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Intro&Motivations

̂σab = ̂σ(0,0)
ab + ̂σ(1,0)

ab + ̂σ(2,0)
ab + ̂σ(3,0)

ab + …

+ ̂σ(0,1)
ab + …

+ ̂σ(1,1)
ab + …

QCD 

EW 

QCD-EW 

power corrections to 
factorisation are not the 
focus of this talk!

σ = ∫ dx1dx2 fa/h1
(x1, μF)fb/h2

(x2, μF) ̂σab( ̂s, μR, μF) + 𝒪 ((Λ/Q)k)

Precise predictions for collider observables are based on collinear factorisation, systematically improved by the 
inclusion of higher-order radiative corrections

Nowadays, there are general and flexible methods for computing NLO cross sections 

Going to higher orders, the situation is less established. Technical problems:

• computation of multi-loop virtual amplitudes

• subtraction scheme for handling infrared divergences at intermediate steps of the calculation
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Intro&Motivations

Different subtraction schemes available on the market
Antenna, ColorFull, Nested, Sector, Local, projection to Born,  and jettiness slicing … 

We consider slicing/non local subtractions 

CONs 
• large global cancellation 

• residual power corrections 

PROs 

• usually simpler (allowed to reach N LO for color singlet production)

• connection with factorisation theorems and resummation

• implications for higher-order matching (MiNNLO/GENEVA)

qT

3



Gearing up for High-Precision LHC Physics MIAPbP 2022 3

Intro&Motivations: slicing formalism

Introduce a resolution variable  that discriminates a region with 1-resolved emission from an unresolved 
region

X

∫ dσNkLOΘ(Xcut − X) = ∫ dσsing
NkLO

Θ(Xcut − X) + 𝒪(Xℓ
cut) = ℋ ⊗ dσLO − ∫ dσCT

NkLOΘ(X − Xcut) + 𝒪(Xℓ
cut)

In the unresolved region, approximate the cross section by an expansion in the soft-collinear limits (factorisation 
theorems in EFT, resummation formula)

σNkLO = ∫ dσNkLOΘ(Xcut − X) + ∫ dσR
Nk−1LOΘ(X − Xcut)
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Intro&Motivations: slicing formalism

The computation can be carried out only for a finite value of the cut-off!  
Size of power corrections crucial for the performance of the method

Systematic improvement is difficult, it requires going beyond soft and/or collinear factorisation

Scaling of the leading power correction determined at NLO 

REMARKs

We consider the power scaling behaviour as the main qualitative criterium 
 
Numerical efficiency of the actual implementation may be a different story.  
For example, a simple LL argument suggests that the efficiency  should scales as ϵ

X ∼ ka
Te−b|η| → ϵ ∼ X

1
a + b

𝒪(Xℓ
cut) at NLO → 𝒪(Xℓ

cut ln2(k−1) Xcut) at NkLO
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The simplest case is provided by color singlet production  
Prominent examples of variables able to discriminate the 0  1 transition are

• , ,  which inclusively describe initial-state radiation

In the case of , , the knowledge of all  ingredients (anomalous 
dimensions and constant terms) allows for the formulation of non-local 
subtraction methods for QCD calculations at NNLO 

→

pjet
T qT τ0

qT τ0 𝒪(α2
s )

5

0-jet case: inclusive color singlet production

one emission resolved  
for X/Q > rcut

0 jet
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qt

T0

Scaling of power corrections  
(confirmed by various analytical calculations)

•  

•

 displays a faster convergence and so better 
performance

Very efficient for (N)NNLO calculation

qT : quadratic r2
cut ln rcut

τ0 : linear rcut ln rcut

qT

[Catani, Grazzini][Gaunt, Stahlhofen, Tackmann, Walsh]
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Very recently, also the  constant terms (soft and beam functions) for  
have been computed

𝒪(α2
s ) pjet

T

6

0-jet case: inclusive color singlet production

one emission resolved  
for X/Q > rcut

0 jet

Power corrections in  display a quadratic 
scaling as expected from the fact that 

 at NLO

pjet
T

pjet
T ∼ qT

[Abreu, Gaunt, Monni, Rottoli, Szafron]
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As usual, life is not that simple…  
The power corrections in  subtraction may get worse when fiducial cuts and/or emission off a massive final 
state emitter are considered

qT

7

0-jet case: beyond inclusive color singlet production

2-body fiducial cuts 

Examples: symmetric cuts on 
Drell-Yan and Higgs 2-body 
decay products

Kinematical origin

•  qT : linear rcut

Photon isolation 

Examples: vector bosons pair 
production involving photons, tri-
photon

Kinematical and Dynamical origin

• qT : linear rcut ln rcut

Massive final state emitters 

Examples: heavy quarks, NLO EW 
and mixed QCD-EW corrections to 
Drell-Yan

Kinematical and Dynamical origin 

•  qT : linear rcut
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0-jet case: beyond inclusive color singlet production
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Transverse observables for the N-jet case

Beyond the 0-jet case, N-jettiness is the most studied resolution variable

NNLO calculations for  jet using 1-jettines subtraction have been performed

Soft-function for 2-jettiness at NNLO also available, allows for potential computation of dijet at NNLO

V + 1

It may prove worthwhile to consider other classes of transverse observables which may have

for NNLO subtraction (and beyond)

for comparison of resummed prediction with 
data

• a better power corrections scaling

• a more direct experimental relevance

• a simpler relation with parton shower 
ordering variables for NNLO+PS matching

[Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams]

[Jin, Liu]
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 imbalance: definitionqT

h1(P1) + h2(P2) → V(pV) + j(pj) + X

Consider production of boson  in association with a jetV

Define -imbalance asqT

⃗q T = ( ⃗p V + ⃗p J)T

Variable depends on the jet definition: jet defined through 
anti-  algorithm with a finite jet radius kt R

p1 = x1P1

p2 = x2P2

p3 = pJ

Fixed-order calculation develops large logarithms of  in the limit .

Perturbative expansion rescued by the all-order resummation of logarithmically enhanced terms

ln(qT)2/Q2 qT → 0
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Resummation already considered both in direct QCD and in 
SCET, but performed in the narrow jet approximation 
[Sung, Yan, Yuan, Yuan][Chien, Shao, Wu]

In view of potential applications for e.g. subtraction scheme, 
it is important to assess the impact of such an approximation

In our calculation:

• Full  dependence in the anomalous dimensions

• Full azimuthal dependence

• Inclusion of all finite contributions (NLL’ accuracy)

R

 imbalance: resummationqT

S1/2
c

S1/2
c

Cca

Cc̄b

fa

fb

H

Δ

J

[LB, Haag, Grazzini, Rottoli]
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 imbalance: fixed order analysis at 1-loop qT

dσ = dσout + dσin = dσoutΘ(rcut − qT /Q) + dσoutΘ(qT /Q − rcut) + dσinδ(qT)

Decompose in contribution inside/outside the jet cone of radius R

By construction, the contribution 
inside the jet cone lives at qT = 0

Approximate the matrix element and the phase space in collinear and soft limits and remove double counting 

dσoutΘ(rcut − qT /Q) ∼ [dσout
coll,1 + dσout

coll,1 + dσout
soft − lim

z1−>1
dσout

coll,1 − lim
z2−>1

dσout
coll,2] Θ(rcut − qT /Q)

∼ [dσcoll,1 + dσcoll,1 + dσout
soft − lim

z1−>1
dσcoll,1 − lim

z2−>1
dσcoll,2] Θ(rcut − qT /Q) + . . .

regular terms in the limit qT = 0

real contribution above the cut

pure soft wide-angle contribution
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 imbalance: fixed order analysis at 1-loop qT

J2
sub = ∑

i<j

Ti ⋅ Tj
pi ⋅ pj

pi ⋅ k pj ⋅ k
Θout − ∑

i=1,2

(−T2
i )

p1 ⋅ p2

pi ⋅ k (p1 + p2) ⋅ k
× 1

One-Loop subtracted current,  is the momentum of soft gluon k

soft end point of collinear splitting

It is free of any collinear divergence due to the end points subtraction and the constraint of the jet radius R
It can be integrated in d-dimensions and develops large logarithms of the jet radius 

eikonal current outside the cone

Main drawbacks

The jet radius R acts as a second cut-off variable but exact 
calculation in the jet radius may be difficult 
The observable is insensitive to soft radiation entering the jet cone. 
At two loops, non-global contributions enter the resummation 
formula already at the NLL  level (in the strongly 
ordered soft limit)

α2
s ln q2

t /Q2

+ Virt. 

[Dasgupta, Salam]
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 imbalance: power corrections (numerical study)qT

13

36

Figure 13: Dependence of the NLO �� → H + � + X cross section on ���� = �T /Q.
The results are normalized to the ���� - independent NLO cross section computed with
Catani-Seymour subtraction

35

5 Results
Having discussed the content of equation (48) for the case of Higgs plus jet production,
we will now present the complete NLO results. We use the NNPDF31_nlo_as_0118
PDF set from [30]. The jet radius is fixed at R = 0�1, the minimal transverse momentum
of the jet is 30 GeV and the center of mass energy is 13 TeV.
In figure (13) we show the �cut dependence of the full NLO result (all the partonic
channels contributing at this order combined) for different scales µR � µF .
As already stated in section (4.2.3) the �cut dependence is linear as for the case of heavy
quark pair production.
In the following table we compare the �cut = 0 extrapolated result of �T subtraction
against the MCFM result for the 3 different scale variations

NLO [pb] µF = µR = �H µF = �H

2 � µR = 2�H µF = 2�H � µR = �H

2
�T subtraction 13�256 ± 0�034 11�162 ± 0�024 15�755 ± 0�05

mcfm 13�250 ± 0�007 11�140 ± 0�005 15�701 ± 0�01
LO [pb] 7�758 ± 0�007 5�900 ± 0�005 10�451 ± 0�01

The results are in agreement with the cross section computed with the Catani-Seymour
subtraction formalism within a few sigmas thus providing a strong cross check on our
result. Moreover, by comparing these results with the LO results we observe a K factor
of approximately K ≈ 1�7.

In figure (14)-(17) we compare the NLO differential distributions obtained with our
own numerical program (in red) against those obtained with MCFM (in cyan). The �T

subtraction slicing parameter is �cut = 0�0003 and the scales µF and µR are set to the
central value �H ≈ 125 GeV.
In figure (14) we show the NLO differential distribution of the Higgs rapidity. From the
graph it is clear that we find excellent agreement between our and the MCFM result
for a rapidity range of |�H | ≤ 1�5 (i.e. where the bulk of the events are). The small
discrepancy for larger values of the rapidity modulus is due to the lower statistics in
these regions. A computationally more intensive simulation would therefore resolve the
discrepancy. Furthermore, comparing the NLO distribution with the LO distribution (in
orange) we still observe a K -factor of about 1.7.
In figure (15) and (16), where we plot the invariant mass of the Higgs plus jet pair
and the transverse momentum of the Higgs respectively, it is interesting to note the
change in the shape of the distribution for the kinematically allowed minimum values. In
particular, for figure (16) we note that while at LO the Higgs was exactly back-to-back
with the jet and thus had a sharp cut-off of the transverse momentum at 30 GeV, at
NLO, due to the soft unclustered radiation, even smaller values of �T are allowed.
Finally, in figure (17), we show the differential NLO distribution of the transverse
momentum of the jet. Here again we find excellent agreement between our and the
MCFM result. Furthermore, from the comparison of the NLO and the LO distributions we
still observe a K -factor of approximately 1�7.

[M. Costantini Master’s thesis, UZH]

Scaling of power corrections 

•  

Nice convergence towards the exact result

qT : linear rcut
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-imbalance has nice convergence properties but has some limitations, which makes the extension at higher 
orders more complex:
qT

• The observable is defined through a jet algorithm, which induces a 
dependence on an additional cutting variable (the jet radius R)

• The resummation of -imbalance involves additional difficulties such 
as NGL entering at 

qT
𝒪(α2

s )

We look for a variable which has:

• Same convergence properties of -imbalance: linear scaling (or better)

• Does not feature NGL

• Can be easily extended to an arbitrary number of jets

qT

 imbalance: take home messageqT
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We look for a observable that discriminates the transition  jets such thatN + 1 → N

• is sensitive also to radiation emitted collinear to any final state parton 

• for one emission, it reduces to an effective transverse momentum relative to the emitter 
parton in any collinear limit

• longitudinal boost invariant by inspection 

-ness: operative definitionkT

For one extra emission, the above list is easily fulfilled if we define 

kness
T = mini,j∈𝒥N+1

{diB, dij}, diB = ki
T, dij = min(ki

T, ki
T)ΔRij /D

according to the distances of the  jet algorithm.

We can generalise the definition to all-order emissions in a recursive way:

1. run the -algorithm up to a configuration  with N+1 jets

2. apply the above definition of 

kT

kT 𝒥N+1

kness
T
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We notice that  is by construction infrared safe and global and in the 0-jet case it is similar to the  
observable.

kness
T pJ

T

-ness: non-local subtractionkT

We can modify its definition in a such way that in the 0-jet case  is similar to , i.e. an observable 
which displays azimuthal cancellation. In order to do so, the recoil of the beam must be taken into account

kness
T qT

All the perturbative ingredients at one-loop for building a NLO non-local subtraction scheme can be worked 
out in a way similar to what done for  imbalance. The structure of the counterterm is remarkably simpleqT

̂σCT,F+Njets
NLO ab =

αs

π
dkness

t

kness
t {[ln

Q2

(kness
t )2 ∑

α

Cα − ∑
α

γα − ∑
i

Ci ln (D2) − ∑
α≠β

Tα ⋅ Tβ ln (
2pα ⋅ pβ

Q2 )] ×

δacδbdδ(1 − z1)δ(1 − z2) + 2δ(1 − z2)δbdP(1)
ca (z1) + 2δ(1 − z1)δacP(1)

db (z2)} ⊗ d ̂σF+N jets
LO cd

γg = (11CA − 2nF)/6

γq = 3CF /2

d ̂σF+N jets+X
NLO = ℋF+N jets

NLO ⊗ d ̂σF+N jets
LO + [d ̂σF+(N+1) jets

LO − d ̂σCT,F+Njets
NLO ]

 contains the finite remainder from the cancellation of singularities of real and virtual origin, and the 
finite contributions embedded in beam (same as those of ), jet and soft functions (which we computed)
ℋ

qT
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-ness: power corrections (numerical analysis)kT

We have implemented our calculation first to  production. Amplitudes from MCFMH + j

We set the parameter =1 and we require  GeV. 

We compare our result with a 1-jettiness calculation for the same process, which we implemented in MCFM

D pj
T > 30

r = 𝒯1/ m2
H + (pj

T)2 r = kness
T / m2

H + (pj
T)2
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Faster convergence, power corrections 
compatible with purely linear behaviour

Excellent control of the NLO correction

We have implemented our calculation first to  production. Amplitudes from MCFMH + j

We set the parameter =1 and we require  GeV. 

We compare our result with a 1-jettiness calculation for the same process, which we implemented in MCFM

D pj
T > 30
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-ness: power corrections (numerical analysis)kT

We also considered a process with a more complex final state and a non-trivial colour structure

We set the parameter =0.1 and we require  GeV. D pj
T > 30

Power corrections exhibit linear behaviour in 
all partonic channels 

Excellent control of the NLO correction

Our implementation uses colour-correlated amplitudes from OL
[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]
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-ness: all-order analysiskT 9
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6B;m`2 kX Z + 2 D2i T`Q/m+iBQM �i LGP, kness
T @bm#i`�+iBQM

�;�BMbi 6EaX h?2 pT /Bbi`B#miBQM Q7 i?2 H2�/BM; D2i UmTT2`
�M/ +2Mi`�H T�M2HbV �i GP Uv2HHQrV �M/ LGP UQ`�M;2, kness

T -
#Hm2, 6EaVX LGP +Q``2+iBQMb ∆σ �b � 7mM+iBQM Q7 rcut BM i?2
i?`22 T�`iQMB+ +?�MM2Hb UHQr2` T�M2HbVX

�`�iBQM #2ir22M i?2 H2TiQMb Bb ∆R!! > 0.2 r?BH2 H2T@
iQMb �M/ D2ib ?�p2 ∆R!j > 0.5X h?2 7�+iQ`Bx�iBQM �M/
`2MQ`K�HBx�iBQM b+�H2b �`2 b2i iQ i?2 Z #QbQM K�bb mZ X
Pm` +�H+mH�iBQM Bb +�``B2/ Qmi #v mbBM; i?2 i`�Mbp2`b2
K�bb Q7 i?2 /BH2TiQM bvbi2K �b � ?�`/ b+�H2 M iQ /2@
}M2 rcut �M/ i?2 T�`�K2i2` D Bb b2i iQ D = 0.1 BM i?Bb
+�b2X Pm` `2bmHib �`2 +QKT�`2/ rBi? i?Qb2 Q#i�BM2/ rBi?
SPq>1: (93- 9N)- r?B+? mb2b i?2 6`BtBQM2@EmMbxi@
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UmbBM; rcut = 0.05%V �M/ rBi? SPq>1:X h?2 +2M@
i`�H T�M2H b?Qrb i?2 `2H�iBp2 /Bz2`2M+2 #2ir22M i?2 irQ
+�H+mH�iBQMbX q2 b22 i?�i i?2 `2bmHib 7mHHv �;`22 rBi?BM
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6B;m`2 jX Z + jet �i GP Y T�`iQM b?Qr2`, τ1 UH27i T�M2HV
�M/ R@kness

T U`B;?i T�M2HV bT2+i`� �i i?2 T�`iQM H2p2H U`2/V
�M/ BM+Hm/BM; ?�/`QMBx�iBQM U#Hm2V Q` ?�/`QMBx�iBQM �M/ JSA
U;`22MVX

MB+2Hv +QMp2`;2 iQ i?2 SPq>1: p�Hm2b BM �HH i?2 +?�M@
M2Hb- �M/ �HbQ BM i?Bb +�b2 i?2 rcut /2T2M/2M+2 Bb HBM2�`X

6BM�HHv- BM pB2r Q7 TQi2MiB�H �TTHB+�iBQMb Q7 knessT �b �
T`Q#2 Q7 D2i T`Q/m+iBQM BM ?�/`QM +QHHBbBQMb- r2 bim/v
i?2 bi�#BHBiv Q7 Qm` M2r p�`B�#H2 mM/2` ?�/`QMBb�iBQM
�M/ JSAX q2 ?�p2 ;2M2`�i2/ � b�KTH2 Q7 GP 2p2Mib 7Q`
Z + jet rBi? i?2 SPq>1: JQMi2 *�`HQ 2p2Mi ;2M2`@
�iQ` (93- 8k- 8j) �M/ b?Qr2`2/ i?2K rBi? Svi?B�3 (89)
mbBM; i?2 �R9 imM2 (88)X q2 mb2 i?2 b�K2 b2imT �b 7Q`
H+jet- MQr b2iiBM; µR = µF = mZ �M/ �//BM; �M �//B@
iBQM�H `2[mB`2K2Mi QM i?2 H2�/BM; D2i `�TB/Biv |yj1 | < 2.5X
q2 /2}M2 i?2 U/BK2MbBQMH2bbV 1@D2iiBM2bb 2p2Mi b?�T2 τ1
�b BM _27X (9)c i?2 D2i �tBb +QBM+B/2b rBi? i?2 /B`2+iBQM Q7
i?2 H2�/BM; D2i `2+QMbi`m+i2/ mbBM; i?2 6�biD2i +Q/2 (8e)
Ur?B+? r2 �HbQ mb2 BM 2�+? bi2T Q7 i?2 kT @+Hmbi2`BM; �H;Q@
`Bi?K mb2/ iQ +QKTmi2 knessT VX h?Bb bBKTHv +Q``2bTQM/b
iQ +?QQbBM; Qj �b i?2 T�`iQMB+ +2Mi`2@Q7@K�bb 2M2`;v Q BM
1[X U8V �M/ iQ /2}MBM; τ1 = T1/QX Pm` `2bmHib �`2 b?QrM
BM 6B;X jX h?2 H27i T�M2H b?Qrb i?2 1@D2iiBM2bb /Bbi`B#m@
iBQM r?BH2 i?2 `B;?i T�M2H /2TB+ib i?2 1@knessT `2bmHiX h?2
`2bmHi Q#i�BM2/ �i T�`iQM H2p2H U`2/V Bb +QKT�`2/ rBi?
i?2 `2bmHi BM+Hm/BM; ?�/`QMBb�iBQM +Q``2+iBQMb U#Hm2V �M/
7m`i?2` �//BM; JSA U;`22MVX h?2 #�M/b �`2 Q#i�BM2/ #v
p�`vBM; µF �M/ µR #v � 7�+iQ` Q7 k �`QmM/ i?2B` +2M@
i`�H p�Hm2 rBi? i?2 +QMbi`�BMi 1/2 < µF /µR < 2X h?2
1@D2iiBM2bb /Bbi`B#miBQM ?�b � am/�FQp T2�F �i τ1 ∼ 0.02X
h?2 ?�/`QMBb�iBQM +Q``2+iBQMb �`2 `2H�iBp2Hv H�`;2 BM i?2
`2;BQM Q7 i?2 T2�F- �M/ `2K�BM Q7 i?2 Q`/2` Q7 10% �b τ1

We have generated a sample of LO events 
for  with the POWHEG and showered 
them with PYTHIA8

We compare the impact of hadronisation 
and MPI on 

The distribution has a peak at  GeV, 
which remain stable upon hadronisation 
and MPI

Effect of hadronisation marginal, MPI 
makes the distribution somewhat harder

Compared to 1-jettiness, effects are much 
reduced

Z + j

kness
T

∼ 15
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Consider dijet production in electron-positron collisions. We observe that 

•  reduces to a -like variable, defined with the  jet algorithm. In this case, we can 
consider also the original  as a viable resolution variable

• it is the simplest possible process with only one FSR dipole configuration at the Born level 
(FSR analog of the  for color singlet production)

kness
T y23 kT

y23

qT

Case study:  detoure+e− → 2 jets + X

Naively, one may expect a quadratic leading power correction as for  qT

Instead, by an analytical computation for the inclusive  jet rate we find that it is linear  y23

σLPC =
αs

2π
CFσLO [2 sinh−1(1) − 4 2] rcut

Origin: by comparing with , we argue that there is a "soft-wide angle" contribution which does not 
completely cancel for color conservation and color coherence

qT

[LB, Grazzini, Guadagni, Rottoli in preparation] 
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The subtracted current is indeed

21

Case study:  detoure+e− → 2 jets + X

J2
sub = − T1 ⋅ T2

p1 ⋅ p2

p1 ⋅ k p2 ⋅ k
Θ(rcut − min(d1k, d2k)) − T2

1
p1 ⋅ p2

p1 ⋅ k (p1 + p2) ⋅ k
Θ(rcut − d1k) − T2

2
p1 ⋅ p2

p2 ⋅ k (p1 + p2) ⋅ k
Θ(rcut − d2k)

≡ − T1 ⋅ T2 ω12 Θ(rcut − min(d1k, d2k)) − T2
1 ω1 Θ(rcut − d1k) − T2

2 ω2 Θ(rcut − d2k) ≠ 0

despite the fact that  and ω12 = ω1 + ω2 2T1 ⋅ T2 = − (T2
1 + T2

2)
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qFSR
t

As a counter-example, we can define a variable that is 
symmetric with respect to the two collinear directions, as 

 for IS collinear radiation. At NLO, we can introduceqT

[LB, Grazzini, Guadagni, Rottoli in preparation] 

qFSR
T = 2

p1 ⋅ k p2 ⋅ k
p1 ⋅ p2

which corresponds to the relative transverse momentum 
of the radiation  with respect to the quark-anti quark 
axis in the frame in which they are back-to-back

k
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• Factorisation and resummation properties of the observables used in non-local subtraction methods provide a 
systematic path to reach higher-order accuracy in fixed-order computations

• The size of the residual power corrections below the slicing cutoff constitute a challenge in non-local 
subtraction methods

• The use of transverse observables in slicing approaches appears advantageous due to good scaling properties 
of the power corrections and to facilitate NNLO+PS matching thanks to the relation with the shower ordering 
variable

• We explored transverse variables in multi jet production. We defined a new variables, -ness, which captures 
the singular structure of processes with jets and we computed the relevant ingredients to construct a 
subtraction at NLO for processes with  jets

• We studied transverse variables in  at NLO and we investigated their scaling properties

• Computation of  ingredients (jet, soft functions) required to reach NNLO accuracy

kT

N

e+e− → 2 jets + X

α2
s

Conclusions&Outlook 
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dσ
d2qTdQ2dy dΩ

=
Q2

2P1 ⋅ P2 ∑
(a,c)∈ℐ

[dσ(0)
ac ]∫

d2b
(2π)2

eib⋅qT𝒮ac(Q, b)

𝒮ac(Q, b) = exp −∫
Q2

b2
0 /b2

dq2

q2 [Aac(αs(q2))ln
Q2

q2
+ Bac(αs(q2))]

[(HΔ)C1C2]ac;a1a2

× ∑
a1,a2

∫
1

x1

dz1

z1 ∫
1

x2

dz2

z2
[(HΔ)C1C2]ac;a1a2

fa1/h1
(x1/z1, b2

0 /b2)fa2/h2
(x2/z2, b2

0 /b2)

S1/2
c

S1/2
c

Cca

Cc̄b

fa

fb

H

Δ

J

Fully differential resummation formula at NLL (for global contribution) in impact parameter b-space

Contains additional contribution 
which starts at NLL accuracy and 
describes QCD radiation of soft-wide 
angle radiation (colour singlet: )Δ = 1

 imbalance: resummationqT
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[M. Costantini Master’s thesis, UZH]
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Figure 10: Dependence of the full R subtracted piece on �cut for central scales and a
�

Higgs
T

≥ 30 GeV. The results for three different jet radii (0.1,0.3 and 0.8) are presented.

Figure 11: Dependence of the leading R subtracted piece (normalised w.r.t. the extrap-
olated full R result) on �cut for central scales and a �

Higgs
T

≥ 30 GeV. The results for
three different jet radii (0.1,0.3 and 0.8) are presented.
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Figure 11: Dependence of the leading R subtracted piece (normalised w.r.t. the extrap-
olated full R result) on �cut for central scales and a �

Higgs
T

≥ 30 GeV. The results for
three different jet radii (0.1,0.3 and 0.8) are presented.

Exact dependence on the jet radius crucial to ensure the cancellation of logarithmic enhanced terms

 imbalance: non-local subtractionqT


