Chromopolis: A complete framework for the pQCD analysis of the structure of the nucleon^{\Leftrightarrow}

Pedro Jimenez-Delgado

Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606

Abstract

The *Fortran* program *Chromopolis* is documented. This is a complete QCD framework for the analysis of the spin-averaged and spin-dependent structure of the nucleon in perturbative quantum chromodynamics (pQCD). The core of Chromopolis consist of an extended and extensible database with world data on polarized and unpolarized high-energy scattering, and the implementation of calculations for the relevant observables; including renormalization-group evolution codes for the strong coupling and the parton distribution functions up to NNLO of QCD. A characteristic of these codes is that they work to a large extent in the space of complex moments known as Mellin space. Chromopolis also contains code for the statistical analysis of the data, including optimization algorithms with different treatments of correlated and uncorrelated uncertainties, and an implementation of the Hessian approach for the propagation of experimental uncertainties. In addition it provides facilities for the graphical representation of the results.

Keywords: perturbative QCD, parton distribution functions, helicity distributions, Mellin space, optimization, Hessian method

1. Introduction

- 2. Data structures
- 3. Optimization

4. A complete example

DATER:	from	27698 points 5710 used (lm	count = 6074)	
CHISQ:	5710	(from 27698) points used,	chi2 (chi2/#points) =	7112 (1.2455)
		25E605_PRD43_DYpCu	136 (136),	152(1.1192)
		26E866_Private_DYpp	138 (184),	157(1.1390)
		27E866_Private_DYpd	159 (191),	284 (1.7888)
		55SLAC_PLB282_sigrpCO	594(661),	716 (1.2057)
		60E866_PRD64_DYd2p	39(39),	40 (1.0183)
		65SLAC_PLB282_sigrdCO	617 (691),	698 (1.1314)
		65SLAC_PLB282_sigrdCO	617 (691),	698 (1.13)

[©]Chromopolis is free software released under the GNU General Public License. It can be obtained from the author on request, or directly downloaded from https://users.hepforge.org/~pjimenezdelgado; current version is *Chromopolis 1.0. Email address:* pedro@jlab.org (Pedro Jimenez-Delgado)

 $Preprint\ submitted\ to\ arXiv.org$

81HERA_JHEP0110_sigrCO	647	(741),	1060	(1.6383)
82E665_PRD54_F2CO	130	(182),	186	(1.4271)
83NMC_NPB483_sigrCO	578	(584),	931	(1.6100)
84BCDMS_PLB223_sigrpCO	351	351),	410	(1.1674)
85BCDMS_PLB237_sigrdCO	254	(254),	291	(1.1447)
86NMC_NPB487_F2dpCO	211	260).	191	(0.9038)
87H1 EPJC71 F2p	64	64)	69	(1.0829)
88H1 EPIC71 FLp	64	(64)	82	(1,2790)
90 combined dimuon signl	180	(180)	105	(1.2700) (0.5848)
01 II ab PBC80 sign	01	(261)	104	(0.0040) (1.1474)
02 II ab DBC80 sight	01	(201),	109	(1.1414)
$925Lab_F RC80_Sign$	91	(201),	109	(1.2008)
951ast NLO_11112001	30	(30),	20	(0.0008)
94 Iast NLO_Inn2003	24	(24),	40	(1.0054)
95 fastNLO_int2007	64	((1),	1/4	(2.7193)
96fastNLO_fnt2009	96	(110),	138	(1.4370)
97HERA_EPJC73_sigrc	52	(52),	79	(1.5229)
101SLAC_PRL51_Apap	23	(35),	12	(0.5361)
102EMC_NPB328_A1p	10	(10),	4	(0.3850)
103SMC_PRD58_A1p	12	(15),	4	(0.3636)
104SMC_PRD60_A1p	8	(15),	11	(1.3645)
105COMPASS_PLB690_A1p	15	(15),	14	(0.9457)
106SLAC_PRD58_Apap	85	(159),	69	(0.8112)
107SLAC_PRD58_Apep	48	(50),	44	(0.9105)
108SLAC_PLB553_ApeE155xp	117	(133).	193	(1.6473)
109HERMES_PRD75_Apap	37	(45).	14	(0.3895)
111SMC PBD58 A1d	12	(15)	20	(1.6958)
112SMC PRD60 A1d	8	(15)	4	(0.5601)
113COMPASS PLB647 A1d	15	(17)	8	(0.5049)
114SLAC PRD58 Apad	85	(156)	88	(1.0347)
115SLAC PRD58 Apad	48	(100),	4.4	(1.0017) (0.0138)
116SLAC DI D552 ApoE155rd	117	(122)	44	(0.9138)
117UEDMES DDD75 Apod	27	(133),	21	(0.8419)
110 SU2 horsen dooos	57	(40),	31	(0.8390)
100 CU2 baryon decay	1	(1), (1)	1	(0.0053)
120SU3_baryon decay	1	$\begin{pmatrix} 1 \end{pmatrix}$,	1	(0.9051)
121SLAC_PRD54_A1He	8	(8),	6	(0.7220)
122SLAC_PRD54_A2He	8	(8),	6	(0.6993)
123SLAC_PRL79_ApaHe	18	(18),	8	(0.4170)
124SLAC_PRL79_ApeHe	18	(18),	18	(1.0027)
125HERMES_PLB404_A1n	9	(9),	3	(0.2946)
126JLabHallA_PRL92_ApaHe	3	(3),	0	(0.0764)
127JLabHallA_PRL92_ApeHe	3	(3),	3	(0.8658)
131SLAC_PLB493_Apap	73	(75),	67	(0.9128)
132SLAC_PLB463_Apad	73	(75),	71	(0.9704)
133SLAC_PLB493_Apep	66	(71),	63	(0.9576)
134SLAC_PLB463_Aped	66	(71),	99	(1.4945)
135HERMES_EPJC72_A2p	20	(23),	23	(1.1570)
136COMPASS_12116849_pgg	1	(1),	1	(1.1586)
139DUB_secondmoment	1	(1),	2	(1.9929)
140DDB_secondmoment	1	(1),	1	(1.1426)
141BCDMS_PRL_F2p	10	(10).	17	(1.6853)
142BCDMS_PRL_FLp	10	(10).	4	(0.3924)
143SLAC140x_PRL_F2D	3	(4).	3	(0.9061)
144SLAC140x_PRL_FLp	3	(4)	8	(2.7686)
155PHENIX_PRD79_ALLpi0	5	(5)	3	(0.5403)
156PHENIX 14026296 ALL Di	12	(12)	5	(0.3867)
157STAB PBD80 ALLpi0	12	(4)	2	(0.4572)
158STAR PRD89 ALLDIO	6	(6)	5	(0.8374)
538	0	0),	0	(0.0014)

0D, 0H, 6M,

5. Conclusions

Acknowledgements

This work was supported by the DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab.

References

- P. Jimenez-Delgado and E. Reya, Phys. Rev. D **79** (2009) 074023 [arXiv:0810.4274 [hep-ph]].
 P. Jimenez-Delgado and E. Reya, Phys. Rev. D **80** (2009) 114011 [arXiv:0909.1711 [hep-ph]].
 P. Jimenez-Delgado, Phys. Lett. B **689** (2010) 177 [arXiv:1002.2104 [hep-ph]].
 P. Jimenez-Delgado, Phys. Lett. B **714** (2012) 301 [arXiv:1206.4262 [hep-ph]].
 P. Jimenez-Delgado and E. Reya, Phys. Rev. D **89** (2014) 074049 [arXiv:1403.1852 [hep-ph]].

Figure 1: The nonsinglet unpolarized parton distributions at a scale $Q^2 = 10^4 \text{ GeV}^2$ as obtained in the NLO example fit. The band indicates the $\pm 1\sigma$ uncertainties ($\Delta \chi^2 = 1$).

Figure 2: The polarized input distributions at a scale $Q_0^2 = 1 \text{ GeV}^2$ as obtained in the NLO example fit. The band indicates the $\pm 1\sigma$ uncertainties ($\Delta \chi^2 = 1$).

[6] P. Jimenez-Delgado, A. Accardi and W. Melnitchouk, Phys. Rev. D 89 (2014) 034025 [arXiv:1310.3734 [hep-ph]].
[7] P. Jimenez-Delgado *et al.* [Jeerson Lab Angular Momentum (JAM) Collaboration], arXiv:1403.3355 [hep-ph].