$

real contribution above the cut

By construction, the contribution inside the jet cone lives at $q_{T}=0$

Approximate the matrix element and the phase space in collinear and soft limits and remove double counting

$$
\begin{aligned}
d \sigma^{\mathrm{out}} \Theta\left(r_{\mathrm{cut}}\right. & \left.-q_{T} / Q\right) \sim\left[d \sigma_{\mathrm{coll}, 1}^{\mathrm{out}}+d \sigma_{\mathrm{coll}, 1}^{\mathrm{out}}+d \sigma_{\mathrm{soft}}^{\mathrm{out}}-\lim _{z_{1}->1} d \sigma_{\mathrm{coll}, 1}^{\mathrm{out}}-\lim _{z_{2}->1} d \sigma_{\mathrm{coll}, 2}^{\mathrm{out}}\right] \Theta\left(r_{\mathrm{cut}}-q_{T} / Q\right) \\
& \sim[d \sigma_{\mathrm{coll}, 1}+d \sigma_{\mathrm{coll}, 1}+\underbrace{\left.d \overline{\sigma_{\mathrm{soft}}^{\mathrm{out}}-\lim _{z_{1}->1} d \sigma_{\mathrm{coll,1}}-\lim _{z_{0}->1} d \sigma_{\mathrm{coll}, 2}}\right] \Theta\left(r_{\mathrm{cut}}-q_{T} / Q\right)+\ldots}
\end{aligned}
$$

$$
\text { pure soft wide-angle contribution } \quad \text { regular terms in the limit } q_{T}=0
$$

q_{T} imbalance: fixed order analysis at 1-loop

One-Loop subtracted current, k is the momentum of soft gluon

$$
J_{\text {sub }}^{2}=\sum_{i<j} T_{i} \cdot T_{j} \frac{p_{i} \cdot p_{j}}{p_{i} \cdot k p_{j} \cdot k} \Theta^{\text {out }}-\sum_{i=1,2}\left(-T_{i}^{2}\right) \frac{p_{1} \cdot p_{2}}{p_{i} \cdot k\left(p_{1}+p_{2}\right) \cdot k} \times 1
$$

eikonal current outside the cone soft end point of collinear splitting

It is free of any collinear divergence due to the end points subtraction and the constraint of the jet radius R It can be integrated in d-dimensions and develops large logarithms of the jet radius

Main drawbacks

The jet radius R acts as a second cut-off variable but exact calculation in the jet radius may be difficult

The observable is insensitive to soft radiation entering the jet cone. At two loops, non-global contributions enter the resummation formula already at the NLL $\alpha_{s}^{2} \ln q_{t}^{2} / Q^{2}$ level (in the strongly ordered soft limit)

Scaling of power corrections

- q_{T} : linear $r_{\text {cut }}$

Nice convergence towards the exact result

NLO $[\mathrm{pb}]$	$\mu_{F}=\mu_{R}=m_{H}$
q_{T} subtraction	13.256 ± 0.034
mcfm	13.250 ± 0.007
$\mathrm{LO}[\mathrm{pb}]$	7.758 ± 0.007

q_{T} imbalance: take home message

q_{T}-imbalance has nice convergence properties but has some limitations, which makes the extension at higher orders more complex:

- The observable is defined through a jet algorithm, which induces a dependence on an additional cutting variable (the jet radius R)
- The resummation of q_{T}-imbalance involves additional difficulties such as NGL entering at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

We look for a variable which has:

- Same convergence properties of q_{T}-imbalance: linear scaling (or better)
- Does not feature NGL
- Can be easily extended to an arbitrary number of jets

Outline

- Intro\&Motivations
- Transverse observables for jet cross sections: q_{T} imbalance
- Transverse observables for jet cross sections: $k_{T}^{\text {ness }}$
- Case study: $e^{+} e^{-} \rightarrow 2$ jets $+X$ detour
- Conclusions\&Outlook

k_{T}-ness: operative definition

We look for a observable that discriminates the transition $N+1 \rightarrow N$ jets such that

- is sensitive also to radiation emitted collinear to any final state parton
- for one emission, it reduces to an effective transverse momentum relative to the emitter parton in any collinear limit
- longitudinal boost invariant by inspection

For one extra emission, the above list is easily fulfilled if we define

$$
k_{T}^{\text {ness }}=\min _{i, j \in \mathcal{F}_{N+1}}\left\{d_{i B}, d_{i j}\right\}, \quad d_{i B}=k_{T}^{i}, \quad d_{i j}=\min \left(k_{T}^{i}, k_{T}^{i}\right) \Delta R_{i j} / D
$$

according to the distances of the k_{T} jet algorithm.
We can generalise the definition to all-order emissions in a recursive way:

1. run the k_{T}-algorithm up to a configuration \mathscr{F}_{N+1} with $\mathrm{N}+1$ jets
2. apply the above definition of $k_{T}^{\text {ness }}$

k_{T}-ness: non-local subtraction

We notice that $k_{T}^{\text {ness }}$ is by construction infrared safe and global and in the 0 -jet case it is similar to the p_{T}^{J} observable.

We can modify its definition in a such way that in the 0 -jet case $k_{T}^{\text {ness }}$ is similar to q_{T}, i.e. an observable which displays azimuthal cancellation. In order to do so, the recoil of the beam must be taken into account

$$
d \hat{\sigma}_{\mathrm{NLO}}^{\mathrm{F}+\mathrm{Nj} \mathrm{jets}+\mathrm{X}}=\mathscr{H}_{\mathrm{NLO}}^{\mathrm{F}+\mathrm{N} j e t s} \otimes d \hat{\sigma}_{\mathrm{LO}}^{\mathrm{F}+\mathrm{N} j e t s}+\left[d \hat{\sigma}_{\mathrm{LO}}^{\mathrm{F}+(\mathrm{N}+1) \mathrm{jets}}-d \hat{\sigma}_{\mathrm{NLO}}^{\mathrm{CT}, \mathrm{~F}+\mathrm{Njets}}\right]
$$

All the perturbative ingredients at one-loop for building a NLO non-local subtraction scheme can be worked out in a way similar to what done for q_{T} imbalance. The structure of the counterterm is remarkably simple

$$
\begin{aligned}
\hat{\sigma}_{\mathrm{NLO} a b}^{\mathrm{CT}, \mathrm{~F}+\mathrm{Njets}}=\frac{\alpha_{s}}{\pi} \frac{d k_{t}^{\mathrm{ness}}}{k_{t}^{\text {ness }}}\{ & {\left[\ln \frac{Q^{2}}{\left(k_{t}^{\text {ness }}\right)^{2}} \sum_{\alpha} C_{\alpha}-\sum_{\alpha} \gamma_{\alpha}-\sum_{i} C_{i} \ln \left(D^{2}\right)-\sum_{\alpha \neq \beta} \mathbf{T}_{\alpha} \cdot \mathbf{T}_{\beta} \ln \left(\frac{2 p_{\alpha} \cdot p_{\beta}}{Q^{2}}\right)\right] \times \quad \gamma_{q}=3 C_{F} / 2 } \\
& \left.\delta_{\infty} \delta_{l_{d}} \delta\left(1-z_{1}\right) \delta\left(1-z_{0}\right)+2 \delta\left(1-z_{0}\right) \delta_{l_{d}} P^{(1)}\left(z_{0}\right)+2 \delta\left(1-z_{1}\right) \delta_{a} P^{(1)}\left(z_{0}\right)\right\} \otimes d \hat{\sigma}^{\mathrm{F}+\mathrm{Njets}} \quad \gamma_{g}=\left(11 C_{A}-2 n_{F}\right) / 6
\end{aligned}
$$

\mathscr{H} contains the finite remainder from the cancellation of singularities of real and virtual origin, and the finite contributions embedded in beam (same as those of q_{T}), jet and soft functions (which we computed)

k_{T}-ness: power corrections (numerical analysis)

We have implemented our calculation first to $H+j$ production. Amplitudes from MCFM
We set the parameter $D=1$ and we require $p_{T}^{j}>30 \mathrm{GeV}$.
We compare our result with a 1-jettiness calculation for the same process, which we implemented in MCFM

$$
r=\mathscr{T}_{1} / \sqrt{m_{H}^{2}+\left(p_{T}^{j}\right)^{2}} \quad r=k_{T}^{\text {ness }} / \sqrt{m_{H}^{2}+\left(p_{T}^{j}\right)^{2}}
$$

k_{T}-ness: power corrections (numerical analysis)

We have implemented our calculation first to $H+j$ production. Amplitudes from MCFM
We set the parameter $D=1$ and we require $p_{T}^{j}>30 \mathrm{GeV}$.
We compare our result with a 1-jettiness calculation for the same process, which we implemented in MCFM

$$
r=\mathscr{T}_{1} / \sqrt{m_{H}^{2}+\left(p_{T}^{j}\right)^{2}} \quad r=k_{T}^{\mathrm{ness}} / \sqrt{m_{H}^{2}+\left(p_{T}^{j}\right)^{2}}
$$

Faster convergence, power corrections compatible with purely linear behaviour

Excellent control of the NLO correction

k_{T}-ness: power corrections (numerical analysis)

We also considered a process with a more complex final state and a non-trivial colour structure
Our implementation uses colour-correlated amplitudes from OL
[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller] We set the parameter $D=0.1$ and we require $p_{T}^{j}>30 \mathrm{GeV}$.

Power corrections exhibit linear behaviour in all partonic channels

Excellent control of the NLO correction

k_{T}-ness: all-order analysis

We have generated a sample of LO events for $Z+j$ with the POWHEG and showered them with PYTHIA8

We compare the impact of hadronisation and MPI on $k_{T}^{\text {ness }}$

The distribution has a peak at $\sim 15 \mathrm{GeV}$, which remain stable upon hadronisation and MPI

Effect of hadronisation marginal, MPI makes the distribution somewhat harder

Compared to 1-jettiness, effects are much reduced

Outline

- Intro\&Motivations
- Transverse observables for jet cross sections: q_{T} imbalance
- Transverse observables for jet cross sections: $\mathbb{k}^{\text {nc }}$
- Case study: $e^{+} e^{-} \rightarrow 2$ jets $+X$ detour
- Conclusions\&Outlook

Consider dijet production in electron-positron collisions. We observe that

- $k_{T}^{\text {ness }}$ reduces to a y_{23}-like variable, defined with the k_{T} jet algorithm. In this case, we can consider also the original y_{23} as a viable resolution variable
- it is the simplest possible process with only one FSR dipole configuration at the Born level (FSR analog of the q_{T} for color singlet production)

Naively, one may expect a quadratic leading power correction as for q_{T}
Instead, by an analytical computation for the inclusive y_{23} jet rate we find that it is linear

$$
\sigma_{\mathrm{LPC}}=\frac{\alpha_{s}}{2 \pi} C_{F} \sigma_{\mathrm{LO}}\left[2 \sinh ^{-1}(1)-4 \sqrt{2}\right] r_{\mathrm{cut}}
$$

Origin: by comparing with q_{T}, we argue that there is a "soft-wide angle" contribution which does not completely cancel for color conservation and color coherence

The subtracted current is indeed

$$
\begin{aligned}
J_{\mathrm{sub}}^{2} & =-T_{1} \cdot T_{2} \frac{p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k} \Theta\left(r_{\mathrm{cut}}-\min \left(d_{1 k}, d_{2 k}\right)\right)-T_{1}^{2} \frac{p_{1} \cdot p_{2}}{p_{1} \cdot k\left(p_{1}+p_{2}\right) \cdot k} \Theta\left(r_{\mathrm{cut}}-d_{1 k}\right)-T_{2}^{2} \frac{p_{1} \cdot p_{2}}{p_{2} \cdot k\left(p_{1}+p_{2}\right) \cdot k} \Theta\left(r_{\mathrm{cut}}-d_{2 k}\right) \\
& \equiv-T_{1} \cdot T_{2} \omega_{12} \Theta\left(r_{\mathrm{cut}}-\min \left(d_{1 k}, d_{2 k}\right)\right)-T_{1}^{2} \omega_{1} \Theta\left(r_{\mathrm{cut}}-d_{1 k}\right)-T_{2}^{2} \omega_{2} \Theta\left(r_{\mathrm{cut}}-d_{2 k}\right) \neq 0
\end{aligned}
$$

despite the fact that $\omega_{12}=\omega_{1}+\omega_{2}$ and $2 T_{1} \cdot T_{2}=-\left(T_{1}^{2}+T_{2}^{2}\right)$

$$
e^{+} e^{-} \rightarrow 2 j+X, \sqrt{s}=m_{Z}, \mu_{R}=m_{Z}
$$

As a counter-example, we can define a variable that is symmetric with respect to the two collinear directions, as q_{T} for IS collinear radiation. At NLO, we can introduce

$$
q_{T}^{F S R}=\sqrt{2 \frac{p_{1} \cdot k p_{2} \cdot k}{p_{1} \cdot p_{2}}}
$$

which corresponds to the relative transverse momentum of the radiation k with respect to the quark-anti quark axis in the frame in which they are back-to-back

Outline

- Intro\&Motivations
- Transverse observables for jet cross sections: q_{T} imbalance
- Transverse observables for jet cross sections: Kna $_{\text {no }}$
- Case study: $e^{+} e^{-} \rightarrow q \bar{q}$ detour
- Conclusions\&Outlook

Conclusions\&Outlook

- Factorisation and resummation properties of the observables used in non-local subtraction methods provide a systematic path to reach higher-order accuracy in fixed-order computations
- The size of the residual power corrections below the slicing cutoff constitute a challenge in non-local subtraction methods
- The use of transverse observables in slicing approaches appears advantageous due to good scaling properties of the power corrections and to facilitate NNLO+PS matching thanks to the relation with the shower ordering variable
- We explored transverse variables in multi jet production. We defined a new variables, k_{T}-ness, which captures the singular structure of processes with jets and we computed the relevant ingredients to construct a subtraction at NLO for processes with N jets
- We studied transverse variables in $e^{+} e^{-} \rightarrow 2$ jets $+X$ at NLO and we investigated their scaling properties
- Computation of α_{s}^{2} ingredients (jet, soft functions) required to reach NNLO accuracy

BACKUPS

q_{T} imbalance: resummation

Fully differential resummation formula at NLL (for global contribution) in impact parameter b-space

$$
\begin{aligned}
\frac{d \sigma}{d^{2} \mathbf{q}_{\mathbf{T}} d Q^{2} d y d \boldsymbol{\Omega}}= & \frac{Q^{2}}{2 P_{1} \cdot P_{2}} \sum_{(a, c) \in \mathscr{J}}\left[d \sigma_{a c}^{(0)}\right] \int \frac{d^{2} \mathbf{b}}{(2 \pi)^{2}} e^{i \mathbf{b} \cdot \mathbf{q}_{\mathbf{T}}} \mathcal{S}_{a c}(Q, b) \\
& \times \sum_{a_{1}, a_{2}} \int_{x_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{d z_{2}}{z_{2}}\left[(\mathbf{H} \boldsymbol{\Delta}) C_{1} C_{2}\right]_{a c ; a_{1} a_{2}} f_{a_{1} / h_{1}}\left(x_{1} / z_{1}, b_{0}^{2} / b^{2}\right) f_{a_{2} / h_{2}}\left(x_{2} / z_{2}, b_{0}^{2} / b^{2}\right)
\end{aligned}
$$

$$
\mathcal{\delta}_{a c}(Q, b)=\exp \left\{-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left[A_{a c}\left(\alpha_{s}\left(q^{2}\right)\right) \ln \frac{Q^{2}}{q^{2}}+B_{a c}\left(\alpha_{s}\left(q^{2}\right)\right)\right]\right\}
$$

Contains additional contribution
$\left[(\mathbf{H} \boldsymbol{\Delta}) C_{1} C_{2}\right]_{a c ; a_{1} a_{2}}$ which starts at NLL accuracy and describes QCD radiation of soft-wide angle radiation (colour singlet: $\boldsymbol{\Delta}=1$)

Exact dependence on the jet radius crucial to ensure the cancellation of logarithmic enhanced terms

