Welcome to Sherpa, Pool account for pheno. Initialization of framework underway. The local time is Thu Aug 17 16:42:36 2017. Run_Parameter::Init(): Setting memory limit to 125.515 GB. Random::SetSeed(): Seed set to 1234 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 2.2.3 (Cho Oyu) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- SVN branch branches/rel-2-2-3, revision 30103. Beam_Spectra_Handler : type = Monochromatic*Monochromatic for e- ((45.6,0,0,45.6)) and e+ ((45.6,0,0,-45.6)) PDF set 'PDFe' loaded for beam 1 (e-). PDF set 'PDFe' loaded for beam 2 (e+). Initialized the ISR: (SF)*(SF) List of Particle Data IDName kfc MASS[] WIDTH[] STABLE[] MASSIVE[] ACTIVE[] YUKAWA[] d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.8 0 1 1 1 4.8 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,G} Q 94 {d,db,u,ub,s,sb,c,cb} r 99 {d,db,u,ub,s,sb,c,cb,G} Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Soft_Collision_Handler. CS_Shower::CS_Shower(): Set respect Q2 mode 0 CS_Shower::CS_Shower(): Set color setter mode 0 CS_Shower::CS_Shower(): Set respect Q2 mode 0 CS_Shower::CS_Shower(): Set color setter mode 0 Initialized the Shower_Handler. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ ME_Generators::ME_Generators(): Try loading 'OpenLoops' from 'libSherpaOpenLoops'. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (c,cb,e-,e+,mu-,mu+,tau-,tau+) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (c,cb,e-,e+,mu-,mu+,tau-,tau+) Amegic::Initialize(): Set gauge 1. Initialising OpenLoops generator from /cvmfs/pheno.egi.eu/OpenLoops ######################################################### # ___ version 1.3.1 # # / \ ___ ____ _ _ | __ __ ___ __ # # | | |__| |__ |\ | | / \ / \ |__| /__ # # \___/ | |___ | \| |___ \__/ \__/ | __/ # # # ######################################################### # You are using OpenLoops to evaluate loop amplitudes # # Authors: # # F. Cascioli, J. Lindert, P. Maierhoefer, S. Pozzorini # # Please cite Phys. Rev. Lett. 108 (2012) 111601 # ######################################################### Matrix_Element_Handler::BuildProcesses(): Looking for processes ......................................................................................................................................................................................................................................................................................................................................... done ( 83 MB, 2s / 2s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ....................................................... done ( 85 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. Hadron_Decay_Map::Read: Initializing HadronDecays.dat. This may take some time. Initialized the Hadron_Decay_Handler, Decay model = Hadrons Initialized the Soft_Photon_Handler. Variations::InitialiseParametersVector(0 variations){ Named variations: } Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Amegic/MC_2_2__e-__e+__j__j__QCD(BVI) Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__e-__e+__j__j__QCD(BVI)' (Amegic) 2_2__e-__e+__j__j__QCD(BVI) : 24604.9 pb +- ( 214.958 pb = 0.873642 % )  exp. eff: 1.84224 % Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_3__e-__e+__j__j__j__QCD(RS) Process_Group::CalculateTotalXSec(): Calculate xs for '2_3__e-__e+__j__j__j__QCD(RS)' (Comix) 2_3__e-__e+__j__j__j__QCD(RS) : -299.063 pb +- ( 8.27374 pb = 2.76655 % )  exp. eff: 0.0369076 % reduce max for 2_2__e-__e+__j__j__QCD(BVI) to 0.170093 ( eps = 0.001 ) reduce max for 2_3__e-__e+__j__j__j__QCD(RS) to 0.974902 ( eps = 0.001 ) Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Amegic/MC_2_3__e-__e+__j__j__j__QCD(BVI) Process_Group::CalculateTotalXSec(): Calculate xs for '2_3__e-__e+__j__j__j__QCD(BVI)' (Amegic) 2_3__e-__e+__j__j__j__QCD(BVI) : 9837.93 pb +- ( 602.291 pb = 6.12213 % )  exp. eff: 0.395126 % Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_4__e-__e+__j__j__j__j__QCD(RS) Process_Group::CalculateTotalXSec(): Calculate xs for '2_4__e-__e+__j__j__j__j__QCD(RS)' (Comix) 2_4__e-__e+__j__j__j__j__QCD(RS) : 3.78362e+06 pb +- ( 666057 pb = 17.6037 % )  exp. eff: 0.00816667 % reduce max for 2_3__e-__e+__j__j__j__QCD(BVI) to 0.20587 ( eps = 0.001 ) reduce max for 2_4__e-__e+__j__j__j__j__QCD(RS) to 0.99949 ( eps = 0.001 ) Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Amegic/MC_2_4__e-__e+__j__j__j__j__QCD(BVI) Process_Group::CalculateTotalXSec(): Calculate xs for '2_4__e-__e+__j__j__j__j__QCD(BVI)' (Amegic) 2_4__e-__e+__j__j__j__j__QCD(BVI) : 1179.71 pb +- ( 103.855 pb = 8.80341 % )  exp. eff: 0.145451 % Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_5__e-__e+__j__j__j__j__j__QCD(RS) Process_Group::CalculateTotalXSec(): Calculate xs for '2_5__e-__e+__j__j__j__j__j__QCD(RS)' (Comix) 2_5__e-__e+__j__j__j__j__j__QCD(RS) : 3.52039e+07 pb +- ( 4.22411e+06 pb = 11.999 % )  exp. eff: 0.00563243 % reduce max for 2_4__e-__e+__j__j__j__j__QCD(BVI) to 0.660742 ( eps = 0.001 ) reduce max for 2_5__e-__e+__j__j__j__j__j__QCD(RS) to 0.9969 ( eps = 0.001 ) Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_5__e-__e+__j__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_5__e-__e+__j__j__j__j__j' (Comix) 2_5__e-__e+__j__j__j__j__j : 60.8395 pb +- ( 9.23769 pb = 15.1837 % )  exp. eff: 0.0520789 % reduce max for 2_5__e-__e+__j__j__j__j__j to 0.535686 ( eps = 0.001 ) Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Amegic/MC_2_2__e-__e+__b__bb__QCD(BVI) Single_Process::CalculateTotalXSec(): Calculate xs for '2_2__e-__e+__b__bb__QCD(BVI)' (Amegic) 2_2__e-__e+__b__bb__QCD(BVI) : 6863.17 pb +- ( 66.0864 pb = 0.962914 % )  exp. eff: 32.7552 % Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_3__e-__e+__b__bb__j__QCD(RS) Process_Group::CalculateTotalXSec(): Calculate xs for '2_3__e-__e+__b__bb__j__QCD(RS)' (Comix) 2_3__e-__e+__b__bb__j__QCD(RS) : -62.913 pb +- ( 2.09837 pb = 3.33535 % )  exp. eff: 2.3092 % reduce max for 2_3__e-__e+__b__bb__j__QCD(RS) to 0.716298 ( eps = 0.001 ) Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_3__e-__e+__b__bb__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_3__e-__e+__b__bb__j' (Comix) 2_3__e-__e+__b__bb__j : 2793.34 pb +- ( 53.1654 pb = 1.90329 % )  exp. eff: 4.28669 % reduce max for 2_3__e-__e+__b__bb__j to 0.557662 ( eps = 0.001 ) Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_4__e-__e+__b__bb__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_4__e-__e+__b__bb__j__j' (Comix) 2_4__e-__e+__b__bb__j__j : 357.48 pb +- ( 17.879 pb = 5.0014 % )  exp. eff: 0.596191 % reduce max for 2_4__e-__e+__b__bb__j__j to 0.534644 ( eps = 0.001 ) Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_5__e-__e+__b__bb__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_5__e-__e+__b__bb__j__j__j' (Comix) 2_5__e-__e+__b__bb__j__j__j : 15.1672 pb +- ( 0.958874 pb = 6.32204 % )  exp. eff: 0.0540556 % reduce max for 2_5__e-__e+__b__bb__j__j__j to 0.43893 ( eps = 0.001 ) Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_4__e-__e+__b__b__bb__bb Single_Process::CalculateTotalXSec(): Calculate xs for '2_4__e-__e+__b__b__bb__bb' (Comix) 2_4__e-__e+__b__b__bb__bb : 1.26383 pb +- ( 0.0175242 pb = 1.38659 % )  exp. eff: 2.10366 % Read in channels from directory : /mt/home/hschulz/Grid/MEPSNLO_5jets/Results/Comix/MC_2_5__e-__e+__b__b__bb__bb__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_5__e-__e+__b__b__bb__bb__j' (Comix) 2_5__e-__e+__b__b__bb__bb__j : 0.0734532 pb +- ( 0.00462541 pb = 6.29709 % )  exp. eff: 0.200682 % reduce max for 2_5__e-__e+__b__b__bb__bb__j to 0.598233 ( eps = 0.001 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Perturbative : Signal_Processes Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:Photons Perturbative : Multiple_Interactions:None Perturbative : Minimum_Bias:Off Hadronization : Beam_Remnants Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.2.0 # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 6s elapsed / 141d 21h 33m 13s left ) -> ETA: Sat Jan 06 13:16 XS = 2.64173e+07 pb +- ( 2.64173e+07 pb = 100 % )  Event 2 ( 6s elapsed / 71d 1h 33m 13s left ) -> ETA: Fri Oct 27 18:16 XS = 4.40293e+06 pb +- ( 4.40287e+06 pb = 99.99 % )  Event 3 ( 6s elapsed / 47d 9h 2m 7s left ) -> ETA: Wed Oct 04 01:45 XS = 3.30223e+06 pb +- ( 3.30215e+06 pb = 99.99 % )  Event 4 ( 6s elapsed / 35d 15h 33m 13s left ) -> ETA: Fri Sep 22 08:16 XS = 2.03214e+06 pb +- ( 2.03209e+06 pb = 99.99 % )  Event 5 ( 6s elapsed / 28d 13h 33m 13s left ) -> ETA: Fri Sep 15 06:16 XS = 1.88781e+06 pb +- ( 1.88688e+06 pb = 99.95 % )  Event 6 ( 6s elapsed / 23d 19h 17m 40s left ) -> ETA: Sun Sep 10 12:00 XS = 1.76196e+06 pb +- ( 1.76109e+06 pb = 99.95 % )  Event 7 ( 6s elapsed / 20d 10h 28m 28s left ) -> ETA: Thu Sep 07 03:11 XS = 2.12855e+06 pb +- ( 1.57343e+06 pb = 73.92 % )  Event 8 ( 6s elapsed / 17d 21h 9m 53s left ) -> ETA: Mon Sep 04 13:52 XS = 1.94448e+06 pb +- ( 1.41777e+06 pb = 72.91 % )  Event 9 ( 6s elapsed / 15d 22h 5m 49s left ) -> ETA: Sat Sep 02 14:48 XS = 2.07375e+06 pb +- ( 1.35475e+06 pb = 65.32 % )  Event 10 ( 6s elapsed / 14d 8h 26m 33s left ) -> ETA: Fri Sep 01 01:09 XS = 1.61363e+06 pb +- ( 1.0614e+06 pb = 65.77 % )  Event 20 ( 6s elapsed / 7d 6h 43m 13s left ) -> ETA: Thu Aug 24 23:26 XS = 3.05426e+06 pb +- ( 1.95468e+06 pb = 63.99 % )  Event 30 ( 6s elapsed / 4d 21h 46m 33s left ) -> ETA: Tue Aug 22 14:29 XS = 2.64222e+06 pb +- ( 1.39908e+06 pb = 52.95 % )  Event 40 ( 6s elapsed / 3d 17h 18m 13s left ) -> ETA: Mon Aug 21 10:01 XS = 2.87521e+06 pb +- ( 1.26482e+06 pb = 43.99 % )  Event 50 ( 6s elapsed / 3d 13m 13s left ) -> ETA: Sun Aug 20 16:56 XS = 2.5619e+06 pb +- ( 1.04565e+06 pb = 40.81 % )  Event 60 ( 6s elapsed / 2d 12h 49m 53s left ) -> ETA: Sun Aug 20 05:32 XS = 2.27467e+06 pb +- ( 921971 pb = 40.53 % )  Event 70 ( 6s elapsed / 2d 4h 37m 1s left ) -> ETA: Sat Aug 19 21:19 XS = 4.6513e+06 pb +- ( 2.06329e+06 pb = 44.35 % )  Event 80 ( 6s elapsed / 1d 22h 39m 53s left ) -> ETA: Sat Aug 19 15:22 XS = 3.89823e+06 pb +- ( 1.70614e+06 pb = 43.76 % )  Event 90 ( 6s elapsed / 1d 17h 50m 59s left ) -> ETA: Sat Aug 19 10:33 XS = 4.12942e+06 pb +- ( 1.60105e+06 pb = 38.77 % )  Event 100 ( 6s elapsed / 1d 13h 59m 53s left ) -> ETA: Sat Aug 19 06:42 XS = 5.49607e+06 pb +- ( 1.92248e+06 pb = 34.97 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.72821,1.65434,1.82317,-2.79978) p_j = (18.3668,8.13561,8.97983,-13.8026) p_k = (3.63202e-09,2.75673e-09,-1.72353e-09,-1.6191e-09) p_ij -> (22.095,9.78996,10.803,-16.6024) p_k -> (-8.61926e-06,-3.02914e-06,-6.62333e-06,7.2408e-06) } Event 200 ( 7s elapsed / 20h 59m 52s left ) -> ETA: Fri Aug 18 13:42 XS = 1.4901e+07 pb +- ( 6.92921e+06 pb = 46.5 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.7523,4.5412,15.2909,7.79164) p_j = (15.385,3.93607,13.2518,6.7525) p_k = (9.84559e-07,2.77468e-07,8.41108e-07,4.30006e-07) p_ij -> (33.1373,8.47727,28.5427,14.5441) p_k -> (-2.8086e-06,-4.17311e-07,-2.50082e-06,-1.25768e-06) } Event 300 ( 8s elapsed / 15h 19m 51s left ) -> ETA: Fri Aug 18 08:02 XS = 1.17036e+07 pb +- ( 4.76175e+06 pb = 40.68 % )  Event 400 ( 9s elapsed / 12h 30m 40s left ) -> ETA: Fri Aug 18 05:13 XS = 1.30631e+07 pb +- ( 4.47024e+06 pb = 34.22 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00476703,-0.000949387,0.000784377,-0.00460522) p_j = (33.9729,-5.12461,6.62586,-32.9241) p_k = (1.41299e-10,-9.25648e-11,8.52363e-11,6.42775e-11) p_ij -> (33.9781,-5.12561,6.62671,-32.9291) p_k -> (-0.000377238,5.36937e-05,-7.09715e-05,0.000374665) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0121407,0.00251819,0.011729,0.00186676) p_j = (12.5286,2.42037,12.1505,1.86298) p_k = (3.85731e-10,1.38902e-10,-3.80603e-11,3.57835e-10) p_ij -> (12.5407,2.4229,12.1623,1.86485) p_k -> (-2.6017e-05,-4.75068e-06,-2.69981e-05,-2.58123e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.314926,0.283387,0.086787,-0.106479) p_j = (26.8265,24.1417,7.40633,-9.05446) p_k = (4.2036e-08,2.14368e-08,2.93225e-08,-2.11584e-08) p_ij -> (27.1414,24.4251,7.49312,-9.16094) p_k -> (-7.98563e-06,-7.40895e-06,-1.96415e-06,2.60075e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.9664,0.258453,19.5563,-26.5381) p_j = (12.5368,0.101486,7.43931,-10.0905) p_k = (4.25248e-09,3.53412e-10,-2.23048e-11,-4.23771e-09) p_ij -> (45.5034,0.35994,26.9957,-36.6287) p_k -> (-0.000148255,-9.74421e-07,-8.95333e-05,0.000118835) } Event 500 ( 9s elapsed / 10h 49m 50s left ) -> ETA: Fri Aug 18 03:32 XS = 1.24675e+07 pb +- ( 3.70399e+06 pb = 29.7 % )  Event 600 ( 10s elapsed / 9h 42m 36s left ) -> ETA: Fri Aug 18 02:25 XS = 1.21146e+07 pb +- ( 3.2379e+06 pb = 26.72 % )  Event 700 ( 11s elapsed / 8h 53m 37s left ) -> ETA: Fri Aug 18 01:36 XS = 1.11361e+07 pb +- ( 2.8006e+06 pb = 25.14 % )  Event 800 ( 11s elapsed / 8h 16m 3s left ) -> ETA: Fri Aug 18 00:59 XS = 1.21833e+07 pb +- ( 2.94812e+06 pb = 24.19 % )  Event 900 ( 12s elapsed / 7h 46m 27s left ) -> ETA: Fri Aug 18 00:29 XS = 1.10057e+07 pb +- ( 2.61274e+06 pb = 23.73 % )  Event 1000 ( 13s elapsed / 7h 22m 46s left ) -> ETA: Fri Aug 18 00:05 XS = 1.04926e+07 pb +- ( 2.38236e+06 pb = 22.7 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.2941,-0.724673,-4.23132,-12.5819) p_j = (30.6806,-1.67393,-9.76484,-29.0369) p_k = (5.3436e-08,-2.53902e-09,-1.14244e-08,-5.21387e-08) p_ij -> (43.9748,-2.39861,-13.9962,-41.6189) p_k -> (-8.3393e-05,4.56299e-06,2.67549e-05,7.88657e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.7551,-8.49308,-1.67263,-10.6899) p_j = (20.5579,-12.6908,-2.50278,-15.9783) p_k = (1.19799e-07,1.07167e-08,6.48812e-08,1.00137e-07) p_ij -> (34.313,-21.1839,-4.17541,-26.6682) p_k -> (-1.27027e-08,1.62502e-07,1.46675e-07,3.62827e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.5848,41.9275,7.59777,16.1968) p_j = (0.0132278,0.0120457,0.00261486,0.00479963) p_k = (1.85063e-08,-1.11713e-08,-1.12605e-08,-9.53332e-09) p_ij -> (45.5981,41.9396,7.60039,16.2016) p_k -> (-2.1855e-08,-6.07946e-06,-3.0868e-06,-3.46997e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.764,7.38678,-22.4156,26.8708) p_j = (0.426316,0.0932955,-0.270192,0.316287) p_k = (2.02612e-10,4.64827e-11,1.48944e-10,-1.2927e-10) p_ij -> (36.1904,7.48009,-22.6859,27.1872) p_k -> (-8.01543e-05,-1.58346e-05,9.41203e-05,-0.000104968) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.3856,7.36738,29.8924,-31.9726) p_j = (1.16641,0.193621,0.785557,-0.840199) p_k = (2.39683e-08,1.45742e-08,8.46104e-09,-1.70435e-08) p_ij -> (45.552,7.56101,30.678,-32.8128) p_k -> (-1.47175e-05,-2.43175e-06,-9.91992e-06,1.06018e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.78627,0.13772,7.72522,0.963353) p_j = (4.80062,0.0849633,4.76299,0.593867) p_k = (9.91293e-09,1.47048e-09,-8.78766e-09,-4.34523e-09) p_ij -> (12.5869,0.222683,12.4882,1.55722) p_k -> (-1.88596e-07,-1.99601e-09,-2.06394e-07,-2.90998e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.0696,2.96703,19.9524,-8.95361) p_j = (23.1124,3.01785,20.9552,-9.27115) p_k = (5.52826e-10,-1.91516e-10,-4.86285e-10,1.80189e-10) p_ij -> (45.182,5.98494,40.9078,-18.2249) p_k -> (-3.04772e-05,-6.23192e-05,-0.000244835,0.000101051) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.2956,14.8415,-13.353,25.3858) p_j = (13.2972,6.11182,-5.49836,10.4513) p_k = (2.34551e-07,1.07961e-07,-8.0732e-08,1.91939e-07) p_ij -> (45.593,20.9534,-18.8514,35.8372) p_k -> (-9.79924e-05,-4.50208e-05,4.18757e-05,-7.63908e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.6233,-16.8696,-7.16268,3.30772) p_j = (26.923,-24.388,-10.3543,4.78128) p_k = (1.19934e-08,5.98541e-09,-1.03592e-08,8.37638e-10) p_ij -> (45.5463,-41.2576,-17.517,8.089) p_k -> (-5.53607e-06,5.03732e-06,2.12148e-06,-9.84932e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0731969,0.641088,-0.763969) b = (0,0,1) a' = (0.587602,-0.520132,0.619829) -> rel. dev. (inf,-inf,-0.380171) m_ct = -0.763969 m_st = -0.645253 m_n = (0,-8.37174e-07,-7.02518e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0731969,0.641088,-0.763969) b = (0,0,1) a' = (0.587602,-0.520132,0.619829) -> rel. dev. (inf,-inf,-0.380171) m_ct = -0.763969 m_st = -0.645253 m_n = (0,-8.37174e-07,-7.02518e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0731969,0.641088,-0.763969) b = (0,0,1) a' = (0.587602,-0.520132,0.619829) -> rel. dev. (inf,-inf,-0.380171) m_ct = -0.763969 m_st = -0.645253 m_n = (0,-8.37174e-07,-7.02518e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0731969,0.641088,-0.763969) b = (0,0,1) a' = (0.587602,-0.520132,0.619829) -> rel. dev. (inf,-inf,-0.380171) m_ct = -0.763969 m_st = -0.645253 m_n = (0,-8.37174e-07,-7.02518e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.9462,6.25475,-13.5792,-35.9623) p_j = (0.321323,0.051602,-0.112026,-0.296708) p_k = (7.81402e-08,-5.40318e-08,8.10663e-09,-5.58636e-08) p_ij -> (39.2675,6.30635,-13.6912,-36.259) p_k -> (-2.90625e-06,-5.33544e-07,1.04878e-06,2.69993e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.2329,-14.7284,-5.32414,-9.33633) p_j = (27.3667,-22.1809,-7.97621,-13.904) p_k = (4.09404e-10,3.28036e-10,2.20005e-10,1.07705e-10) p_ij -> (45.5997,-36.9095,-13.3004,-23.2405) p_k -> (-0.000136672,0.000217955,9.51096e-05,0.000121149) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.100747,-0.222034,-0.96982) b = (0,0,1) a' = (0.340288,0.209851,0.916606) -> rel. dev. (inf,inf,-0.0833941) m_ct = -0.96982 m_st = -0.243822 m_n = (0,-1.55245e-06,3.55423e-07) } Event 2000 ( 20s elapsed / 5h 42m 19s left ) -> ETA: Thu Aug 17 22:25 XS = 1.31266e+07 pb +- ( 2.4729e+06 pb = 18.83 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.59936,-2.23351,-2.96607,-8.8522) p_j = (33.6387,-7.83531,-10.3893,-31.0199) p_k = (9.03265e-09,7.69326e-09,-1.63053e-09,4.44341e-09) p_ij -> (43.2381,-10.0688,-13.3554,-39.8721) p_k -> (-1.45419e-07,2.52284e-07,7.07683e-08,4.18874e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.860075,0.425517,-0.27826,-0.693712) p_j = (35.0756,17.3531,-11.3485,-28.291) p_k = (4.97151e-08,2.49327e-08,4.03532e-08,-1.4885e-08) p_ij -> (35.9356,17.7786,-11.6267,-28.9847) p_k -> (-3.44643e-06,-1.70473e-06,1.1717e-06,2.80509e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.6772,21.4033,-6.25079,23.8878) p_j = (12.8725,8.47549,-2.46671,9.36924) p_k = (8.04607e-10,-4.7844e-10,2.82213e-10,-5.82111e-10) p_ij -> (45.5497,29.8789,-8.71753,33.2571) p_k -> (-1.01385e-05,-7.04132e-05,2.95816e-05,-8.1516e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0011658,7.42022e-06,-0.000283601,-0.00113076) p_j = (0.00393285,0.000813518,-0.000191444,-0.00384303) p_k = (45.0326,7.30115,-3.90459,-44.2649) p_ij -> (-1.44407e-05,-8.04936e-06,-3.17099e-05,5.21457e-05) p_k -> (45.0377,7.30198,-3.90503,-44.27) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.716264,-0.327157,-0.411932,0.486123) p_j = (44.8305,-20.5396,-25.7567,30.4054) p_k = (1.1325e-08,2.66818e-09,-1.01708e-08,-4.20626e-09) p_ij -> (45.5467,-20.8668,-26.1686,30.8915) p_k -> (-6.55665e-06,3.74434e-06,3.42175e-06,-5.56733e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.3471,2.86763,7.77357,-11.7128) p_j = (31.1535,6.2215,16.8735,-25.4385) p_k = (2.88228e-08,1.27577e-08,-2.09859e-08,1.5086e-08) p_ij -> (45.5006,9.08914,24.6471,-37.1513) p_k -> (-2.16569e-06,-3.59316e-07,-1.55636e-06,2.17268e-06) } Event 3000 ( 27s elapsed / 5h 6m 32s left ) -> ETA: Thu Aug 17 21:49 XS = 1.52784e+07 pb +- ( 3.74284e+06 pb = 24.49 % )  MlPMom : 0.75 8.31744e-09 nan nan 0.64744979315 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5954811735,0,0,45.5954811735) (-9.09494701773e-13) p_1 = (45.599896228,0,0,-45.599896228) (-1.81898940355e-12) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (4.66762448367e-07,-2.62796152917e-07,-1.14017031606e-07,3.68517953052e-07) (0) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1953774014,0,0,-0.00441505448106) (8316.5968399) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;0 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.1558997438,-13.2562774604,-23.69655429,-36.0804615318) p_j = (0.00525488305677,-0.00152391116224,-0.00277737746834,-0.00419257261216) p_k = (6.34640953382e-08,3.33992209132e-08,4.67397072141e-08,-2.69737504755e-08) p_ij -> (45.1611548381,-13.2578014842,-23.6993318562,-36.0846542963) p_k -> (-1.47710863985e-07,1.46051167604e-07,2.35491583567e-07,1.6486859522e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.0075236882,14.9273587819,-14.3204487222,-34.2447172547) p_j = (0.00151393564112,0.00049883271236,-0.000625510558103,-0.00128526401655) p_k = (1.59856723027e-08,1.47035902308e-08,3.57030398576e-09,-5.15742925125e-09) p_ij -> (40.0090386555,14.9278535061,-14.3210793798,-34.2460077854) p_k -> (-1.01567949784e-06,4.12313522435e-06,5.15062927775e-06,5.26147296398e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.0011409417,23.9487859822,-13.3870070082,20.0828603213) p_j = (0.00121624834853,0.000845984372901,-0.000499234895491,0.000717171531241) p_k = (9.4019923176e-10,2.69684576958e-10,-6.06242948604e-10,6.66118216198e-10) p_ij -> (34.0025168589,23.9497451545,-13.3875686724,20.083671597) p_k -> (-0.000159667875931,-0.000113187691182,6.2428733294e-05,-9.41035359361e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.4360035958,17.9632348483,-11.9381075654,25.5493662936) p_j = (0.00915474581677,0.00490944478161,-0.00327900234744,0.00699677543669) p_k = (4.68150322793e-09,4.53428564265e-09,9.0688682044e-11,1.16125265156e-09) p_ij -> (33.4452096616,17.9681718494,-11.9414049042,25.5564023018) p_k -> (-5.13152082924e-05,-2.75517648145e-05,1.83365446595e-05,-3.92316051308e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.1333784024,14.367806452,-28.6760152731,-20.6253929465) p_j = (6.26353285123,2.36713129574,-4.71612413003,-3.37441941633) p_k = (3.87268712743e-10,-1.2525209517e-10,-1.19946872581e-10,3.46266082275e-10) p_ij -> (44.3970921315,16.7350152394,-33.3922813284,-23.9999292158) p_k -> (-0.000180877495495,-7.74918434363e-05,0.000141925117426,0.000116853365412) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.78660810519,-0.549450841124,4.26640548147,5.24918447136) p_j = (18.4865097148,-1.49680293298,11.6231053242,14.2973439854) p_k = (5.46489957523e-09,3.63041001859e-09,-1.55384867272e-09,3.77767184718e-09) p_ij -> (25.2731263438,-2.0462544955,15.889516203,19.5465350526) p_k -> (-8.51835594595e-06,7.25025862014e-07,-5.39887720574e-06,-6.59209187859e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0972522833948,0.0540251911673,0.038711852431,0.0709977311342) p_j = (17.919450929,9.95510714218,7.13091582837,13.0825304446) p_k = (2.50021806834e-09,-1.94877609824e-09,-1.56436352244e-09,7.8220108691e-11) p_ij -> (18.0167045665,10.0091330862,7.16962822011,13.1535291647) p_k -> (-1.3516006252e-06,-7.54808804793e-07,-5.40874402155e-07,-9.88826039716e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.446591663082,-0.43880340958,0.0507806439532,-0.0657039380478) p_j = (23.8825363508,-23.4708090011,2.70386536093,-3.49081358586) p_k = (1.03744688688e-08,7.54555868021e-09,4.34697978712e-09,5.63896398125e-09) p_ij -> (24.3291288144,-23.9096134545,2.75464604955,-3.55651774461) p_k -> (-7.90130510353e-07,1.05131272043e-06,-4.03229911683e-08,2.26341962728e-07) } Event 4000 ( 34s elapsed / 4h 49m 10s left ) -> ETA: Thu Aug 17 21:32 XS = 18774469.4681 pb +- ( 5850485.11641 pb = 31.16 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.206636205,2.07995036395,-3.88420039317,-23.8022694328) p_j = (15.6557254131,1.34520291842,-2.5119858311,-15.3942227638) p_k = (7.39751122916e-07,1.08479390936e-07,5.15194491823e-08,-7.29938142565e-07) p_ij -> (39.8623649836,3.42515357078,-6.39618676724,-39.1964955059) p_k -> (-2.62581320953e-06,-1.79928602906e-07,5.94489417693e-07,2.57936310533e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.216893918,-19.0800697541,2.50244863728,-31.8557040716) p_j = (6.99034734936,-3.58366855313,0.473353398164,-5.98316073045) p_k = (4.90360464899e-09,-4.25137019296e-09,1.62349032246e-09,-1.82632899391e-09) p_ij -> (44.207330022,-22.6637827038,2.9758071871,-37.8389422792) p_k -> (-8.87496921251e-05,4.43922621827e-05,-5.15003248713e-06,7.74753321338e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.005246844,-9.58158528901,8.28494341994,-14.1687100146) p_j = (0.708791703635,-0.357362221663,0.309012633968,-0.528383491148) p_k = (3.66815287451e-07,-2.69494015679e-07,1.167625804e-07,-2.19756525403e-07) p_ij -> (19.7140403728,-9.9389484225,8.59395685382,-14.6970948718) p_k -> (-1.4583590513e-06,6.42332959266e-07,-6.83144856239e-07,1.14623717806e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.8959927026,4.16531152056,4.1066067238,0.740736864127) p_j = (29.1208550307,20.575597276,20.2793058949,3.66316077633) p_k = (1.00239982031e-09,-4.34314463176e-10,7.99003355287e-10,-4.21627782296e-10) p_ij -> (35.016875466,24.7409285614,24.3859319168,4.40390120998) p_k -> (-2.77316939794e-05,-1.97652339615e-05,-1.92973359443e-05,-3.56993754114e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00203641255219,-5.97349127658e-05,0.00138210067785,-0.00149439136079) p_j = (34.2224570025,-1.2210852515,23.4154467051,-24.9279435513) p_k = (2.55193582644e-08,1.20751389325e-08,2.09796894114e-08,-8.07968380053e-09) p_ij -> (34.2245066827,-1.2211456918,23.4168378208,-24.9294477947) p_k -> (-1.3242155056e-05,7.17456296706e-07,-8.99406386168e-06,9.84395425085e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.9349269268,13.6259264239,2.19531285328,1.92273737747) p_j = (31.6649321813,30.9722195777,4.97237405781,4.32030562616) p_k = (3.8397400405e-10,-3.04787591068e-10,-9.93291166822e-11,-2.11356536009e-10) p_ij -> (45.5998630264,44.5981621771,7.16769042418,6.24304832854) p_k -> (-3.91789216181e-06,-1.61757912238e-05,-3.51318685166e-06,-5.3251173564e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00176615925598,0.000777546344406,-0.00158258803707,0.000100773249662) p_j = (13.5878306446,5.89315988487,-12.2281171681,0.610703463528) p_k = (2.96111475827e-09,1.66466174229e-09,-3.41451981952e-10,-2.42497782227e-09) p_ij -> (13.5895969007,5.89393743959,-12.2297000488,0.610804467424) p_k -> (-9.3931776135e-08,-6.70809363612e-09,2.92382395628e-07,-2.33070810152e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.67035862341,0.262302728417,3.28572496999,8.01937200526) p_j = (7.32481848519,0.221633732926,2.77525607298,6.77508657205) p_k = (4.16680772694e-10,-3.23675413483e-10,-2.69660280784e-11,2.61018527375e-10) p_ij -> (15.9951801046,0.483936575554,6.06098219119,14.7944613571) p_k -> (-2.99559872818e-06,-1.1453424123e-07,-1.14824794872e-06,-2.77956729811e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.7258376443,-6.41955685409,2.1148441153,9.58185747261) p_j = (9.43218469539,-5.16370989476,1.70117018972,7.70767333482) p_k = (4.87406338444e-10,-2.22900087462e-10,4.30727326943e-10,4.85222078082e-11) p_ij -> (21.1580524811,-11.5832832503,3.81601974013,17.289555439) p_k -> (-3.01408969587e-05,1.6501259454e-05,-5.43468301295e-06,-2.46314865731e-05) } Event 5000 ( 42s elapsed / 4h 39m 57s left ) -> ETA: Thu Aug 17 21:23 XS = 19962010.2159 pb +- ( 5542793.37445 pb = 27.76 % )  Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242413644,0.0495931471494,-0.998755214384) b = (0,0,1) a' = (0.0552151357076,-0.0495181985175,0.997245825664) -> rel. dev. (inf,-inf,-0.00275417433595) m_ct = -0.998755214384 m_st = -0.0498800735749 m_n = (0,-2.96636185994e-06,-1.47294570381e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412301,0.0495931467971,-0.998755214402) b = (0,0,1) a' = (0.0552151353425,-0.0495181981667,0.997245825702) -> rel. dev. (inf,-inf,-0.00275417429832) m_ct = -0.998755214402 m_st = -0.0498800732232 m_n = (0,-2.96636186192e-06,-1.4729456943e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412652,0.0495931471287,-0.998755214386) b = (0,0,1) a' = (0.0552151356761,-0.0495181984969,0.997245825667) -> rel. dev. (inf,-inf,-0.00275417433318) m_ct = -0.998755214386 m_st = -0.0498800735533 m_n = (0,-2.96636185992e-06,-1.47294570318e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412652,0.0495931471287,-0.998755214386) b = (0,0,1) a' = (0.0552151356761,-0.0495181984969,0.997245825667) -> rel. dev. (inf,-inf,-0.00275417433318) m_ct = -0.998755214386 m_st = -0.0498800735533 m_n = (0,-2.96636185992e-06,-1.47294570318e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412301,0.0495931467971,-0.998755214402) b = (0,0,1) a' = (0.0552151353425,-0.0495181981667,0.997245825702) -> rel. dev. (inf,-inf,-0.00275417429832) m_ct = -0.998755214402 m_st = -0.0498800732232 m_n = (0,-2.96636186192e-06,-1.4729456943e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412301,0.0495931467971,-0.998755214402) b = (0,0,1) a' = (0.0552151353425,-0.0495181981667,0.997245825702) -> rel. dev. (inf,-inf,-0.00275417429832) m_ct = -0.998755214402 m_st = -0.0498800732232 m_n = (0,-2.96636186192e-06,-1.4729456943e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412652,0.0495931471287,-0.998755214386) b = (0,0,1) a' = (0.0552151356761,-0.0495181984969,0.997245825667) -> rel. dev. (inf,-inf,-0.00275417433318) m_ct = -0.998755214386 m_st = -0.0498800735533 m_n = (0,-2.96636185992e-06,-1.47294570318e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412652,0.0495931471287,-0.998755214386) b = (0,0,1) a' = (0.0552151356761,-0.0495181984969,0.997245825667) -> rel. dev. (inf,-inf,-0.00275417433318) m_ct = -0.998755214386 m_st = -0.0498800735533 m_n = (0,-2.96636185992e-06,-1.47294570318e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412652,0.0495931471287,-0.998755214386) b = (0,0,1) a' = (0.0552151356761,-0.0495181984969,0.997245825667) -> rel. dev. (inf,-inf,-0.00275417433318) m_ct = -0.998755214386 m_st = -0.0498800735533 m_n = (0,-2.96636185992e-06,-1.47294570318e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412301,0.0495931467971,-0.998755214402) b = (0,0,1) a' = (0.0552151353425,-0.0495181981667,0.997245825702) -> rel. dev. (inf,-inf,-0.00275417429832) m_ct = -0.998755214402 m_st = -0.0498800732232 m_n = (0,-2.96636186192e-06,-1.4729456943e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00534242412301,0.0495931467971,-0.998755214402) b = (0,0,1) a' = (0.0552151353425,-0.0495181981667,0.997245825702) -> rel. dev. (inf,-inf,-0.00275417429832) m_ct = -0.998755214402 m_st = -0.0498800732232 m_n = (0,-2.96636186192e-06,-1.4729456943e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00276051724876,0.00147258390959,-0.00104669302129,0.00208719568538) p_j = (33.0868908789,16.7415661101,-12.8904957521,25.4616855585) p_k = (2.93113278836e-09,-2.47619522543e-09,-1.17423963407e-09,-1.0397932622e-09) p_ij -> (33.0896696251,16.7430491775,-12.8915495367,25.4637878306) p_k -> (-1.82260073096e-05,-1.04859235392e-05,7.0904447993e-06,-1.50774571246e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.2368081861,-21.0740712115,-4.40133165844,22.6329403273) p_j = (0.687102438817,-0.462135881219,-0.0968156082597,0.499166231546) p_k = (7.58134343064e-09,5.06414401571e-09,7.85880804686e-10,-5.58691233642e-09) p_ij -> (31.9239138973,-21.5362110985,-4.49814805534,23.1321108875) p_k -> (-3.26477999479e-06,4.01084540336e-06,7.89426398473e-07,-4.33426709456e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.6226554592,0.583143410133,-16.4485912235,25.8234548018) p_j = (14.97696854,0.328014085977,-8.03101314392,12.6374372912) p_k = (6.46480834406e-10,-2.81779857904e-10,4.6553029307e-11,-5.79978287649e-10) p_ij -> (45.5996368843,0.911169529707,-24.4796270132,38.460947926) p_k -> (-1.2884435435e-05,-1.20338790959e-05,2.26458572996e-05,-5.58335537271e-05) } Event 6000 ( 49s elapsed / 4h 33m 14s left ) -> ETA: Thu Aug 17 21:16 XS = 18374838.242 pb +- ( 4638958.80454 pb = 25.24 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.991291111,-23.129664923,7.6324973942,11.6315682482) p_j = (12.5904535414,-10.7888362715,3.56479026422,5.42335713912) p_k = (1.49078358436e-09,1.25067091724e-09,-5.37707480435e-10,-6.07562035933e-10) p_ij -> (39.5817598396,-33.918514805,11.197292181,17.0549322259) p_k -> (-1.51856902804e-05,1.36117772875e-05,-4.52313221366e-06,-6.83923838629e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.3546886486,-31.0941079307,-29.4124060355,15.0038197008) p_j = (0.243921524261,-0.16722672772,-0.158183441259,0.080690336753) p_k = (7.02860566839e-10,-2.90059039152e-10,6.21708291366e-10,-1.52833741336e-10) p_ij -> (45.5986626897,-31.2613706626,-29.5706235338,15.0845274107) p_k -> (-5.25160687168e-05,3.6003974655e-05,3.40576296516e-05,-1.73732676085e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.9100047895,-2.23987915968,10.5661153303,8.76518005641) p_j = (10.5869135185,-1.69875621671,8.05068563377,6.66208871077) p_k = (1.8768823693e-09,4.66818027934e-11,1.66246080099e-09,8.69885322969e-10) p_ij -> (24.4971342615,-3.93869520178,18.6169480715,15.4274272528) p_k -> (-0.000215951583298,5.98254343307e-05,-0.000147105730317,-0.000158484723933) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.7950744793,-23.9467311002,-22.2252370791,27.6407544412) p_j = (2.80307936847,-1.5681845265,-1.46090697129,1.8065995843) p_k = (4.21345436499e-10,3.48931405926e-10,-1.59616520005e-11,-2.35626378408e-10) p_ij -> (45.5984198468,-25.5150698297,-23.6862840849,29.4475304629) p_k -> (-0.000265998632049,0.000154203318115,0.000140034498871,-0.000176437644017) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.6105051148,-5.62998361642,11.6826566844,-42.6839077858) p_j = (0.963836631622,-0.142987988252,0.259513716186,-0.917163081891) p_k = (3.51244613863e-10,1.64507072606e-11,-1.64211208575e-11,3.50472928238e-10) p_ij -> (45.5744468341,-5.77300866278,11.9422401989,-43.6014389026) p_k -> (-0.000105087313464,3.70581272735e-05,-6.97982486599e-05,0.000368035206414) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.79123877331,-0.615707893279,-5.13278390966,8.31527448993) p_j = (0.0041332929157,-0.000247525935069,-0.00218027874894,0.00350274546927) p_k = (8.73225020242e-10,5.01994759459e-12,4.74825973256e-10,7.32828478133e-10) p_ij -> (9.79537469039,-0.61595558991,-5.13496565248,8.31877946482) p_k -> (-2.62328784562e-06,1.70700515445e-07,1.46454448524e-06,-2.22868222277e-06) } Event 7000 ( 56s elapsed / 4h 28m 37s left ) -> ETA: Thu Aug 17 21:12 XS = 17134394.7305 pb +- ( 3983436.16993 pb = 23.24 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.387777951226,-0.0752255127125,-0.20571072193,0.31999368834) p_j = (41.107730713,-7.9784652385,-21.7369068301,33.9661080824) p_k = (1.36569172085e-08,-4.20113053274e-09,-2.77119713347e-09,1.26957613836e-08) p_ij -> (41.4956198831,-8.05371096859,-21.9426802924,34.2861924205) p_k -> (-0.000111205188169,2.02131796243e-05,6.27376131241e-05,-9.06370548002e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00290980625425,0.00156844471494,-0.00094329872856,0.00226210988286) p_j = (31.1296385402,16.7853091335,-10.0835859421,24.1997745337) p_k = (5.42143690334e-10,-1.51717369838e-10,-4.0134008449e-11,-5.18931741185e-10) p_ij -> (31.1325495455,16.7868782249,-10.0845296292,24.2020375759) p_k -> (-1.19852611391e-06,-6.46761764145e-07,3.88384576056e-07,-9.32795430231e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.20922178406,-4.12537924775,-4.71847200296,6.74737236912) p_j = (31.2707585566,-14.0070040104,-16.0223470303,22.9117562617) p_k = (6.88893051884e-10,5.68074093308e-10,3.89268873656e-10,1.83026038538e-11) p_ij -> (40.4800451939,-18.1324123125,-20.7408522659,29.6591761503) p_k -> (-6.48525971485e-05,2.90548764514e-05,3.3233036536e-05,-4.75194725382e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.156636693993,0.0274480201927,0.0220107595149,0.152634159212) p_j = (9.23865258799,1.61800919735,1.29816923708,9.00274983051) p_k = (1.36013646537e-10,-1.27776090312e-10,-1.03056498655e-11,-4.54488692825e-11) p_ij -> (9.39530079285,1.6454592341,1.32018161416,9.15539520735) p_k -> (-1.15107298457e-05,-2.01668087474e-06,-1.61757357409e-06,-1.12176681553e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00494806721678,0.000422951517873,0.00125047344187,0.00476873121139) p_j = (42.2468155504,3.04185420132,11.2628300906,40.6040540527) p_k = (3.70835148913e-10,-2.96812916557e-10,1.94323889787e-10,1.07975215133e-10) p_ij -> (42.2519009371,3.04228832939,11.2641167923,40.6089557537) p_k -> (-0.000137319087791,-1.11768430109e-05,-3.62280246993e-05,-0.000132969665962) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.2397917939,6.28097405808,-11.8319828127,17.7527994028) p_j = (21.659609271,6.11717678356,-11.5232490816,17.2896949821) p_k = (6.0674083499e-09,-2.31981220595e-09,-5.22939367818e-09,2.02122799831e-09) p_ij -> (43.8994161509,12.3981551024,-23.3552399203,35.0425064274) p_k -> (-1.50799998302e-05,-4.26312260338e-06,8.02073317985e-06,-1.20404795503e-05) } Event 8000 ( 1m 3s elapsed / 4h 24m 43s left ) -> ETA: Thu Aug 17 21:08 XS = 17163114.5464 pb +- ( 3626727.29991 pb = 21.13 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.78708370378,2.82119179791,-2.42262400955,-3.01462105989) p_j = (23.0590724344,13.5913776084,-11.6671819962,-14.5214372742) p_k = (5.7193362184e-08,-3.47507943623e-08,-3.17460809916e-08,3.24907588221e-08) p_ij -> (27.8461562159,16.4125694817,-14.0898060439,-17.5360584127) p_k -> (-2.05794119523e-08,-1.10227761141e-07,6.39079722475e-09,1.11126132296e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.2854018016,14.3033571533,-36.8697766496,-11.8540265681) p_j = (4.31390752037,1.4834336849,-3.86900958956,-1.19999474694) p_k = (2.63607636298e-10,-1.36650449397e-11,2.44202792928e-10,-9.83448255379e-11) p_ij -> (45.5993484128,15.7868497275,-40.7390285226,-13.0540226157) p_k -> (-3.90905552088e-05,-5.88894070015e-05,0.000242283646383,1.30058944148e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.8591683589,7.37786508921,8.61754748355,-15.0656301986) p_j = (25.6551705721,10.0232568445,11.7052559773,-20.5111940613) p_k = (1.19000555401e-09,1.01200342543e-09,4.08339110664e-10,-4.74574007583e-10) p_ij -> (44.5143575009,17.4011141261,20.3228156572,-35.5768522307) p_k -> (-1.85687232168e-05,7.80856337634e-06,-1.219599271e-05,2.79703454495e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.4674291857,3.60422928554,0.796239237895,-23.1753266842) p_j = (21.6226923627,3.32101435361,0.73268261666,-21.3535679656) p_k = (5.3824662766e-08,-1.62735406252e-08,-4.69515587829e-08,2.0683745769e-08) p_ij -> (45.0901221406,6.92524373367,1.52892188171,-44.5288952453) p_k -> (-5.38421012664e-07,-1.10793886954e-07,-7.41079793087e-08,6.16267264775e-07) } Event 9000 ( 1m 10s elapsed / 4h 21m 40s left ) -> ETA: Thu Aug 17 21:05 XS = 16176587.2658 pb +- ( 3232162.85104 pb = 19.98 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0140764705339,-0.000787299545708,0.010696580258,-0.00911648796965) p_j = (36.9980565671,-2.0693945958,28.1253637913,-23.9486472971) p_k = (9.70001824436e-08,-3.97705046595e-08,2.83203382979e-08,-8.38170675597e-08) p_ij -> (37.0121352194,-2.07018201476,28.1360620335,-23.9577651957) p_k -> (-2.08477269936e-06,7.96427290783e-08,-1.63369332995e-06,1.32682982823e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00220146842341,-0.000896372435709,-0.000224018807968,0.00199819800055) p_j = (20.831764556,-10.4780326956,-2.42448042268,17.8408278963) p_k = (1.32345050437e-09,-1.07637405448e-10,5.86973181864e-10,-1.18126779543e-09) p_ij -> (20.8339754614,-10.4789369569,-2.42470971245,17.8428472109) p_k -> (-9.43566881695e-06,7.88874777591e-06,5.27155026542e-06,-2.11177370186e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.154998986034,-0.0657807816244,-0.0895960657457,0.108028327041) p_j = (38.6026536165,-16.3488892508,-22.3207326092,26.9195761907) p_k = (9.37520742542e-08,2.36548816803e-08,-3.37750753285e-08,-8.41970477586e-08) p_ij -> (38.7576533275,-16.414670372,-22.4103291047,27.0276051002) p_k -> (-6.3125726868e-07,3.6328334474e-07,3.95942063136e-07,-6.66673621197e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.1673822061,-5.48854735393,3.8152474364,12.4913751652) p_j = (15.7857525075,-6.116146785,4.24856863698,13.9187785122) p_k = (1.24670309156e-07,-3.75857736974e-08,3.0413850727e-08,1.14912981354e-07) p_ij -> (29.9531738581,-11.60471115,8.06382715402,26.4101873324) p_k -> (-3.90198001643e-05,1.69735270834e-05,-1.10502233674e-05,-3.35401062372e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.2282162249,-21.8656814063,1.63130463836,-30.0860583178) p_j = (0.00180657457937,-0.00109668768237,8.54844581717e-05,-0.00143306672753) p_k = (3.44544365068e-10,2.30202892265e-10,-1.00510116517e-11,-2.5615846689e-10) p_ij -> (37.2302248325,-21.8668976475,1.63139902754,-30.0876547037) p_k -> (-0.000202032716079,0.000119553705904,-8.90473130677e-06,0.000163318920702) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.8318501794,3.0415469627,-7.610936509,9.87314623385) p_j = (29.9069919432,7.08900279071,-17.7359018168,23.0133003558) p_k = (1.22209967422e-08,5.69478935046e-09,-5.92397955339e-09,9.04591631973e-09) p_ij -> (42.7390542176,10.1305995938,-25.3469643166,32.8866098468) p_k -> (-0.000212082884907,-4.98347080828e-05,0.000125984910699,-0.000163248130857) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.29394876954,1.05427844029,0.430362259699,1.99135287004) p_j = (8.01181531609,3.68206320712,1.50306595835,6.95502609074) p_k = (2.12139270795e-09,1.29273655325e-09,-1.67764992352e-09,-1.20952930475e-10) p_ij -> (10.3057645282,4.73634185077,1.93342830126,8.94637934514) p_k -> (-4.40445043104e-07,-2.02075198796e-07,-8.48859013081e-08,-3.84480632221e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.4902512875,11.057324914,13.2439532752,2.87091579285) p_j = (7.65405857985,4.85041179229,5.78519166835,1.26082336172) p_k = (1.21860496648e-09,-9.60308816769e-10,6.44951409851e-10,3.83201447095e-10) p_ij -> (25.1443176034,15.9077579586,19.0291534182,4.13173869707) p_k -> (-7.73487937522e-06,-2.12532780699e-05,-8.47396529302e-06,4.57881238258e-07) } Event 10000 ( 1m 18s elapsed / 4h 19m 3s left ) -> ETA: Thu Aug 17 21:03 XS = 16169250.5239 pb +- ( 2977441.73735 pb = 18.41 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.98413319961,-0.793738592688,1.5058187794,-4.68445008529) p_j = (35.3121453144,-5.62187004837,10.669872696,-33.1887932971) p_k = (1.22107012735e-07,5.37959089932e-08,-2.23634652586e-08,1.07312617621e-07) p_ij -> (40.2962789412,-6.41560871151,12.1756916064,-37.8732437913) p_k -> (-3.05068155626e-07,1.2424776985e-07,-1.53411279236e-07,5.16203126466e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.1009615663,22.6594529344,0.377318138264,10.7918995217) p_j = (20.4311795614,18.4441841769,0.308726925494,8.78349907522) p_k = (1.6597985917e-09,-1.01274392191e-10,8.26926277704e-10,1.43557354762e-09) p_ij -> (45.5322530074,41.1037381695,0.686046719385,19.5754466697) p_k -> (-0.000111878090983,-0.000101058343528,-1.65479979836e-06,-4.80713528059e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.2919606448,10.1402485465,0.544226279229,-25.3323961166) p_j = (15.7004689787,5.83055106105,0.311882472673,-14.5743655025) p_k = (5.35586111945e-09,-2.58073935334e-09,4.20864432618e-09,2.07661815651e-09) p_ij -> (42.9924396391,15.9708034565,0.856108836083,-39.9067711139) p_k -> (-1.00102389062e-05,-3.85158687344e-06,-7.99720718536e-08,9.49686907248e-06) } MlPMom : 0.75 8.31744e-09 nan nan 0.100805797383 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5987794286,0,0,45.5987794286) (-1.36424205266e-12) p_1 = (45.5958807208,0,0,-45.5958807208) (2.27373675443e-12) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (8.21071549338e-07,3.44778195083e-07,-3.39015818659e-07,6.63592314624e-07) (0) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1946601494,0,0,0.0028987077909) (8316.46603137) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.462293900914,0.191753899679,-0.415375723002,0.0664010656605) p_j = (12.2477752508,5.08085935498,-11.0045899192,1.75837070047) p_k = (5.34487053211e-08,2.88320326286e-08,1.28732823218e-08,4.31248958791e-08) p_ij -> (12.7100692365,5.2726132896,-11.4199657205,1.82477177707) p_k -> (-3.13457437784e-08,-6.11102768389e-09,9.11901993916e-08,3.21906322709e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280424507,-0.0126932804161,0.998496369808) b = (0,0,1) a' = (0.107987729111,-0.0126370348928,0.99407190671) -> rel. dev. (inf,-inf,-0.00592809328977) m_ct = 0.998496369808 m_st = -0.0548178755457 m_n = (-0,2.19445968064e-06,2.78968386169e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280418468,-0.0126932796084,0.998496369851) b = (0,0,1) a' = (0.107987727739,-0.0126370340902,0.99407190687) -> rel. dev. (inf,-inf,-0.00592809313048) m_ct = 0.998496369851 m_st = -0.0548178747712 m_n = (-0,2.19445968064e-06,2.78968368406e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280424518,-0.0126932787998,0.998496369829) b = (0,0,1) a' = (0.107987728741,-0.0126370332842,0.994071906771) -> rel. dev. (inf,-inf,-0.00592809322907) m_ct = 0.998496369829 m_st = -0.0548178751725 m_n = (-0,2.19445968064e-06,2.78968350642e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280424518,-0.0126932787998,0.998496369829) b = (0,0,1) a' = (0.107987728741,-0.0126370332842,0.994071906771) -> rel. dev. (inf,-inf,-0.00592809322907) m_ct = 0.998496369829 m_st = -0.0548178751725 m_n = (-0,2.19445968064e-06,2.78968350642e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280424518,-0.0126932787998,0.998496369829) b = (0,0,1) a' = (0.107987728741,-0.0126370332842,0.994071906771) -> rel. dev. (inf,-inf,-0.00592809322907) m_ct = 0.998496369829 m_st = -0.0548178751725 m_n = (-0,2.19445968064e-06,2.78968350642e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280418468,-0.0126932796084,0.998496369851) b = (0,0,1) a' = (0.107987727739,-0.0126370340902,0.99407190687) -> rel. dev. (inf,-inf,-0.00592809313048) m_ct = 0.998496369851 m_st = -0.0548178747712 m_n = (-0,2.19445968064e-06,2.78968368406e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280424518,-0.0126932787998,0.998496369829) b = (0,0,1) a' = (0.107987728741,-0.0126370332842,0.994071906771) -> rel. dev. (inf,-inf,-0.00592809322907) m_ct = 0.998496369829 m_st = -0.0548178751725 m_n = (-0,2.19445968064e-06,2.78968350642e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280424518,-0.0126932787998,0.998496369829) b = (0,0,1) a' = (0.107987728741,-0.0126370332842,0.994071906771) -> rel. dev. (inf,-inf,-0.00592809322907) m_ct = 0.998496369829 m_st = -0.0548178751725 m_n = (-0,2.19445968064e-06,2.78968350642e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280424518,-0.0126932787998,0.998496369829) b = (0,0,1) a' = (0.107987728741,-0.0126370332842,0.994071906771) -> rel. dev. (inf,-inf,-0.00592809322907) m_ct = 0.998496369829 m_st = -0.0548178751725 m_n = (-0,2.19445968064e-06,2.78968350642e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280418468,-0.0126932796084,0.998496369851) b = (0,0,1) a' = (0.107987727739,-0.0126370340902,0.99407190687) -> rel. dev. (inf,-inf,-0.00592809313048) m_ct = 0.998496369851 m_st = -0.0548178747712 m_n = (-0,2.19445968064e-06,2.78968368406e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0533280418468,-0.0126932796084,0.998496369851) b = (0,0,1) a' = (0.107987727739,-0.0126370340902,0.99407190687) -> rel. dev. (inf,-inf,-0.00592809313048) m_ct = 0.998496369851 m_st = -0.0548178747712 m_n = (-0,2.19445968064e-06,2.78968368406e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.1888722917,-19.3897398831,3.10705467672,-18.8047593709) p_j = (18.2236553185,-13.0035607452,2.09195211976,-12.59494968) p_k = (3.74208777869e-09,-3.64631485911e-09,-5.5063189004e-10,-6.35933480614e-10) p_ij -> (45.4126639435,-32.3933931174,5.19902717339,-31.3998128218) p_k -> (-0.000136329643389,9.24854295228e-05,-2.0377454943e-05,0.000103770350549) } MlPMom : 0.001 8.31744e-09 nan nan 0.799806282944 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5999344282,0,0,45.5999344282) (-2.72848410532e-12) p_1 = (45.5993746882,0,0,-45.5993746882) (1.36424205266e-12) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (8.77970969416e-07,-4.92702854512e-07,-2.09282583163e-07,6.95900654315e-07) (1.00974195868e-28) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1993091164,0,0,0.000559740010708) (8317.31398299) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.6301761355,1.92779627033,-6.91736354665,7.83800534424) p_j = (34.9473318383,6.33736002963,-22.7397534483,25.7693128271) p_k = (1.63255611455e-08,-1.3259971709e-08,5.1722192685e-09,-7.99658641657e-09) p_ij -> (45.5775177787,8.26515808639,-29.6571233831,33.6073254115) p_k -> (-9.78850917832e-06,-1.7996918098e-06,6.39331697805e-06,-7.24812011654e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.8790923398,16.7402017772,-2.57016078866,-25.8201135108) p_j = (9.78949252622,5.30718790335,-0.814681782411,-8.18561018329) p_k = (2.83512245341e-08,1.0021911148e-08,-2.61753586344e-08,4.26659693653e-09) p_ij -> (40.6685861755,22.0473903907,-3.38484267897,-34.0057247903) p_k -> (-1.28115063447e-06,-7.00135098342e-07,8.17212328919e-08,1.1005126197e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.75469296788,-1.5773836553,-0.249860791739,-0.726896003763) p_j = (30.9067059059,-27.7924712161,-4.40429275339,-12.783005085) p_k = (6.99096982093e-08,2.80840238817e-08,6.10125838409e-08,-1.93937641581e-08) p_ij -> (32.661399429,-29.3698557858,-4.65415394826,-13.5099013618) p_k -> (-4.85239731063e-07,9.42501047874e-07,4.64145701429e-07,2.53713243303e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0813895934969,0.00646106697902,-0.020054308804,0.0786151718276) p_j = (8.38776717644,0.666823563231,-2.0663683588,8.10185820337) p_k = (3.87643873097e-09,-3.02811671304e-09,-1.37313701099e-09,-1.99292632661e-09) p_ij -> (8.46915694484,0.673284644472,-2.08642271064,8.18047354475) p_k -> (-1.71026449891e-07,-1.72904580098e-08,4.16702878869e-08,-1.71549351613e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.693948611489,-0.388416827457,0.0293452440582,0.574313416339) p_j = (44.4110601477,-24.8444077476,1.90866964685,36.7621360545) p_k = (6.94785162871e-10,-2.77639579884e-10,6.13882003461e-10,1.6968399023e-10) p_ij -> (45.1051261418,-25.2328903023,1.93801961614,37.3365468573) p_k -> (-0.000117381996354,6.57269393951e-05,-4.72461321299e-06,-9.73863609133e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.6620099673,-18.9176169571,-2.65766997343,-20.0061829045) p_j = (9.26425182525,-6.33512210005,-0.889173840863,-6.70089245846) p_k = (2.16189904595e-07,3.49192645575e-08,-1.91663845111e-07,9.37213483789e-08) p_ij -> (36.9262620227,-25.2527392538,-3.54684379963,-26.7070755832) p_k -> (-1.39166296265e-08,2.31597880429e-07,-2.06324750174e-07,3.13943639085e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00254625527592,-0.00171088481383,0.00172233894453,-0.000768008882846) p_j = (16.2642185403,-10.9166643757,11.0030640026,-4.92786223326) p_k = (2.60044400163e-08,2.01876597203e-08,1.61014691682e-08,3.07116882635e-09) p_ij -> (16.2667648746,-10.9183753174,11.0047863951,-4.92863026719) p_k -> (-5.29470529642e-08,7.70403190131e-08,-3.74636606182e-08,2.81153380577e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.381780225554,0.0831079046542,-0.234154327451,0.289863705461) p_j = (36.6753004935,7.9848659892,-22.4926680106,27.8459955324) p_k = (1.90274204176e-06,3.63535929177e-07,-1.15367414011e-06,1.46877666244e-06) p_ij -> (37.0571199599,8.06798246147,-22.7268464104,28.1358890202) p_k -> (-3.73380139322e-05,-8.20407962721e-06,2.29187115632e-05,-2.83135450374e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.0814291637,11.8603122151,-18.4028524727,-2.87359164439) p_j = (21.5196916315,11.5586281686,-17.9346476317,-2.80065297723) p_k = (1.63094387292e-10,-1.1771518012e-11,1.05453347515e-10,-1.23855764582e-10) p_ij -> (43.6015483842,23.4191700496,-36.3378564608,-5.67430026786) p_k -> (-0.000427588926751,-0.000229665892515,0.00035635640711,5.56461172052e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.2552815378,0.304896876943,0.501555432968,1.10959982932) p_j = (35.5977527162,8.63427976644,14.2198285248,31.4713470967) p_k = (1.60777208869e-08,9.16453454831e-09,-7.88609271205e-09,1.05978282151e-08) p_ij -> (36.853043416,8.93917880557,14.7213877812,32.5809550673) p_k -> (-9.1459877325e-06,-2.1530286487e-06,-3.83135109772e-06,-8.13071816097e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0601813283382,0.0371901631054,0.039234101144,-0.0264455923769) p_j = (10.8990774728,6.76873269085,7.09740341399,-4.75405219752) p_k = (1.00151844788e-10,-9.51617586632e-11,-4.08573692191e-12,3.0945362296e-11) p_ij -> (10.9592621116,6.80592545965,7.13663991305,-4.78049949471) p_k -> (-3.31032336298e-06,-2.60578988387e-06,-2.39791146761e-06,1.70484497009e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.11406620163,-1.55195342859,1.43893584174,6.7919689428) p_j = (3.79113946654,-0.827943433922,0.766614451384,3.61933010485) p_k = (4.84895922456e-09,2.54596214438e-09,-4.1190221696e-09,-2.53207665599e-10) p_ij -> (10.905206176,-2.379897015,2.20555045478,10.4112995889) p_k -> (-5.02965106008e-07,1.55031992355e-07,-1.65774393324e-07,-5.41508879515e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.116746440505,-0.113335115755,0.0204529864136,0.0191457111204) p_j = (23.4549660383,-22.7697176265,4.11178433183,3.84299631438) p_k = (5.21076062037e-07,-4.99200491177e-07,1.42004922229e-07,4.64083407403e-08) p_ij -> (23.5717307826,-22.8830705148,4.13224050102,3.86214504449) p_k -> (-1.77827394605e-05,1.72732707302e-05,-3.04076736501e-06,-2.97258977944e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.1948645692,15.6197518101,0.720234095581,19.7556527834) p_j = (0.0790196828337,0.0489152328899,0.00291087236568,0.0619914275407) p_k = (4.83241044708e-10,3.83190723986e-10,-2.74267595562e-10,1.0707408272e-10) p_ij -> (25.2739260224,15.668691597,0.723150786841,19.8176813267) p_k -> (-4.17699056197e-05,-2.45535903662e-05,-5.81916943448e-06,-3.71156206533e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0142344263224,-0.00204737245581,0.00325370000254,-0.0137054950677) p_j = (37.66065245,-4.6326360846,7.80230945778,-36.5511613084) p_k = (1.48848059524e-09,4.9974252763e-10,-9.53240234005e-10,-1.02818216823e-09) p_ij -> (37.6749642749,-4.6346991425,7.80559058196,-36.5649456809) p_k -> (-7.73971088321e-05,1.56859425529e-05,-2.74251298262e-05,7.88763519566e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0487972717254,0.0314699505492,-0.0115997682104,0.0354437768549) p_j = (40.6073314116,26.0267357831,-9.57689290298,29.6622236384) p_k = (4.62509678191e-08,2.81886475778e-08,1.04191494399e-09,3.66533297697e-08) p_ij -> (40.6561429269,26.0582156397,-9.58850240798,29.6976762885) p_k -> (-1.41973661805e-05,-9.877933838e-06,9.73783382108e-06,-8.83666212914e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0150771344917,-0.00937058789835,-0.0029722962463,0.0114314269427) p_j = (38.6012168054,-23.9574745996,-7.71349394846,29.2676504143) p_k = (2.28944795506e-09,4.9394761893e-11,-2.28830877325e-09,5.27047076007e-11) p_ij -> (38.6163447172,-23.9668767504,-7.7164763309,29.2791203963) p_k -> (-5.07749749126e-05,3.1562929296e-05,1.00839147814e-05,-3.85549958555e-05) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840698476,0.222210060228,-0.974174500014) b = (0,0,1) a' = (0.264663873316,-0.214458568667,0.940191765805) -> rel. dev. (inf,-inf,-0.0598082341954) m_ct = -0.974174500014 m_st = -0.225796464813 m_n = (0,-1.74866659053e-06,-3.98872387231e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840737859,0.222210060302,-0.974174499835) b = (0,0,1) a' = (0.264663877881,-0.214458568494,0.940191764559) -> rel. dev. (inf,-inf,-0.059808235441) m_ct = -0.974174499835 m_st = -0.225796465585 m_n = (0,-1.74866659108e-06,-3.98872387564e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840698457,0.222210060156,-0.974174500031) b = (0,0,1) a' = (0.264663873243,-0.214458568602,0.94019176584) -> rel. dev. (inf,-inf,-0.0598082341601) m_ct = -0.974174500031 m_st = -0.225796464742 m_n = (0,-1.74866659064e-06,-3.9887238712e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840698457,0.222210060156,-0.974174500031) b = (0,0,1) a' = (0.264663873243,-0.214458568602,0.94019176584) -> rel. dev. (inf,-inf,-0.0598082341601) m_ct = -0.974174500031 m_st = -0.225796464742 m_n = (0,-1.74866659064e-06,-3.9887238712e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840737859,0.222210060302,-0.974174499835) b = (0,0,1) a' = (0.264663877881,-0.214458568494,0.940191764559) -> rel. dev. (inf,-inf,-0.059808235441) m_ct = -0.974174499835 m_st = -0.225796465585 m_n = (0,-1.74866659108e-06,-3.98872387564e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840737859,0.222210060302,-0.974174499835) b = (0,0,1) a' = (0.264663877881,-0.214458568494,0.940191764559) -> rel. dev. (inf,-inf,-0.059808235441) m_ct = -0.974174499835 m_st = -0.225796465585 m_n = (0,-1.74866659108e-06,-3.98872387564e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840698457,0.222210060156,-0.974174500031) b = (0,0,1) a' = (0.264663873243,-0.214458568602,0.94019176584) -> rel. dev. (inf,-inf,-0.0598082341601) m_ct = -0.974174500031 m_st = -0.225796464742 m_n = (0,-1.74866659064e-06,-3.9887238712e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840698457,0.222210060156,-0.974174500031) b = (0,0,1) a' = (0.264663873243,-0.214458568602,0.94019176584) -> rel. dev. (inf,-inf,-0.0598082341601) m_ct = -0.974174500031 m_st = -0.225796464742 m_n = (0,-1.74866659064e-06,-3.9887238712e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840698457,0.222210060156,-0.974174500031) b = (0,0,1) a' = (0.264663873243,-0.214458568602,0.94019176584) -> rel. dev. (inf,-inf,-0.0598082341601) m_ct = -0.974174500031 m_st = -0.225796464742 m_n = (0,-1.74866659064e-06,-3.9887238712e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840737859,0.222210060302,-0.974174499835) b = (0,0,1) a' = (0.264663877881,-0.214458568494,0.940191764559) -> rel. dev. (inf,-inf,-0.059808235441) m_ct = -0.974174499835 m_st = -0.225796465585 m_n = (0,-1.74866659108e-06,-3.98872387564e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0400840737859,0.222210060302,-0.974174499835) b = (0,0,1) a' = (0.264663877881,-0.214458568494,0.940191764559) -> rel. dev. (inf,-inf,-0.059808235441) m_ct = -0.974174499835 m_st = -0.225796465585 m_n = (0,-1.74866659108e-06,-3.98872387564e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.179480935,17.6564047265,18.2976962522,9.600513939) p_j = (0.588456968674,0.382307676446,0.396096847324,0.207917608806) p_k = (2.56073353525e-07,1.41475444642e-07,1.97724185849e-07,-8.03953200402e-08) p_ij -> (27.7679383272,18.038712681,18.6937933817,9.80843171764) p_k -> (-1.67455889155e-07,-1.3660468845e-07,-8.44026164515e-08,-2.50227502718e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.3551244601,6.72400524513,-11.6473557753,16.5881945255) p_j = (24.2322109572,7.6300606915,-13.2169358333,18.8227210811) p_k = (1.10976635529e-05,3.46528485284e-06,-6.08923329892e-06,8.60646123748e-06) p_ij -> (45.588060499,14.3542949825,-24.8646861575,35.4114791826) p_k -> (-0.000713983936731,-0.000225580598581,0.000388459732051,-0.00055496950997) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.0004538353,-15.262664787,9.37348585323,1.79029741596) p_j = (12.4288580336,-10.5380656881,6.47300698639,1.23525872947) p_k = (1.47784331914e-07,-1.80281962536e-09,-3.06405302437e-08,1.44561806587e-07) p_ij -> (30.429312229,-25.8007308141,15.8464930566,3.0255561456) p_k -> (-2.12221182849e-07,3.3732775151e-07,-2.47641009032e-07,1.4439859175e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.369507254683,0.548649180626,-0.74996564277) b = (0,0,1) a' = (0.891780391792,-0.267153493655,0.365180426149) -> rel. dev. (inf,-inf,-0.634819573851) m_ct = -0.74996564277 m_st = -0.661476783163 m_n = (0,-7.73711952506e-07,-5.66021167603e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.369507256062,0.548649180064,-0.749965642502) b = (0,0,1) a' = (0.891780392648,-0.267153492544,0.365180424874) -> rel. dev. (inf,-inf,-0.634819575126) m_ct = -0.749965642502 m_st = -0.661476783468 m_n = (0,-7.73711953173e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3695072563,0.548649180418,-0.749965642125) b = (0,0,1) a' = (0.891780393021,-0.267153492309,0.365180424133) -> rel. dev. (inf,-inf,-0.634819575867) m_ct = -0.749965642125 m_st = -0.661476783895 m_n = (0,-7.73711952284e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3695072563,0.548649180418,-0.749965642125) b = (0,0,1) a' = (0.891780393021,-0.267153492309,0.365180424133) -> rel. dev. (inf,-inf,-0.634819575867) m_ct = -0.749965642125 m_st = -0.661476783895 m_n = (0,-7.73711952284e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.369507256181,0.548649180241,-0.749965642313) b = (0,0,1) a' = (0.891780392835,-0.267153492426,0.365180424503) -> rel. dev. (inf,-inf,-0.634819575497) m_ct = -0.749965642313 m_st = -0.661476783682 m_n = (0,-7.73711952728e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.369507256062,0.548649180064,-0.749965642502) b = (0,0,1) a' = (0.891780392648,-0.267153492544,0.365180424874) -> rel. dev. (inf,-inf,-0.634819575126) m_ct = -0.749965642502 m_st = -0.661476783468 m_n = (0,-7.73711953173e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3695072563,0.548649180418,-0.749965642125) b = (0,0,1) a' = (0.891780393021,-0.267153492309,0.365180424133) -> rel. dev. (inf,-inf,-0.634819575867) m_ct = -0.749965642125 m_st = -0.661476783895 m_n = (0,-7.73711952284e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3695072563,0.548649180418,-0.749965642125) b = (0,0,1) a' = (0.891780393021,-0.267153492309,0.365180424133) -> rel. dev. (inf,-inf,-0.634819575867) m_ct = -0.749965642125 m_st = -0.661476783895 m_n = (0,-7.73711952284e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3695072563,0.548649180418,-0.749965642125) b = (0,0,1) a' = (0.891780393021,-0.267153492309,0.365180424133) -> rel. dev. (inf,-inf,-0.634819575867) m_ct = -0.749965642125 m_st = -0.661476783895 m_n = (0,-7.73711952284e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.369507256062,0.548649180064,-0.749965642502) b = (0,0,1) a' = (0.891780392648,-0.267153492544,0.365180424874) -> rel. dev. (inf,-inf,-0.634819575126) m_ct = -0.749965642502 m_st = -0.661476783468 m_n = (0,-7.73711953173e-07,-5.66021167714e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.369507256062,0.548649180064,-0.749965642502) b = (0,0,1) a' = (0.891780392648,-0.267153492544,0.365180424874) -> rel. dev. (inf,-inf,-0.634819575126) m_ct = -0.749965642502 m_st = -0.661476783468 m_n = (0,-7.73711953173e-07,-5.66021167714e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.8735153916,23.3854065225,-19.2649706993,-5.92938600271) p_j = (0.36452194208,0.276099076926,-0.227483486955,-0.069977204438) p_k = (5.64534231872e-08,-5.08618941041e-08,2.21867838878e-08,-1.03828512132e-08) p_ij -> (31.2380378079,23.6615059605,-19.4924544833,-5.99936329822) p_k -> (-4.17740677605e-07,-4.11943755552e-07,3.19247636327e-07,8.06969331357e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.2876094089,22.5762001271,-7.38454313826,5.06672293085) p_j = (8.36035759836,7.77120044945,-2.54209422531,1.74406986571) p_k = (4.95441056537e-07,4.53427521409e-07,-1.6007495785e-07,1.19337048742e-07) p_ij -> (32.6479790989,30.3474118395,-9.92664100901,6.81079526648) p_k -> (-1.15961453275e-05,-1.08094644098e-05,3.4853577473e-06,-2.35058216091e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.1836358423,-26.3144527195,-11.1081329936,31.0421985746) p_j = (0.00379237973297,-0.00236574340634,-0.00100034930527,0.0027901081416) p_k = (2.27744680959e-08,-2.05666397347e-08,-3.77750310525e-09,9.02331420668e-09) p_ij -> (42.1874421543,-26.3168271528,-11.1091370121,31.0449989367) p_k -> (-1.39095738163e-05,8.6693230017e-06,3.66542244645e-06,-1.02450175561e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.7978558538,-13.9557394022,11.3366192248,-18.4999397011) p_j = (2.20516127509,-1.19268793395,0.96884836515,-1.58163351846) p_k = (2.30660472652e-10,1.33524312144e-10,-1.13248996715e-10,1.5016132464e-10) p_ij -> (28.003056555,-15.1484486838,12.3054849316,-20.0816015171) p_k -> (-3.94258464596e-05,2.13478188682e-05,-1.7341769901e-05,2.82977289814e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.0601396529,13.0116267049,-10.8817242701,21.0840414873) p_j = (0.0011488156491,0.000533792638382,-0.000534299763625,0.000865659619842) p_k = (1.54012702309e-09,-6.18484087993e-11,-7.56981086684e-10,1.33983041051e-09) p_ij -> (27.0613421063,13.0121964475,-10.8822783967,21.0849471686) p_k -> (-5.36361625301e-05,-3.59499766072e-05,1.98261500071e-05,-4.00203238673e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.469454647,-2.4829457641,2.46482095452,-10.9228214255) p_j = (14.0797990122,-3.04747894844,3.02554045357,-13.40894169) p_k = (4.91324740074e-08,-7.35379503113e-10,7.17468350537e-09,-4.86002380124e-08) p_ij -> (25.5492758385,-5.53042957049,5.49036619376,-24.3317842275) p_k -> (-2.21301945942e-05,4.85721031707e-06,-4.7784866557e-06,2.10634101556e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0527749773564,-0.0267202670977,0.0409716989022,0.0198127597843) p_j = (28.9861322468,-14.7765355254,22.4300000689,10.8970159863) p_k = (2.49597777657e-08,-1.07916635022e-08,1.03872883222e-08,-1.99658421185e-08) p_ij -> (29.0389082914,-14.8032563869,22.4709728264,10.9168299124) p_k -> (-1.04225033226e-06,5.83613042338e-07,-1.04816696123e-06,-1.18627582957e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.56363981019,-5.2395604673,1.79400798232,-0.531629012018) p_j = (3.97632629717,-3.74472399273,1.28211341755,-0.379997663677) p_k = (8.67660060824e-07,-8.27304599069e-07,2.57119193045e-07,-4.78623241974e-08) p_ij -> (9.53996749094,-8.98428575883,3.0761218553,-0.911626822307) p_k -> (-5.15908253895e-07,4.71489824072e-07,-1.98314226152e-07,9.87504348848e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.558756005581,-0.109131156563,-0.0469016004642,0.545984344386) p_j = (25.8928942576,-5.05297831741,-2.17160437579,25.3020457196) p_k = (6.35795442466e-09,4.77591174844e-09,-1.16185125095e-09,-4.03290947499e-09) p_ij -> (26.4516510321,-5.16210962884,-2.21850604024,25.8480308235) p_k -> (-7.62494702045e-07,1.59637931763e-07,6.28185836682e-08,-7.63545747517e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.3099530651,6.12071445122,11.7568594857,-28.365935038) p_j = (5.13219374918,1.00533521009,1.92700045948,-4.64923467074) p_k = (1.26336934764e-10,7.76601007502e-11,-6.17269568183e-11,7.82266275418e-11) p_ij -> (36.4422498252,7.12606970973,13.6838988206,-33.0152633774) p_k -> (-0.000103010764811,-2.00483392896e-05,-3.88755319225e-05,9.36687475352e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0390975799955,-0.0153465179516,0.0146619921715,-0.0328349072474) p_j = (34.9406721601,-13.689248091,13.0931758205,-29.3602419036) p_k = (3.49968115139e-08,2.35417659233e-08,-8.29090194726e-09,2.4532081926e-08) p_ij -> (34.9797707734,-13.7045950228,13.107838205,-29.3930776921) p_k -> (-9.98291572074e-07,4.37340279547e-07,-4.00645388865e-07,9.05780055405e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.710332493,-0.0279864872653,0.802740119039,-4.64134218222) p_j = (40.8664657261,-0.240042687211,6.96552771192,-40.2677516648) p_k = (2.06768751201e-06,1.88621231055e-07,1.93668802423e-07,-2.04993806572e-06) p_ij -> (45.5768028689,-0.268029341124,7.76826873364,-44.9090984201) p_k -> (-2.58218797811e-06,3.55269297453e-07,-7.09017284883e-07,2.52311434323e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928422,-0.121578660975,-0.840162893073) b = (0,0,1) a' = (0.0163429902996,0.143197564019,0.989559176769) -> rel. dev. (inf,inf,-0.0104408232314) m_ct = -0.840162893073 m_st = -0.542334134186 m_n = (0,-1.00856926633e-06,1.45948484409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.528530928429,-0.121578660237,-0.840162893176) b = (0,0,1) a' = (0.0163429901025,0.143197563151,0.989559176898) -> rel. dev. (inf,inf,-0.0104408231024) m_ct = -0.840162893176 m_st = -0.542334134027 m_n = (0,-1.00856926644e-06,1.45948483521e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.45193675161,0.894120200842,-3.19615875464,-4.3253592481) p_j = (36.438395043,5.97601354464,-21.3622663871,-28.9084325108) p_k = (3.76960502609e-07,9.6482883967e-08,-3.62800697708e-07,-3.41456787186e-08) p_ij -> (41.8903327361,6.87013389965,-24.5584256928,-33.2337925075) p_k -> (-5.64450978402e-07,-5.7685493271e-08,1.8818292169e-07,7.14451051209e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.319594864487,-0.0997016555915,0.0075541832584,-0.303551299773) p_j = (33.7999762314,-10.52218237,0.718929829528,-32.1123840802) p_k = (4.50036637704e-09,2.49328904912e-09,-2.89152406008e-09,2.38243089323e-09) p_ij -> (34.1195879117,-10.6218897556,0.726484750543,-32.4159522024) p_k -> (-1.68112904362e-05,5.73246638602e-06,-7.40647519759e-07,1.68248200509e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.126787196734,-0.013212180224,-0.110710402602,0.0603625571441) p_j = (45.4721883826,-4.75665532351,-39.7104176432,21.6373953385) p_k = (4.46691507366e-08,7.31743084729e-09,3.82672108281e-08,2.1849686654e-08) p_ij -> (45.5989756519,-4.7698675139,-39.8211281258,21.69775793) p_k -> (-2.78905183393e-08,1.74795902197e-08,1.18209992905e-07,-1.25495116521e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.71493104636,-0.387331575997,0.00320658387899,-1.67061439651) p_j = (43.6552395121,-9.94268673631,0.116833360953,-42.5077553781) p_k = (2.06887578466e-09,1.95197904337e-09,-6.79876608418e-10,-8.82787982047e-11) p_ij -> (45.3701831756,-10.3300248416,0.120041012473,-44.1783849673) p_k -> (-1.26151448967e-05,6.53125249972e-06,-1.06832043493e-06,1.51925851348e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.35120208472,-3.72473697712,0.304724650033,-3.82999230945) p_j = (0.0428749150067,-0.0298369590151,0.00248621322709,-0.030689297114) p_k = (3.23314889126e-10,2.03797627047e-10,2.74767383057e-11,2.49482100919e-10) p_ij -> (5.39407816859,-3.75457476553,0.307210929497,-3.86068246087) p_k -> (-1.16853808985e-06,8.29599474894e-07,-6.62091300119e-08,8.54555969987e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606614,-0.11714498023,-0.962840292786) b = (0,0,1) a' = (0.0276531116623,0.120729254943,0.992300233002) -> rel. dev. (inf,inf,-0.00769976699771) m_ct = -0.962840292786 m_st = -0.270071417567 m_n = (0,-1.84541318401e-06,2.24524142349e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606704,-0.117144982378,-0.962840292502) b = (0,0,1) a' = (0.0276531126213,0.120729257156,0.992300232706) -> rel. dev. (inf,inf,-0.00769976729377) m_ct = -0.962840292502 m_st = -0.27007141858 m_n = (0,-1.84541318401e-06,2.24524146532e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.243342606908,-0.117144980696,-0.962840292655) b = (0,0,1) a' = (0.0276531118446,0.120729255432,0.992300232938) -> rel. dev. (inf,inf,-0.00769976706236) m_ct = -0.962840292655 m_st = -0.270071418035 m_n = (0,-1.84541318404e-06,2.24524143277e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.805186673894,-0.565588420227,0.178281123759) b = (0,0,1) a' = (0.439971403824,-0.856469998786,0.269970933613) -> rel. dev. (inf,-inf,-0.730029066387) m_ct = 0.178281123759 m_st = -0.983979593747 m_n = (-0,1.42502486256e-07,4.52082387525e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.805186674532,-0.565588420675,0.178281119456) b = (0,0,1) a' = (0.439971406785,-0.856469999332,0.269970927055) -> rel. dev. (inf,-inf,-0.730029072945) m_ct = 0.178281119456 m_st = -0.983979594527 m_n = (-0,1.42502482703e-07,4.52082387525e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.805186673894,-0.565588420227,0.178281123759) b = (0,0,1) a' = (0.439971403824,-0.856469998786,0.269970933613) -> rel. dev. (inf,-inf,-0.730029066387) m_ct = 0.178281123759 m_st = -0.983979593747 m_n = (-0,1.42502486256e-07,4.52082387525e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.805186674532,-0.565588420675,0.178281119456) b = (0,0,1) a' = (0.439971406785,-0.856469999332,0.269970927055) -> rel. dev. (inf,-inf,-0.730029072945) m_ct = 0.178281119456 m_st = -0.983979594527 m_n = (-0,1.42502482703e-07,4.52082387525e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.04044022902,0.0281499635278,-0.790965051768,0.675350084471) p_j = (4.58294779067,0.123348809467,-3.48469550641,2.97407006488) p_k = (2.20380089281e-08,-5.06146200005e-09,2.01928184216e-08,7.23225372723e-09) p_ij -> (5.62338805176,0.151498778553,-4.27566061323,3.64942017603) p_k -> (-1.00316617235e-08,-1.06193497051e-08,7.52449307306e-08,-1.94481115656e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0035460501264,-4.34805148681e-05,-0.00120630704711,0.00333427717082) p_j = (36.3062787075,0.36416011489,-11.6320797963,34.3905216682) p_k = (3.43522402177e-10,-2.37327462775e-10,2.48226489573e-10,-8.36520519831e-12) p_ij -> (36.3100862307,0.364120179554,-11.6333712502,34.3941049009) p_k -> (-0.000261472725953,-3.54541688952e-06,8.51471361418e-05,-0.000248955499892) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.1219495498,-7.49429703676,0.809588067613,37.369280386) p_j = (1.94516788138,-0.382407483997,0.0413263376472,1.90676027249) p_k = (1.23843440084e-08,-8.36064333762e-09,-2.2322679963e-09,8.8593795274e-09) p_ij -> (40.0671670177,-7.87671426854,0.850915458469,39.2760892661) p_k -> (-4.95740888589e-05,9.73942622995e-06,-1.05544039092e-06,-4.85987584895e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.247182600682,-0.0974150669044,0.120645744454,0.192494538014) p_j = (36.2151812049,-14.278868712,17.6170641843,28.2363649845) p_k = (2.6491992448e-08,-1.65011716127e-08,1.16666466932e-08,1.71296920184e-08) p_ij -> (36.4625196123,-14.3763424501,17.7377862798,28.428982608) p_k -> (-0.000155780154632,5.86547086545e-05,-7.63393579462e-05,-0.000123068334352) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.909271812148,0.0667104617924,-0.349163025648,0.836905086718) p_j = (42.0584502923,3.08492949206,-16.1519826611,38.710591666) p_k = (1.20908988699e-09,5.48161848374e-10,9.43976356897e-10,-5.19928404137e-10) p_ij -> (42.9677819092,3.1516443403,-16.5011686544,39.5475517976) p_k -> (-5.98035002533e-05,-4.38590286267e-06,2.29686030337e-05,-5.50453692405e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.234518320046,0.0657268419888,0.130210782358,-0.183640890972) p_j = (35.2090026439,9.8643883712,19.5508560525,-27.5704866997) p_k = (2.69144593273e-08,-6.66927627462e-09,-1.76777080041e-08,1.91678763183e-08) p_ij -> (35.4435222523,9.9301155745,19.681067551,-27.7541286006) p_k -> (-1.26136120215e-06,-3.67978419291e-07,-7.33895230809e-07,1.02902109766e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.332107572,1.70741105302,-5.19024560163,14.3254884974) p_j = (30.2668447788,3.40230884477,-10.2165713077,28.2865313905) p_k = (6.16862244668e-09,1.53055274382e-09,-3.45215854182e-09,4.87769533538e-09) p_ij -> (45.599397078,5.10973691234,-15.4069136805,42.6124701633) p_k -> (-0.000444721044932,-1.70130227968e-05,9.67677121944e-05,-0.000450270565338) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.0944321949,0.964839154502,-3.8905339233,14.5524813858) p_j = (7.78820159403,0.497993307576,-2.00702692213,7.5086569817) p_k = (1.78049041623e-08,-1.2101156961e-08,4.38156011374e-09,1.23035979083e-08) p_ij -> (22.8826344766,1.46283251751,-5.89756103045,22.0611390347) p_k -> (-6.69927455732e-07,-6.75354004942e-08,1.89402409756e-07,-6.54950897072e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.73280854964,0.489023653468,-0.729460558235,-1.49377663324) p_j = (3.3367366181,0.941497130212,-1.40582324301,-2.87594426612) p_k = (7.3477589416e-09,-5.96876551013e-09,-3.31116062495e-09,-2.72022223266e-09) p_ij -> (5.06954530451,1.43052094892,-2.13528385544,-4.36972107414) p_k -> (-1.29417598416e-07,-1.7120595952e-07,5.08880086958e-08,1.7206500269e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.684271551,-5.89723257216,-16.1358220458,4.19420495297) p_j = (0.166884723782,-0.0554185559509,-0.152275115476,0.0398946599783) p_k = (1.22305806768e-09,-4.28868508793e-10,8.31928792262e-10,-7.87299446149e-10) p_ij -> (17.8511662796,-5.95265445958,-16.2881067271,4.2341022277) p_k -> (-1.00035425401e-05,3.33104500427e-06,9.56661653362e-06,-2.61554035319e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.4642786328,4.19799506304,21.4772121083,36.3912236303) p_j = (0.0687859266448,0.00692170018229,0.0345952657457,0.0590488048902) p_k = (2.86040404121e-09,-2.40788424429e-09,-1.51492430933e-09,-2.98344819968e-10) p_ij -> (42.5330803989,4.2049186265,21.5118157124,36.4502863133) p_k -> (-1.58365859946e-05,-1.86568967875e-06,-8.33988093518e-06,-1.38783721901e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0213456461705,0.0132593869935,-0.00384146121082,0.016280922663) p_j = (43.4434791932,26.9894576383,-7.81179928673,33.1342851545) p_k = (1.27878586556e-07,8.05684113869e-08,-4.60985932848e-09,-9.91988568598e-08) p_ij -> (43.464825008,27.0027171302,-7.81564077832,33.1505662062) p_k -> (-4.08382625494e-08,-2.42453737087e-08,2.57658627767e-08,-2.28284015691e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.16440343539,0.546225130373,1.29357582789,1.64710106416) p_j = (40.4482574013,10.2116910437,24.1726703708,30.7809177897) p_k = (2.85475617601e-08,2.81417275547e-08,-9.50684223926e-10,4.7013489301e-09) p_ij -> (42.6126613872,10.7579163005,25.4662465384,32.428019283) p_k -> (-5.21945668908e-07,-9.83444170544e-08,-3.40683545375e-07,-4.2437787684e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.006805863,-7.99432990679,-12.8911789377,25.8904730169) p_j = (15.5714886569,-4.14055820548,-6.68187942006,13.4417083793) p_k = (4.37962015726e-09,-8.18789926592e-10,1.28904643824e-09,4.10475525983e-09) p_ij -> (45.5783074171,-12.134892569,-19.5730732344,39.3321915675) p_k -> (-1.28928163612e-05,4.45594483889e-06,1.48779064464e-05,-1.01672592372e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.1056739131,-6.43018489531,-6.40634444532,-8.00991972188) p_j = (8.99011191035,-4.77530713834,-4.75751378634,-5.94849699235) p_k = (1.42760846444e-07,-7.55800402417e-08,-4.49891907671e-08,-1.12446829845e-07) p_ij -> (21.0957865289,-11.2054924083,-11.1638586065,-13.9584171801) p_k -> (-5.62626976119e-07,2.99114693902e-07,3.29817295253e-07,3.53393611263e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.6842429924,27.8287133343,-1.03153439974,12.8849299166) p_j = (0.00530768960113,0.00481239404055,-0.000185309701101,0.00223116400453) p_k = (6.10130471183e-09,-2.99592909969e-09,-8.1539110882e-10,5.25218745119e-09) p_ij -> (30.6895535264,27.8335283147,-1.03171980459,12.8871622729) p_k -> (-2.83831839099e-06,-2.58938023379e-06,9.43308227086e-08,-1.18707286489e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00274863642,0.00225116676154,-0.000263185275998,-0.0015549867818) p_j = (41.8557362398,34.3417205901,-3.97621212011,-23.5953092852) p_k = (3.66500312039e-09,-3.05531906985e-09,-2.01147128769e-09,-2.26409750033e-10) p_ij -> (41.8584911319,34.3439768991,-3.97647589704,-23.5968678014) p_k -> (-6.25198561721e-06,-5.14524483108e-06,5.89638984971e-07,3.52917114377e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.26096612119,-0.106159762423,-0.0625039812982,0.230057978721) p_j = (38.3446128573,-15.6013107474,-9.18447004258,33.8016855819) p_k = (2.4374918749e-07,5.13063131775e-08,-1.51661744055e-07,1.83793482352e-07) p_ij -> (38.6055800132,-15.707470933,-9.24697427034,34.0317444732) p_k -> (-7.90934080896e-07,4.74486638424e-07,9.480741614e-08,-7.28758610791e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.629095184,-7.13246662798,-5.35333001442,39.6382788858) p_j = (4.55907154082,-0.802709250608,-0.603344401712,4.44710767873) p_k = (9.93377205475e-10,-5.43307613e-10,2.47416357494e-10,-7.93976324706e-10) p_ij -> (45.1882253336,-7.93518589022,-5.95668242937,44.0854450825) p_k -> (-5.86077895015e-05,1.00110875105e-05,8.01347743362e-06,-5.8518790663e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.3455391082,9.22414164463,-6.21848958714,22.7737118376) p_j = (0.132962546416,0.0484973263833,-0.0326620832431,0.119416231733) p_k = (2.11930991987e-10,7.55620496219e-11,1.87839117369e-10,6.2613307046e-11) p_ij -> (25.4786899521,9.27270750047,-6.25119795221,22.8932973039) p_k -> (-0.000188297214869,-6.85293817897e-05,4.62820222733e-05,-0.00016923456606) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.9526405477,5.09729762467,5.20166698744,-24.9098327749) p_j = (13.1221702445,2.57668757886,2.63058312395,-12.59492221) p_k = (2.35110684914e-09,1.48560787194e-09,1.76815577158e-09,-4.40790747483e-10) p_ij -> (39.0748505315,7.67399299516,7.83225806056,-37.5047931503) p_k -> (-3.97369996854e-05,-7.79014593499e-06,-7.94738954379e-06,3.81649671155e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00907499072627,-0.00593644923126,0.00599316079634,0.00334605004083) p_j = (9.76591340191,-6.39102967242,6.43939293311,3.61414207701) p_k = (1.0478234539e-09,2.40332758979e-10,-9.89019098848e-10,2.49030534132e-10) p_ij -> (9.77498917638,-6.39696664169,6.44538662363,3.61748841816) p_k -> (-7.82699152602e-07,5.20271763449e-07,-5.30707293667e-07,-2.90865155739e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.5714435108,-22.2580572761,3.54764505263,1.20961276391) p_j = (0.481191897108,-0.474513774754,0.0755893983943,0.025856570959) p_k = (3.42448028772e-08,-7.81776880484e-09,7.74518630646e-09,3.24284005978e-08) p_ij -> (23.0526355307,-22.7325711792,3.62323446966,1.23546933282) p_k -> (-8.85463737887e-08,1.20581821861e-07,-1.08883166927e-08,3.44688618759e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.253596376628,-0.0209979448196,0.192015373254,0.164317695292) p_j = (38.3803862082,-3.18762014251,28.4305418419,25.5851014048) p_k = (1.53100658002e-10,4.28477535677e-11,-1.09543944503e-10,-9.79930037994e-11) p_ij -> (38.6340523553,-3.20863815056,28.6226661649,25.7495169709) p_k -> (-6.97702636039e-05,2.00632762071e-05,-0.000108949851983,-9.78709445398e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.10094409061,-0.641154880192,3.39361599438,-6.20449013862) p_j = (1.17254982559,-0.10592762582,0.560363539341,-1.02452190575) p_k = (3.00868527838e-09,1.2837040745e-09,2.33202805887e-09,1.40211935448e-09) p_ij -> (8.27349458728,-0.747082567187,3.95397985411,-7.22901263222) p_k -> (-6.68070966547e-07,6.24586295461e-08,-3.18051137205e-07,5.89258597028e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.41943566553,-2.79972688807,-0.238267105334,1.94866580241) p_j = (1.66927628327,-1.36679012461,-0.116295186218,0.951232618666) p_k = (3.05096785452e-08,-1.63311013838e-08,-6.84851078982e-09,2.48441846589e-08) p_ij -> (5.08871258992,-4.16651754094,-0.354562334402,2.89989878355) p_k -> (-6.10607675089e-07,5.11934378e-07,3.60018731216e-08,-3.37634237679e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.9307671624,-0.531226672713,-17.28836504,20.6421038759) p_j = (6.08625334535,-0.117676906038,-3.90717397117,4.66504271026) p_k = (8.79085727854e-10,4.54371204867e-10,4.87935730239e-10,-5.72941935616e-10) p_ij -> (33.0170250784,-0.64890377765,-21.1955421886,25.3071503778) p_k -> (-4.56974751373e-06,1.99353005714e-07,3.17797732308e-06,-3.7922156455e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.917730592,-1.7753970245,-2.81936619269,20.6506802018) p_j = (24.6818311394,-2.11145896632,-3.29603589608,24.3694619718) p_k = (9.02369544266e-10,1.44341151544e-10,7.85995984391e-10,4.19104986896e-10) p_ij -> (45.5996743539,-3.8868697384,-6.1154341958,45.0202622096) p_k -> (-0.00011262162533,1.3747726259e-05,3.21078191257e-05,-0.000120035505585) } Event 20000 ( 2m 29s elapsed / 4h 7m left ) -> ETA: Thu Aug 17 20:52 XS = 16072537.1499 pb +- ( 1992558.69403 pb = 12.39 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.8244436704,-16.957872452,-12.2182485204,-27.8547454117) p_j = (0.0173612068174,-0.00845566430069,-0.00608981262906,-0.0138862315094) p_k = (4.68099549297e-07,-2.72447451732e-07,-2.81536321997e-07,-2.56177425705e-07) p_ij -> (34.8418066399,-16.9663289744,-12.224338951,-27.8686330536) p_k -> (-1.29450281605e-06,5.85672806253e-07,3.36390797884e-07,1.15415142687e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.58370931629,-0.0989183680071,1.9208499457,1.72513897228) p_j = (42.9920008428,-1.80786527321,31.9987896639,28.6552127835) p_k = (1.36901801356e-09,-1.15847996818e-09,-5.05957585957e-10,5.25495840155e-10) p_ij -> (45.5757357441,-1.90676848832,33.9196811158,30.380374513) p_k -> (-2.55836121497e-05,-1.51540486926e-05,-4.1506649314e-05,-2.27567709548e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.6401302335,10.1121944262,9.02329964089,22.9351286531) p_j = (18.9193374249,7.19187132895,6.41752239114,16.2798563183) p_k = (3.50834765098e-08,3.45024943618e-08,-5.17628784314e-09,3.69244067178e-09) p_ij -> (45.5594704078,17.3040626122,15.4408263383,39.2149925787) p_k -> (-2.7143573007e-06,3.17746258638e-06,-4.31145843471e-06,-7.6035791956e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.50663205074,0.534068777047,-1.1721618575,-2.15035145011) p_j = (39.9051127008,8.50080104217,-18.6592211737,-34.2343083251) p_k = (3.84740306244e-07,8.54433254556e-08,-1.4237383909e-07,-3.47065168704e-07) p_ij -> (42.41179415,9.03488033628,-19.831406196,-36.3847021236) p_k -> (-4.90137055955e-05,-1.04316196827e-05,2.30223743394e-05,4.20013259408e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.2586502134,9.34890812434,-11.8574772625,-20.248396491) p_j = (0.00174304679118,0.00064614029393,-0.000819783140705,-0.001395947864) p_k = (3.03837849492e-08,1.04277401115e-08,-6.99888813805e-09,2.76668058017e-08) p_ij -> (25.260393556,9.34955437412,-11.8582971847,-20.2497926776) p_k -> (-2.65332143812e-07,-9.90512294408e-08,1.32058092461e-07,2.66411014138e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.81247466233,-0.221220241217,-1.25233962077,-3.59411604292) p_j = (31.7188395679,-1.83790573195,-10.4176742635,-29.9028251006) p_k = (4.09940891334e-08,-2.8018301399e-08,1.31726192854e-09,2.98957331814e-08) p_ij -> (35.5313149416,-2.05912600842,-11.6700141213,-33.4969418301) p_k -> (-6.70341755438e-07,7.23388038359e-09,2.38392793506e-07,7.16465201833e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.7060192622,26.8212674788,-1.1384508007,6.85179129557) p_j = (17.8926403578,17.3169418851,-0.729654928445,4.44271385607) p_k = (4.55436694902e-10,-9.91290710821e-13,1.67654344733e-10,4.23456849275e-10) p_ij -> (45.5988903553,44.1384403832,-1.86811841796,11.2945569079) p_k -> (-0.000230734826992,-0.000231019281614,1.26889867098e-05,-5.17558175188e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.6757386637,20.8258847708,-18.7510106325,34.7937314602) p_j = (0.259731982076,0.121081958856,-0.109019848324,0.20227341502) p_k = (6.71679465192e-09,-2.95285691304e-09,2.97876150907e-09,-5.24621356754e-09) p_ij -> (44.9354745762,20.9469685619,-18.8600321306,34.9960079365) p_k -> (-3.9237222218e-06,-1.83527440001e-06,1.65275337416e-06,-3.06650397164e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0186380265282,0.0120212788477,-0.00400952176089,-0.0136670634366) p_j = (35.8453883138,23.1157461566,-7.70683664612,-26.2898994273) p_k = (1.39734998339e-06,9.03666413889e-07,-2.82626318538e-07,-1.02766548671e-06) p_ij -> (35.8641790754,23.127865921,-7.71087907126,-26.3036785002) p_k -> (-0.000151337741588,-9.7581862244e-05,3.26207563055e-05,0.000110981766856) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.9625395359,-1.89354555406,-0.0994486918097,-2.27623278559) p_j = (9.05454641539,-5.78719485005,-0.304813046774,-6.957030657) p_k = (4.85191621213e-09,-4.05715752564e-09,2.28640994212e-09,1.36121539023e-09) p_ij -> (12.0170875261,-7.68074140769,-0.404261799151,-9.23326466836) p_k -> (-1.56996714296e-06,9.99528929402e-07,6.28539393865e-08,1.22713274475e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.6987763857,23.8745506439,-6.74631362574,6.70225273601) p_j = (7.76843277624,7.21692203845,-2.03861911678,2.02697217214) p_k = (1.86414382548e-08,-1.62319052294e-08,7.25617400455e-09,-5.60145858501e-09) p_ij -> (33.4672099744,31.0914735012,-8.784932979,8.72922514005) p_k -> (-7.93814084687e-07,-8.35135228527e-07,2.43740923445e-07,-2.37512002066e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.1187818361,-18.9861853034,-15.6423242069,29.118447584) p_j = (4.21631717401,-2.09992524623,-1.7302890776,3.22082973472) p_k = (5.35013446681e-08,3.74362904249e-08,1.20663403948e-08,-3.62673603557e-08) p_ij -> (42.3350993011,-21.0861106964,-17.3726134049,32.3392775432) p_k -> (-2.37435092032e-07,1.84208287735e-07,1.32444167633e-07,-2.60753221681e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.726259996,2.64677902618,-12.0976400532,15.3547060981) p_j = (13.9710678918,1.87420948275,-8.56741876903,10.87554194) p_k = (2.75263501716e-08,-6.58399179572e-09,1.66470264287e-08,-2.09099892962e-08) p_ij -> (33.6973286563,4.52098861597,-20.6650593063,26.2302486525) p_k -> (-7.40976435765e-07,-1.13617748543e-07,5.00749576915e-07,-6.35299297613e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.2797960205,-23.8551635093,-7.6871653268,34.0502542533) p_j = (1.9221058871,-1.09826617924,-0.339717346936,1.54042025595) p_k = (1.05285732096e-09,1.65466120253e-11,-1.02888650278e-09,2.22765344227e-10) p_ij -> (44.2019060914,-24.9535067331,-8.02678102875,35.5907542794) p_k -> (-4.18280194125e-06,7.70445619054e-05,-0.00010164600604,-7.97698968817e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.9699378959,15.0687140566,-9.07512605182,-7.10172426925) p_j = (26.6293886732,21.1506798011,-12.7385855474,-9.97504502812) p_k = (6.96732214693e-10,-5.83885625812e-10,2.22304388764e-10,3.08358087334e-10) p_ij -> (45.5993651776,36.2194247838,-21.8137301954,-17.076783886) p_k -> (-3.8607835684e-05,-3.09267154535e-05,1.85964672923e-05,1.4588948142e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.47193405894,1.77344840409,-0.797026577024,-5.11485011892) p_j = (26.6245656083,8.61490280555,-3.88732720518,-24.8905530409) p_k = (4.04259987385e-09,-1.168752644e-09,4.12064940785e-10,3.84796433502e-09) p_ij -> (32.0965014413,10.3883520747,-4.6843541588,-30.005405714) p_k -> (-1.77003037649e-06,-8.66257859222e-07,3.77002395524e-07,2.55799241344e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.4143746594,-5.72419842049,-12.0433033513,-19.2464370085) p_j = (11.476142776,-2.80570964507,-5.9026274661,-9.43338939089) p_k = (4.54780176284e-09,3.47432682688e-09,2.80928531041e-09,8.48214928304e-10) p_ij -> (34.8905203523,-8.52990877957,-17.9459323187,-28.679828798) p_k -> (-2.91230751515e-06,7.1748363073e-07,1.50411147182e-06,2.39939541302e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0105851350132,0.00178761329986,0.00205346600884,-0.0102290175134) p_j = (45.1854091785,7.40797292267,7.81125529947,-43.884250369) p_k = (1.66804533784e-08,1.20341137191e-09,4.74438805788e-09,-1.59461627607e-08) p_ij -> (45.1961343695,7.40980624268,7.81330533977,-43.8946191812) p_k -> (-0.00014003932813,-4.57055037826e-05,3.43046018658e-06,0.000139778718307) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.4597144677,-7.71758537657,10.326105707,14.5770677452) p_j = (9.76937770425,-3.8744479074,5.18407966645,7.31810850924) p_k = (2.20265148781e-06,-9.15237742692e-07,1.17435371472e-06,1.62323960149e-06) p_ij -> (29.2291320531,-11.5920490897,15.5102065346,21.895206136) p_k -> (-3.76785044658e-05,1.48904416823e-05,-1.99868200257e-05,-2.82582551581e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.90704013606,2.71835015752,2.42486846697,-4.65012994528) p_j = (25.1442315615,11.6035206174,10.3276020294,-19.771983371) p_k = (2.34643372837e-09,-2.15843885733e-09,-8.52972052046e-10,-3.45439682688e-10) p_ij -> (31.0512872123,14.3218835593,12.7524800233,-24.4221281241) p_k -> (-1.5512434798e-05,-1.27866019719e-05,-9.52780033092e-06,1.48075024544e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0502892903836,-0.00931545760912,0.0109280134885,0.0481955755024) p_j = (37.2806554632,-7.00009891481,7.95483670263,35.7430617041) p_k = (1.5330132743e-09,-6.10498546302e-10,-1.10216955294e-09,-8.73284677778e-10) p_ij -> (37.3309503936,-7.00941535995,7.96576623611,35.7912632059) p_k -> (-5.63846634094e-06,9.86927106705e-07,-1.5210970421e-06,-5.92713248437e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0105896978392,-0.00426926903845,0.00547251905443,0.00799791081489) p_j = (20.4122713828,-7.37470341308,10.6168666223,15.7973642009) p_k = (4.89054036508e-10,2.39997375237e-10,3.81173888985e-10,1.90476391724e-10) p_ij -> (20.4229777454,-7.37903507636,10.6223936611,15.8054615321) p_k -> (-0.000116664229179,6.23944792837e-05,-5.45192845811e-05,-9.94201128632e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.5334075778,-0.347280606845,-7.11678427998,26.5954753772) p_j = (11.8019915224,-0.157992631848,-3.05672719802,11.398177971) p_k = (8.80607800725e-09,-5.24227631107e-09,-6.36628260662e-09,3.08804059541e-09) p_ij -> (39.3354122166,-0.505268793773,-10.1735111928,37.9936708902) p_k -> (-1.31076512631e-05,-4.45016252515e-06,-2.91577896938e-07,-1.75388554275e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127213,-0.0570021482101,-0.997812898437) b = (0,0,1) a' = (0.032668740682,0.0570036583922,0.997839333917) -> rel. dev. (inf,inf,-0.00216066608288) m_ct = -0.997812898437 m_st = -0.0661015863131 m_n = (0,-3.79831621089e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127135,-0.0570021481968,-0.997812898438) b = (0,0,1) a' = (0.0326687406744,0.0570036583789,0.997839333918) -> rel. dev. (inf,inf,-0.00216066608187) m_ct = -0.997812898438 m_st = -0.0661015862977 m_n = (0,-3.79831621178e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127057,-0.0570021481836,-0.997812898439) b = (0,0,1) a' = (0.0326687406667,0.0570036583656,0.997839333919) -> rel. dev. (inf,inf,-0.00216066608087) m_ct = -0.997812898439 m_st = -0.0661015862823 m_n = (0,-3.79831621267e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127053,-0.0570021484161,-0.997812898426) b = (0,0,1) a' = (0.0326687408678,0.0570036585978,0.997839333899) -> rel. dev. (inf,inf,-0.00216066610071) m_ct = -0.997812898426 m_st = -0.0661015864826 m_n = (0,-3.79831621267e-06,2.16986756563e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127213,-0.0570021482101,-0.997812898437) b = (0,0,1) a' = (0.032668740682,0.0570036583922,0.997839333917) -> rel. dev. (inf,inf,-0.00216066608288) m_ct = -0.997812898437 m_st = -0.0661015863131 m_n = (0,-3.79831621089e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127135,-0.0570021481968,-0.997812898438) b = (0,0,1) a' = (0.0326687406744,0.0570036583789,0.997839333918) -> rel. dev. (inf,inf,-0.00216066608187) m_ct = -0.997812898438 m_st = -0.0661015862977 m_n = (0,-3.79831621178e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127057,-0.0570021481836,-0.997812898439) b = (0,0,1) a' = (0.0326687406667,0.0570036583656,0.997839333919) -> rel. dev. (inf,inf,-0.00216066608087) m_ct = -0.997812898439 m_st = -0.0661015862823 m_n = (0,-3.79831621267e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127057,-0.0570021481836,-0.997812898439) b = (0,0,1) a' = (0.0326687406667,0.0570036583656,0.997839333919) -> rel. dev. (inf,inf,-0.00216066608087) m_ct = -0.997812898439 m_st = -0.0661015862823 m_n = (0,-3.79831621267e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127057,-0.0570021481836,-0.997812898439) b = (0,0,1) a' = (0.0326687406667,0.0570036583656,0.997839333919) -> rel. dev. (inf,inf,-0.00216066608087) m_ct = -0.997812898439 m_st = -0.0661015862823 m_n = (0,-3.79831621267e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127135,-0.0570021481968,-0.997812898438) b = (0,0,1) a' = (0.0326687406744,0.0570036583789,0.997839333918) -> rel. dev. (inf,inf,-0.00216066608187) m_ct = -0.997812898438 m_st = -0.0661015862977 m_n = (0,-3.79831621178e-06,2.16986755674e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0334690127135,-0.0570021481968,-0.997812898438) b = (0,0,1) a' = (0.0326687406744,0.0570036583789,0.997839333918) -> rel. dev. (inf,inf,-0.00216066608187) m_ct = -0.997812898438 m_st = -0.0661015862977 m_n = (0,-3.79831621178e-06,2.16986755674e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.427733695,-5.83741109878,-8.51493127398,-1.46908375428) p_j = (35.1702722765,-19.7066728685,-28.7204629819,-4.87135531028) p_k = (4.65632231527e-09,4.45054936162e-09,-1.29843852287e-09,4.336114163e-10) p_ij -> (45.598006962,-25.5441118354,-37.2354047531,-6.34044338526) p_k -> (-9.85865817427e-07,2.78725645728e-05,1.04958839913e-05,4.32113376636e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.176506942966,0.560062560092,-0.809428951711) b = (0,0,1) a' = (0.435128318529,-0.512306176228,0.740409162702) -> rel. dev. (inf,-inf,-0.259590837298) m_ct = -0.809428951711 m_st = -0.587217823412 m_n = (0,-1.00804550855e-06,-6.97489936599e-07) } Channel_Elements::CheckMasses(): Strong deviation in masses s2,p2: 0;(44.0786531886,-7.78134026899,11.5906515545,-41.809511628) -> -5.54865471258e-05 : 5.54865471258e-05, rel = 1.25880767927e-06. Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.3506633665,-1.83661800812,-0.234775585444,2.79260804847) p_j = (27.9279223207,-15.3014624986,-1.96109752409,23.2806397475) p_k = (1.44664157648e-07,2.24107780414e-08,-1.32020219293e-07,5.47369818325e-08) p_ij -> (31.2785858556,-17.138080755,-2.19587293447,26.0732480374) p_k -> (-2.37700774619e-08,2.70630591714e-07,-3.07090516127e-07,-1.86660015444e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.0196257425,14.3993466392,10.6222623432,-2.12914794624) p_j = (16.4374512811,13.1338212125,9.69195761148,-1.93868580103) p_k = (2.96216201183e-09,2.90431609567e-09,3.45587755916e-10,-4.68958774264e-10) p_ij -> (34.4571507527,27.533226331,20.3142645542,-4.06784235495) p_k -> (-7.3726184695e-05,-5.84764332778e-05,-4.45992422353e-05,8.60721536045e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00398665007733,0.00169824269338,-0.00130562039162,0.0033622471632) p_j = (7.41233494995,3.15749510528,-2.42595692735,6.25201304037) p_k = (1.93326753294e-08,1.03570172888e-08,-4.29272435141e-09,1.57498268645e-08) p_ij -> (7.41633036582,3.15919708107,-2.42726541758,6.25538268139) p_k -> (-8.74646571036e-06,-3.72273694871e-06,2.8655440103e-06,-7.37810451357e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.0531054727,5.79203923258,-5.4760094955,-6.12621671006) p_j = (0.00972656966123,0.00558836981545,-0.00531862555626,-0.00592355487632) p_k = (1.66740055248e-09,-4.29716620932e-10,7.63785798585e-10,1.41851636593e-09) p_ij -> (10.0628337702,5.79762861295,-5.48132908035,-6.13214134425) p_k -> (-1.72616865779e-06,-1.01098146876e-06,9.60058567756e-07,1.08072701321e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0337103102229,0.000800110414028,-0.0206887617005,-0.0266030069344) p_j = (39.8532538304,0.895214106056,-24.2356778948,-31.6245529542) p_k = (3.50933484958e-09,-1.49839475485e-09,4.9949641375e-10,-3.13380834042e-09) p_ij -> (39.8869706362,0.896015377509,-24.2563723017,-31.6511608909) p_k -> (-6.49211147064e-06,-1.16253717836e-06,5.64569477923e-06,4.92661010121e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.92573305241,2.07929018777,-0.00716175418906,-3.32984699695) p_j = (38.8619512403,20.6025935519,-0.0640279037906,-32.9511804579) p_k = (4.5359231726e-08,-2.41477059194e-08,3.71000107691e-08,-9.89633174334e-09) p_ij -> (42.7876860076,22.6818852817,-0.0711901491148,-36.2810292841) p_k -> (-1.66955486947e-06,-1.56621779723e-06,5.28235227004e-07,1.81942343858e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0268039095884,0.0149997359172,-0.0058195372743,-0.0214380614224) p_j = (11.0116956038,6.18666775565,-2.33976933844,-8.8038662868) p_k = (4.70239578857e-09,3.23762268674e-09,7.50385891269e-10,-3.32674714497e-09) p_ij -> (11.0385002003,6.20166732675,-2.34559063908,-8.82530529748) p_k -> (-6.82141878983e-07,1.68062432859e-07,1.7641217207e-06,9.45934979235e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00731776048543,-0.00223174274662,0.00375341360946,-0.00587203790105) p_j = (40.7161211747,-12.412622168,20.888941178,-32.6708045645) p_k = (6.37129569614e-09,-2.89820200531e-09,-2.8866329835e-09,4.88477858329e-09) p_ij -> (40.7234476493,-12.4148565673,20.8926990623,-32.6766835947) p_k -> (-8.7077321993e-06,2.65365386287e-06,-4.47361881051e-06,6.99722104969e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.6192794269,-10.9661657877,25.241516269,29.8753230195) p_j = (2.52462308048,-0.681494761669,1.56900219459,1.8567494989) p_k = (8.01315091268e-08,6.71427653099e-08,-2.44807154199e-09,-4.36682424774e-08) p_ij -> (43.1439027787,-11.647660628,26.8105186354,31.7320727242) p_k -> (-1.91193212373e-07,1.45803454643e-07,-1.74238911299e-07,-2.49479191083e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.3110209848,-20.5871903487,4.6151126287,24.4718288252) p_j = (5.51443106848,-3.51472478532,0.788427418575,4.17540918931) p_k = (1.88716064555e-08,-6.11551343908e-09,-1.78147392074e-08,1.17179237947e-09) p_ij -> (37.825456647,-24.1019181503,5.4035410133,28.6472416917) p_k -> (-4.57488075511e-06,3.01021810678e-06,-9.83837809887e-07,-3.67609212581e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.83988970854,1.82778283331,1.3256980538,-4.28091894052) p_j = (0.0795962382455,0.0300563269038,0.0218159861041,-0.070400576036) p_k = (8.62099795317e-09,-7.14524802113e-09,-2.92221914374e-09,3.83769833816e-09) p_ij -> (4.91948599631,1.85783917977,1.3475140539,-4.35131956129) p_k -> (-4.08972433696e-08,-2.67016703193e-08,-1.6920733481e-08,4.85802313932e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.42623223228,-0.916433361634,-3.41903407942,-8.73637281453) p_j = (35.6771118104,-2.84604638935,-13.0063726189,-33.0997069229) p_k = (6.02835662107e-12,3.02376874955e-12,3.45051748508e-13,-5.20373409296e-12) p_ij -> (45.1216765831,-3.76658179695,-16.4339361934,-41.8533672813) p_k -> (-0.0183325404467,0.00410204596994,0.00852949511965,0.0172875439338) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.866142805468,-0.273281464233,-0.423739664244,0.70424803707) p_j = (27.0818290053,-8.53299957226,-13.2531319221,22.021986169) p_k = (1.03898821594e-07,-9.8393044889e-08,1.70964421102e-09,3.33294310725e-08) p_ij -> (27.9479726738,-8.80628118087,-13.6768721107,22.7262350072) p_k -> (-7.59084709756e-07,4.59842484091e-08,5.26122302169e-07,-7.67796846546e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.5710890242,-0.173662250283,-32.4977949226,2.17692600032) p_j = (2.45488191794,-0.018419206238,-2.44991187373,0.155041203656) p_k = (6.65503722571e-10,-5.86282356188e-10,-2.76107868368e-10,-1.51438233661e-10) p_ij -> (35.026147368,-0.192051748035,-34.9479032517,2.33198925627) p_k -> (-0.000176425260669,-2.97090727511e-05,0.000196455089927,-2.20524500245e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.1008953201,-10.2349381185,27.7971021175,27.0305190674) p_j = (4.21573822601,-1.08894847491,2.9183070752,2.84079633625) p_k = (4.61250810999e-10,4.75983971812e-11,2.68867894881e-10,-3.71752890792e-10) p_ij -> (44.3167861692,-11.3239316873,30.7155168463,29.8714434263) p_k -> (-0.000152622613211,4.50939186409e-05,-0.000107653395292,-0.000128023076599) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.09823136749,0.0574171728305,-0.0248977556736,0.0757150684178) p_j = (40.4966630029,23.6833759921,-9.96674192668,31.3008222153) p_k = (2.03850001266e-09,-1.72803051571e-09,1.08121169499e-09,-1.96387836269e-11) p_ij -> (40.5949007133,23.7407993949,-9.99164260982,31.3765435632) p_k -> (-6.34086956453e-06,-6.23169941605e-06,2.92855139161e-06,-6.27945958875e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.78882503872,0.213185720022,-1.50099343002,2.34075109066) p_j = (42.8095025049,3.18173444076,-23.0524099976,35.9321090943) p_k = (7.1313041959e-09,-1.08359444742e-09,3.58525478421e-09,-6.06854799168e-09) p_ij -> (45.5983292869,3.39492096865,-24.5534074848,38.2728667107) p_k -> (-1.73620527733e-06,-8.08955394671e-07,4.06078891757e-06,-6.53186423349e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.392623932173,-0.0198912099501,-0.919483979007) b = (0,0,1) a' = (0.000547573262126,0.021627950719,0.999765938563) -> rel. dev. (inf,inf,-0.000234061436768) m_ct = -0.919483979007 m_st = -0.393127475952 m_n = (0,-1.3263470848e-06,2.86928852843e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0933092542697,-0.0324357734855,-0.0437590353464,-0.0757607045659) p_j = (25.1197768691,-8.44761346889,-11.9435610132,-20.4203909599) p_k = (3.44764679752e-09,-1.27194914259e-09,-2.68796793299e-09,-1.74448870445e-09) p_ij -> (25.213113044,-8.48005553137,-11.9873070401,-20.4961995863) p_k -> (-2.69171900715e-05,6.28772158162e-06,-1.30111348495e-05,4.79200676722e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.6862443732,-13.0098154564,4.94735323733,-19.1652438087) p_j = (4.22597930918,-2.32121903983,0.882805699242,-3.41928316875) p_k = (2.10682121433e-09,1.3264771165e-09,-4.88217861467e-10,1.56230373911e-09) p_ij -> (27.9122275688,-15.3310366325,5.83015974895,-22.5845301241) p_k -> (-3.88427955933e-06,2.13759746437e-06,-8.12868835354e-07,3.14829751602e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.17777475609,0.0957802433935,0.979398938672) b = (0,0,1) a' = (0.372830764536,0.0903130038225,0.923493791184) -> rel. dev. (inf,inf,-0.0765062088158) m_ct = 0.979398938672 m_st = -0.201934937362 m_n = (0,1.60732922128e-06,-1.57188636773e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774752726,0.0957802437469,0.979398939248) b = (0,0,1) a' = (0.372830758717,0.0903130043275,0.923493793484) -> rel. dev. (inf,inf,-0.0765062065159) m_ct = 0.979398939248 m_st = -0.201934934568 m_n = (0,1.60732922083e-06,-1.57188637218e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774755833,0.09578024313,0.979398938745) b = (0,0,1) a' = (0.37283076396,0.0903130035922,0.923493791439) -> rel. dev. (inf,inf,-0.0765062085608) m_ct = 0.979398938745 m_st = -0.20193493701 m_n = (0,1.60732922128e-06,-1.57188636329e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774756919,0.0957802436732,0.979398938495) b = (0,0,1) a' = (0.372830766134,0.0903130040374,0.923493790518) -> rel. dev. (inf,inf,-0.076506209482) m_ct = 0.979398938495 m_st = -0.201934938224 m_n = (0,1.60732922083e-06,-1.57188637218e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774752724,0.095780243881,0.979398939236) b = (0,0,1) a' = (0.372830758773,0.0903130044517,0.923493793449) -> rel. dev. (inf,inf,-0.0765062065507) m_ct = 0.979398939236 m_st = -0.20193493463 m_n = (0,1.60732922083e-06,-1.5718863744e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774752726,0.0957802437469,0.979398939248) b = (0,0,1) a' = (0.372830758717,0.0903130043275,0.923493793484) -> rel. dev. (inf,inf,-0.0765062065159) m_ct = 0.979398939248 m_st = -0.201934934568 m_n = (0,1.60732922083e-06,-1.57188637218e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774755833,0.09578024313,0.979398938745) b = (0,0,1) a' = (0.37283076396,0.0903130035922,0.923493791439) -> rel. dev. (inf,inf,-0.0765062085608) m_ct = 0.979398938745 m_st = -0.20193493701 m_n = (0,1.60732922128e-06,-1.57188636329e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774755833,0.09578024313,0.979398938745) b = (0,0,1) a' = (0.37283076396,0.0903130035922,0.923493791439) -> rel. dev. (inf,inf,-0.0765062085608) m_ct = 0.979398938745 m_st = -0.20193493701 m_n = (0,1.60732922128e-06,-1.57188636329e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774755833,0.09578024313,0.979398938745) b = (0,0,1) a' = (0.37283076396,0.0903130035922,0.923493791439) -> rel. dev. (inf,inf,-0.0765062085608) m_ct = 0.979398938745 m_st = -0.20193493701 m_n = (0,1.60732922128e-06,-1.57188636329e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774752726,0.0957802437469,0.979398939248) b = (0,0,1) a' = (0.372830758717,0.0903130043275,0.923493793484) -> rel. dev. (inf,inf,-0.0765062065159) m_ct = 0.979398939248 m_st = -0.201934934568 m_n = (0,1.60732922083e-06,-1.57188637218e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.177774752726,0.0957802437469,0.979398939248) b = (0,0,1) a' = (0.372830758717,0.0903130043275,0.923493793484) -> rel. dev. (inf,inf,-0.0765062065159) m_ct = 0.979398939248 m_st = -0.201934934568 m_n = (0,1.60732922083e-06,-1.57188637218e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.882905359,31.8535085809,-1.61679707514,20.441489103) p_j = (7.71433275981,6.49000526541,-0.318475355408,4.15804461641) p_k = (2.99072364754e-09,-1.21672261233e-09,2.72407108656e-09,2.08458336581e-10) p_ij -> (45.5972488213,38.3435302966,-1.93527857693,24.5995422985) p_k -> (-1.06994377589e-05,-1.64514968226e-05,6.14909917274e-06,-8.57889393657e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00198450708235,-0.00181464393498,-0.000515457207508,0.00061614902122) p_j = (45.4538246262,-41.2212379043,-2.84491237922,18.9411243685) p_k = (5.36421655973e-10,-1.71139409099e-10,3.06683929325e-10,-4.0547440112e-10) p_ij -> (45.4558840043,-41.2231480383,-2.84546229553,18.9418267535) p_k -> (-7.48705213418e-05,9.54899696808e-05,3.4459404068e-05,-8.62364219394e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.29571139922,-0.166048859343,0.063553191944,0.236292191435) p_j = (45.2460757053,-25.4060985261,9.72371629213,36.1550392875) p_k = (7.18811993641e-08,-4.39911805728e-08,4.02021035717e-08,4.01929556311e-08) p_ij -> (45.5418057768,-25.5721578701,9.78727349666,36.3913463997) p_k -> (-1.86004532239e-05,1.04406675732e-05,-3.97238342842e-06,-1.48805801565e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.4158464854,-9.3736745785,-10.0479236768,4.35776141765) p_j = (31.1660221156,-20.2645879196,-21.7239065411,9.42015369056) p_k = (8.30581777185e-08,-8.00641091216e-11,-7.80964337136e-08,-2.82772242942e-08) p_ij -> (45.5818730885,-29.638265434,-31.771833339,13.7779164825) p_k -> (-4.40442428129e-06,2.93583565636e-06,3.04303665999e-06,-1.40257811321e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.4367864955,-32.9888237356,12.9241455285,-0.685425434327) p_j = (10.1603839175,-9.45599471939,3.71217599575,-0.193169858614) p_k = (4.65517898135e-09,3.95241420319e-09,-1.98997518973e-09,1.44539762431e-09) p_ij -> (45.5971805569,-42.4448300216,16.6363261707,-0.878595881893) p_k -> (-1.01392719074e-05,1.15704733155e-05,-4.64850372417e-06,5.90397072675e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.17085886558,-0.280185979648,0.516625236618,-1.01267204207) p_j = (26.2018295346,-6.30457181694,11.5854847523,-22.6398937325) p_k = (1.77965782883e-09,-7.46232183492e-11,-1.49190581024e-09,9.67387126878e-10) p_ij -> (27.3726909333,-6.58475860638,12.102112401,-23.6525693839) p_k -> (-2.53132226646e-06,8.09719947981e-07,-2.41350482089e-06,3.61026975426e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.917491581,-1.72754790595,2.33017545696,19.7051346469) p_j = (25.6414154806,-2.22394092115,3.00031576794,25.3679794213) p_k = (9.00194596782e-08,2.62710895188e-08,7.81678914189e-08,-3.60986653735e-08) p_ij -> (45.5589072339,-3.95148884265,5.33049124386,45.0731142409) p_k -> (-8.22711854198e-08,4.1821645036e-08,5.92145368294e-08,-2.08782061861e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.4456017805,9.86407661932,1.42522651164,-14.3184406736) p_j = (2.65456627599,1.51086146749,0.225734295076,-2.17095918149) p_k = (5.95848483803e-10,-3.0319466759e-10,-8.75619671073e-12,5.12870203745e-10) p_ij -> (20.1001698324,11.3749599979,1.65096283615,-16.4894340126) p_k -> (-1.77530628598e-06,-2.19113713333e-05,-2.02944025374e-06,3.4157964917e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.5472197407,19.0129475965,5.48288404393,23.2718379192) p_j = (3.56580457328,2.21659804598,0.63812634437,2.71927382329) p_k = (6.44245684716e-09,-5.52397038235e-09,3.01230872973e-09,-1.38455866549e-09) p_ij -> (34.1130319639,21.2295525793,6.12101133725,25.9911190075) p_k -> (-7.64351468518e-06,-6.94232732457e-06,-9.45933453789e-07,-7.26640713111e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.0745936729,-2.2986380359,-13.0071624929,-20.1274948163) p_j = (21.5249687554,-2.05388996291,-11.6299986829,-17.9958035824) p_k = (7.14450075584e-08,-1.10006054833e-08,-3.53798810162e-08,-6.10871492487e-08) p_ij -> (45.5996188534,-4.35253292687,-24.6371920146,-38.1233454242) p_k -> (-5.63537129672e-05,4.91705637895e-06,3.08034939316e-05,4.69644438574e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.8655001596,6.24103475998,-13.6018761559,-38.0266689766) p_j = (2.05270818626,0.313896112388,-0.685797063523,-1.90912611323) p_k = (1.08690579015e-08,-6.98888355766e-09,-4.37792716121e-09,-7.07994698026e-09) p_ij -> (42.918214666,6.55493580978,-14.2876749746,-39.9358023642) p_k -> (-6.30929908851e-06,-4.94439958176e-06,1.75079519149e-06,7.2672125917e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.581297885569,-0.216119229578,0.417260909114,0.342188608955) p_j = (17.9725318327,-6.68031909937,12.9027624714,10.5784667044) p_k = (6.02333415513e-08,-4.41135760934e-08,-3.07713516384e-08,2.71140532316e-08) p_ij -> (18.5538298999,-6.89643839341,13.3200235213,10.9206554214) p_k -> (-1.21380592688e-07,2.03401424592e-08,-1.71551902461e-07,-8.09541189639e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.1936969105,-7.97993817061,3.99936018305,14.6952005216) p_j = (18.2796374886,-8.48411758775,4.25196527142,15.6232418788) p_k = (1.31883897858e-08,-7.95065693043e-09,1.0217764372e-08,2.5135549963e-09) p_ij -> (35.4733380873,-16.46405747,8.25132631162,30.3184455535) p_k -> (-3.67502138943e-06,1.70364822871e-06,-8.46937492582e-07,-3.15064907674e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.9084455987,-8.37466230206,5.51108064923,-24.9711326524) p_j = (5.29882440276,-1.64909400699,1.08509797042,-4.91737647552) p_k = (8.52194064737e-08,-7.01615112737e-09,2.65102122198e-08,8.06866127365e-08) p_ij -> (32.207270494,-10.0237564626,6.59617872042,-29.8885095872) p_k -> (-4.07372887423e-07,1.46556595304e-07,-7.42516488295e-08,5.39984990056e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.1481756791,36.3649066225,7.29522274881,2.08812060738) p_j = (0.0113405691649,0.0109993703251,0.00267825685085,0.000670299691304) p_k = (5.41525363826e-10,-5.08814561333e-10,-1.8246577497e-10,3.26051069832e-11) p_ij -> (37.1595355503,36.3759340605,7.29790734645,2.08879197296) p_k -> (-1.93015115997e-05,-2.80682089127e-05,-6.34097716867e-06,-1.06584768944e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.9601775876,1.04537555976,12.7459530088,-2.10096999924) p_j = (31.8010789416,2.55532657254,31.2761069056,-5.15597369913) p_k = (1.59749281966e-08,8.30184368796e-09,-1.16183957157e-08,7.16174459323e-09) p_ij -> (44.7612590877,3.60070222776,44.0220628605,-7.25694426654) p_k -> (-2.54252374532e-06,-8.71545100534e-08,-2.95768621683e-06,5.75327969266e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.0004684292,-9.14604288535,-3.54821597037,41.8664585092) p_j = (0.266667378596,-0.0566707594183,-0.0219689837883,0.25964837682) p_k = (1.11526198394e-07,3.05740847299e-08,8.63401938111e-09,-1.06905435539e-07) p_ij -> (43.2671362562,-9.20271374185,-3.57018499171,42.1261073294) p_k -> (-3.36863525519e-07,1.27657505899e-07,4.6195629988e-08,-5.50269277255e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00230344523481,0.000471243009079,2.73019382966e-05,-0.0022545608398) p_j = (16.7252822953,3.47146595691,0.220724396103,-16.3595621185) p_k = (2.32964289894e-09,-1.56962631388e-09,1.36679271515e-09,1.04660484244e-09) p_ij -> (16.7275917135,3.4719384468,0.220751772209,-16.3618225332) p_k -> (-5.97057012364e-06,-1.24844555893e-06,-7.2800599743e-08,5.85493041072e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.387001373961,0.0805206583682,-0.0270890218777,-0.377561480977) p_j = (40.1089816604,8.34469561828,-2.80830007266,-39.1306774229) p_k = (1.18502610515e-06,2.15874362784e-07,-4.95622813466e-08,-1.16414290774e-06) p_ij -> (40.4960452902,8.42522923253,-2.83539345731,-39.5082996403) p_k -> (-6.10707777717e-05,-1.27400130392e-05,4.31321508465e-06,5.95722474266e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00271039186389,0.0012676810077,0.00157590007934,-0.00180436910262) p_j = (40.4662249855,18.9811386779,23.5431814387,-26.8877359927) p_k = (1.76759963983e-10,-5.90614495867e-12,1.72090968987e-10,3.99253218287e-11) p_ij -> (40.4689504758,18.9824134451,23.5447661199,-26.8895504011) p_k -> (-1.5098204404e-05,-7.08613905864e-06,-8.78086775735e-06,1.00393522846e-05) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989762959,0.0685702451611,0.991340715633) b = (0,0,1) a' = (0.0194687675769,0.0689912478136,0.997427277958) -> rel. dev. (inf,inf,-0.00257272204227) m_ct = 0.991340715633 m_st = -0.131314833622 m_n = (0,9.96334070107e-07,-6.89156315001e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989766817,0.0685702459787,0.99134071514) b = (0,0,1) a' = (0.0194687674441,0.0689912486665,0.997427277901) -> rel. dev. (inf,inf,-0.00257272209868) m_ct = 0.99134071514 m_st = -0.131314837339 m_n = (0,9.9633406947e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989759738,0.0685702459729,0.99134071594) b = (0,0,1) a' = (0.0194687684747,0.068991248604,0.997427277886) -> rel. dev. (inf,inf,-0.00257272211447) m_ct = 0.99134071594 m_st = -0.131314831298 m_n = (0,9.96334070358e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989759738,0.0685702459729,0.99134071594) b = (0,0,1) a' = (0.0194687684747,0.068991248604,0.997427277886) -> rel. dev. (inf,inf,-0.00257272211447) m_ct = 0.99134071594 m_st = -0.131314831298 m_n = (0,9.96334070358e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989766817,0.0685702459787,0.99134071514) b = (0,0,1) a' = (0.0194687674441,0.0689912486665,0.997427277901) -> rel. dev. (inf,inf,-0.00257272209868) m_ct = 0.99134071514 m_st = -0.131314837339 m_n = (0,9.9633406947e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989766817,0.0685702459787,0.99134071514) b = (0,0,1) a' = (0.0194687674441,0.0689912486665,0.997427277901) -> rel. dev. (inf,inf,-0.00257272209868) m_ct = 0.99134071514 m_st = -0.131314837339 m_n = (0,9.9633406947e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989759738,0.0685702459729,0.99134071594) b = (0,0,1) a' = (0.0194687684747,0.068991248604,0.997427277886) -> rel. dev. (inf,inf,-0.00257272211447) m_ct = 0.99134071594 m_st = -0.131314831298 m_n = (0,9.96334070358e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989759738,0.0685702459729,0.99134071594) b = (0,0,1) a' = (0.0194687684747,0.068991248604,0.997427277886) -> rel. dev. (inf,inf,-0.00257272211447) m_ct = 0.99134071594 m_st = -0.131314831298 m_n = (0,9.96334070358e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989759738,0.0685702459729,0.99134071594) b = (0,0,1) a' = (0.0194687684747,0.068991248604,0.997427277886) -> rel. dev. (inf,inf,-0.00257272211447) m_ct = 0.99134071594 m_st = -0.131314831298 m_n = (0,9.96334070358e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989766817,0.0685702459787,0.99134071514) b = (0,0,1) a' = (0.0194687674441,0.0689912486665,0.997427277901) -> rel. dev. (inf,inf,-0.00257272209868) m_ct = 0.99134071514 m_st = -0.131314837339 m_n = (0,9.9633406947e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.111989766817,0.0685702459787,0.99134071514) b = (0,0,1) a' = (0.0194687674441,0.0689912486665,0.997427277901) -> rel. dev. (inf,inf,-0.00257272209868) m_ct = 0.99134071514 m_st = -0.131314837339 m_n = (0,9.9633406947e-07,-6.89156323119e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973422283,-0.424508598266,-0.904014639497) b = (0,0,1) a' = (0.472606427155,0.374586121006,0.797701951208) -> rel. dev. (inf,inf,-0.202298048792) m_ct = -0.904014639497 m_st = -0.427501498915 m_n = (0,-1.21736607106e-06,5.71652650105e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430436,-0.424508598519,-0.904014639333) b = (0,0,1) a' = (0.472606428213,0.374586121003,0.797701950583) -> rel. dev. (inf,inf,-0.202298049417) m_ct = -0.904014639333 m_st = -0.427501499262 m_n = (0,-1.21736607106e-06,5.71652650549e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430719,-0.424508597438,-0.90401463984) b = (0,0,1) a' = (0.472606427195,0.374586120282,0.797701951525) -> rel. dev. (inf,inf,-0.202298048475) m_ct = -0.90401463984 m_st = -0.427501498191 m_n = (0,-1.21736607106e-06,5.71652648773e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973417561,-0.424508597466,-0.9040146399) b = (0,0,1) a' = (0.472606425909,0.374586120574,0.797701952149) -> rel. dev. (inf,inf,-0.202298047851) m_ct = -0.9040146399 m_st = -0.427501498064 m_n = (0,-1.21736607106e-06,5.71652648773e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430719,-0.424508597438,-0.90401463984) b = (0,0,1) a' = (0.472606427195,0.374586120282,0.797701951525) -> rel. dev. (inf,inf,-0.202298048475) m_ct = -0.90401463984 m_st = -0.427501498191 m_n = (0,-1.21736607106e-06,5.71652648773e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430436,-0.424508598519,-0.904014639333) b = (0,0,1) a' = (0.472606428213,0.374586121003,0.797701950583) -> rel. dev. (inf,inf,-0.202298049417) m_ct = -0.904014639333 m_st = -0.427501499262 m_n = (0,-1.21736607106e-06,5.71652650549e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430719,-0.424508597438,-0.90401463984) b = (0,0,1) a' = (0.472606427195,0.374586120282,0.797701951525) -> rel. dev. (inf,inf,-0.202298048475) m_ct = -0.90401463984 m_st = -0.427501498191 m_n = (0,-1.21736607106e-06,5.71652648773e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430719,-0.424508597438,-0.90401463984) b = (0,0,1) a' = (0.472606427195,0.374586120282,0.797701951525) -> rel. dev. (inf,inf,-0.202298048475) m_ct = -0.90401463984 m_st = -0.427501498191 m_n = (0,-1.21736607106e-06,5.71652648773e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430719,-0.424508597438,-0.90401463984) b = (0,0,1) a' = (0.472606427195,0.374586120282,0.797701951525) -> rel. dev. (inf,inf,-0.202298048475) m_ct = -0.90401463984 m_st = -0.427501498191 m_n = (0,-1.21736607106e-06,5.71652648773e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430436,-0.424508598519,-0.904014639333) b = (0,0,1) a' = (0.472606428213,0.374586121003,0.797701950583) -> rel. dev. (inf,inf,-0.202298049417) m_ct = -0.904014639333 m_st = -0.427501499262 m_n = (0,-1.21736607106e-06,5.71652650549e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0504973430436,-0.424508598519,-0.904014639333) b = (0,0,1) a' = (0.472606428213,0.374586121003,0.797701950583) -> rel. dev. (inf,inf,-0.202298049417) m_ct = -0.904014639333 m_st = -0.427501499262 m_n = (0,-1.21736607106e-06,5.71652650549e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.57134802519,-1.09369058159,-2.36852851234,-7.10768770533) p_j = (0.406490084665,-0.0589446203664,-0.127661350131,-0.381395202308) p_k = (6.06518344768e-09,-5.29935124962e-09,-1.79936177875e-09,2.33786588273e-09) p_ij -> (7.97783815323,-1.15263495341,-2.49618988171,-7.48908341105) p_k -> (-3.73107567064e-08,-2.53848119081e-07,1.7440110911e-08,5.05755774149e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0660958162827,-0.0225949226755,-0.0225926803231,-0.0578592878904) p_j = (21.2649898447,-7.36945224955,-7.27470844317,-18.5733568237) p_k = (3.32994773145e-10,1.08644253589e-10,7.73232830877e-11,3.0512572522e-10) p_ij -> (21.3310934959,-7.39205017691,-7.29730405099,-18.6312237252) p_k -> (-7.83459245568e-06,3.00479539206e-06,2.92756823672e-06,7.61388906945e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.01325144686,7.83342422182,-1.04158787834,1.32844209634) p_j = (18.8551148103,18.4321219818,-2.4508610805,3.12498219507) p_k = (7.40723571975e-08,-1.13487718667e-08,-4.16156095398e-08,-6.02167784456e-08) p_ij -> (26.8683667113,26.2655466529,-3.49244901588,4.45342437124) p_k -> (-3.80117088028e-07,-4.60591602192e-07,1.5419086008e-08,-1.40036931384e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.476601419779,0.107461595041,0.0726519228835,0.458609438442) p_j = (29.8442460187,6.72705546496,4.54899650478,28.7181541189) p_k = (1.68616776444e-07,-2.11644107308e-08,-8.33450097978e-08,1.45042388459e-07) p_ij -> (30.3208476575,6.83451711095,4.62164846396,29.1767637685) p_k -> (-5.03704526977e-08,-7.21089463696e-08,-1.19642075802e-07,-6.61424657267e-08) } MlPMom : 0.75 8.31744e-09 nan nan 0.0177817670811 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5999180924,0,0,45.5999180924) (9.09494701773e-13) p_1 = (45.5995872881,0,0,-45.5995872881) (1.36424205266e-12) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (5.51463723415e-07,-1.43357245489e-07,1.05013443518e-07,5.22047042984e-07) (1.00974195868e-28) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1995053805,0,0,0.000330804324641) (8317.34978153) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Poincare::Poincare(): Inaccurate rotation { a = (0.378750265931,-0.277063656214,0.883053773257) b = (0,0,1) a' = (0.768767402875,-0.191453601293,0.610198491336) -> rel. dev. (inf,-inf,-0.389801508664) m_ct = 0.883053773257 m_st = -0.469271811999 m_n = (-0,1.26810208911e-06,3.97874978741e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750265317,-0.277063656361,0.883053773474) b = (0,0,1) a' = (0.768767402156,-0.191453601602,0.610198492145) -> rel. dev. (inf,-inf,-0.389801507855) m_ct = 0.883053773474 m_st = -0.469271811591 m_n = (-0,1.26810208734e-06,3.97874978297e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750267023,-0.277063655798,0.883053772919) b = (0,0,1) a' = (0.768767404091,-0.191453600661,0.610198490003) -> rel. dev. (inf,-inf,-0.389801509997) m_ct = 0.883053772919 m_st = -0.469271812635 m_n = (-0,1.26810208911e-06,3.97874978297e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750266958,-0.277063656369,0.883053772767) b = (0,0,1) a' = (0.768767404252,-0.191453600992,0.610198489696) -> rel. dev. (inf,-inf,-0.389801510304) m_ct = 0.883053772767 m_st = -0.46927181292 m_n = (-0,1.26810208911e-06,3.97874979186e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750264839,-0.277063656629,0.883053773595) b = (0,0,1) a' = (0.76876740166,-0.191453601925,0.610198492668) -> rel. dev. (inf,-inf,-0.389801507332) m_ct = 0.883053773595 m_st = -0.469271811363 m_n = (-0,1.26810208911e-06,3.97874979186e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750265317,-0.277063656361,0.883053773474) b = (0,0,1) a' = (0.768767402156,-0.191453601602,0.610198492145) -> rel. dev. (inf,-inf,-0.389801507855) m_ct = 0.883053773474 m_st = -0.469271811591 m_n = (-0,1.26810208734e-06,3.97874978297e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750267023,-0.277063655798,0.883053772919) b = (0,0,1) a' = (0.768767404091,-0.191453600661,0.610198490003) -> rel. dev. (inf,-inf,-0.389801509997) m_ct = 0.883053772919 m_st = -0.469271812635 m_n = (-0,1.26810208911e-06,3.97874978297e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750267023,-0.277063655798,0.883053772919) b = (0,0,1) a' = (0.768767404091,-0.191453600661,0.610198490003) -> rel. dev. (inf,-inf,-0.389801509997) m_ct = 0.883053772919 m_st = -0.469271812635 m_n = (-0,1.26810208911e-06,3.97874978297e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750267023,-0.277063655798,0.883053772919) b = (0,0,1) a' = (0.768767404091,-0.191453600661,0.610198490003) -> rel. dev. (inf,-inf,-0.389801509997) m_ct = 0.883053772919 m_st = -0.469271812635 m_n = (-0,1.26810208911e-06,3.97874978297e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750265317,-0.277063656361,0.883053773474) b = (0,0,1) a' = (0.768767402156,-0.191453601602,0.610198492145) -> rel. dev. (inf,-inf,-0.389801507855) m_ct = 0.883053773474 m_st = -0.469271811591 m_n = (-0,1.26810208734e-06,3.97874978297e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.378750265317,-0.277063656361,0.883053773474) b = (0,0,1) a' = (0.768767402156,-0.191453601602,0.610198492145) -> rel. dev. (inf,-inf,-0.389801507855) m_ct = 0.883053773474 m_st = -0.469271811591 m_n = (-0,1.26810208734e-06,3.97874978297e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00115943173263,0.000185886591681,0.000207862375459,-0.0011253983075) p_j = (18.1999861411,2.88088047524,3.14560285436,-17.6930835613) p_k = (1.912307293e-09,-1.79003152482e-09,3.67255597908e-10,5.63763221893e-10) p_ij -> (18.2011491237,2.88106694558,3.14581133006,-17.6942124366) p_k -> (-3.54891665033e-06,-5.85543151077e-07,-6.12962523627e-07,3.4776076312e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00116799333675,0.000918173310053,-0.00071965607724,5.71081244895e-05) p_j = (34.649757109,27.4525526893,-21.0204051274,2.25955456565) p_k = (2.11526555611e-10,1.57781383263e-10,8.8545038052e-11,-1.09581091252e-10) p_ij -> (34.6511231855,27.4536278166,-21.0212452904,2.25962478378) p_k -> (-0.00019808294704,-0.000156953848226,0.000120507054564,-1.31101155183e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.278845213,4.42359381527,-2.78438913398,-13.2877543447) p_j = (2.59208906707,0.803582813729,-0.505479520914,-2.41198483557) p_k = (5.33419939368e-10,9.78133044287e-11,-4.43398004087e-10,2.79942636073e-10) p_ij -> (16.8709592397,5.22718436786,-3.2898734942,-15.699762471) p_k -> (-2.49590935439e-05,-7.738766028e-06,4.83886031666e-06,2.32909574587e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.289785897812,0.0835729860908,-0.0568895969179,0.271578711111) p_j = (43.071960677,12.5792452874,-8.842711181,40.2338519599) p_k = (2.30584909925e-09,-6.40618457343e-10,6.43067992942e-10,-2.11967229565e-09) p_ij -> (43.3617732913,12.6628303249,-8.89960987148,40.5054694488) p_k -> (-2.67142408177e-05,-1.20521127336e-05,9.09421189021e-06,-3.87799369719e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.811765758,-6.39833736029,12.9360668511,-6.45998373306) p_j = (27.5010066294,-11.1344071931,22.4964297149,-11.2357016768) p_k = (7.79539772399e-09,-4.53221842706e-09,-4.81410438325e-10,6.32419894381e-09) p_ij -> (43.3127791614,-17.5327472506,35.4325023315,-17.6956884878) p_k -> (-6.76627060869e-06,2.69262732999e-06,-5.76597212643e-06,3.08432305651e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.6944560873,-2.34984889763,-5.15693901465,-0.557691928962) p_j = (3.92779683179,-1.61762599744,-3.55830044124,-0.386486809695) p_k = (1.12741468082e-09,-2.52482359718e-10,-8.76098718601e-10,-6.63148928841e-10) p_ij -> (9.6222538017,-3.96747672832,-8.71524125879,-0.944175002642) p_k -> (-8.81484320203e-07,1.83299468715e-06,1.80202203559e-06,-3.73667874803e-06) } Event 30000 ( 3m 40s elapsed / 4h 1m 51s left ) -> ETA: Thu Aug 17 20:48 XS = 19854380.0371 pb +- ( 2844767.4651 pb = 14.32 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.1155283168,-7.15942416662,-1.01258640038,10.9423213905) p_j = (26.8675717174,-14.6666442559,-2.07428738904,22.4154698386) p_k = (6.55080051132e-07,-3.52242195666e-07,-2.58331943439e-08,5.51713653132e-07) p_ij -> (39.9832841777,-21.8261689538,-3.08688805466,33.3579448494) p_k -> (-0.00018348850201,0.000100178989612,1.42393981155e-05,-0.00015306861081) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.3038220516,13.6895206387,-11.9570850818,-2.15755480232) p_j = (0.0423702304769,0.0316112532875,-0.0277319871448,-0.00518671237438) p_k = (4.62897694557e-10,-2.15923572159e-10,4.46085193364e-12,4.09432941096e-10) p_ij -> (18.3462157836,13.7211499182,-11.9848326669,-2.16274465614) p_k -> (-2.35011258187e-05,-1.80264748559e-05,1.55979507825e-05,3.14185022465e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.9844847607,5.78437572804,25.8730675438,36.341838733) p_j = (0.0704876338441,0.00906506697806,0.0405438266977,0.0569432103269) p_k = (4.58760932916e-08,-2.67969181803e-09,-2.85285375287e-08,-3.58267758658e-08) p_ij -> (45.0549733028,5.79344091182,25.9136118929,36.3987826772) p_k -> (-8.62449553551e-07,-1.19485604078e-07,-5.5100757379e-07,-7.69707469317e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00226628312412,-0.00121002909178,-0.000572621716822,0.00182865337479) p_j = (37.3800979366,-19.1982128823,-9.47642480161,30.6414379045) p_k = (6.06420435135e-09,-2.05655508471e-09,2.27440124921e-09,-5.23185107145e-09) p_ij -> (37.3823644365,-19.199423093,-9.47699773145,30.6432674132) p_k -> (-2.10719978355e-07,1.79551793877e-07,3.10399131287e-07,-8.60577811679e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.8037356218,-3.57035310092,-5.29220664925,27.0609098524) p_j = (17.7950060796,-2.30042489327,-3.40572861138,17.3139047967) p_k = (5.02220495824e-09,4.18705165677e-09,-4.77391174992e-10,2.73189137042e-09) p_ij -> (45.5987507811,-5.87079721379,-8.69793878727,44.3748315346) p_k -> (-9.07462789357e-06,1.92237817038e-05,3.52616313215e-06,-1.68826634308e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.5805542374,9.51025990544,1.12965180054,9.62861863071) p_j = (31.9377680437,22.3509411386,2.6137511593,22.663291083) p_k = (5.04407093579e-10,3.10271039802e-10,-1.85111084657e-10,-3.51984829485e-10) p_ij -> (45.5186630881,31.8614404759,3.74343564269,32.2921660736) p_k -> (-0.000340806515958,-0.000239431623873,-3.26830223121e-05,-0.000256360296049) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.42136091828,0.139914057486,-0.316699018723,1.37854729628) p_j = (37.0128956246,3.64424544544,-8.24769548838,35.8977636738) p_k = (8.49619553754e-08,2.44813135568e-08,-7.32262277357e-08,-3.54558726321e-08) p_ij -> (38.4342574426,3.78415959141,-8.56439470727,37.2763118434) p_k -> (-8.14794002935e-07,-6.40084552028e-08,1.26937007572e-07,-9.08823558632e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.757501929,-5.09872470779,-17.7477423561,3.29613807849) p_j = (4.00134668677,-1.08683747207,-3.78611450859,0.703488837777) p_k = (1.73164439187e-10,-1.00040796795e-10,1.09486926961e-10,8.93875143843e-11) p_ij -> (22.7588716399,-6.18556841812,-21.5338787496,3.99963094093) p_k -> (-2.30239397787e-05,6.23816388812e-06,2.18850132221e-05,-4.02457255344e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.6699262931,27.200627327,-12.5603700737,28.961107263) p_j = (0.267076961794,0.174403490849,-0.0802758680531,0.185659125574) p_k = (2.09234584771e-08,1.24703870678e-08,-3.77676356855e-09,1.63712130971e-08) p_ij -> (41.9372963327,27.3752226062,-12.6407352978,29.1469693466) p_k -> (-0.000293056958714,-0.000191775901511,8.93522664409e-05,-0.000202941647858) } Poincare::Poincare(): Inaccurate rotation { a = (-0.352338468494,0.246493633466,0.902828052444) b = (0,0,1) a' = (0.0843258238438,0.262445625328,0.961255142602) -> rel. dev. (inf,inf,-0.0387448573978) m_ct = 0.902828052444 m_st = -0.430001753159 m_n = (0,1.34323668322e-06,-3.66735714241e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.352338468066,0.246493633584,0.902828052579) b = (0,0,1) a' = (0.0843258239873,0.262445625406,0.961255142568) -> rel. dev. (inf,inf,-0.0387448574316) m_ct = 0.902828052579 m_st = -0.430001752876 m_n = (0,1.34323668277e-06,-3.66735714241e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.35233846804,0.246493633864,0.902828052513) b = (0,0,1) a' = (0.0843258241688,0.262445625697,0.961255142473) -> rel. dev. (inf,inf,-0.0387448575271) m_ct = 0.902828052513 m_st = -0.430001753015 m_n = (0,1.34323668277e-06,-3.66735714685e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.35233846804,0.246493633864,0.902828052513) b = (0,0,1) a' = (0.0843258241688,0.262445625697,0.961255142473) -> rel. dev. (inf,inf,-0.0387448575271) m_ct = 0.902828052513 m_st = -0.430001753015 m_n = (0,1.34323668277e-06,-3.66735714685e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.352338470157,0.246493633377,0.902828051819) b = (0,0,1) a' = (0.0843258235207,0.262445625416,0.961255142607) -> rel. dev. (inf,inf,-0.0387448573935) m_ct = 0.902828051819 m_st = -0.430001754471 m_n = (0,1.34323668277e-06,-3.66735714241e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.352338468066,0.246493633584,0.902828052579) b = (0,0,1) a' = (0.0843258239873,0.262445625406,0.961255142568) -> rel. dev. (inf,inf,-0.0387448574316) m_ct = 0.902828052579 m_st = -0.430001752876 m_n = (0,1.34323668277e-06,-3.66735714241e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.35233846804,0.246493633864,0.902828052513) b = (0,0,1) a' = (0.0843258241688,0.262445625697,0.961255142473) -> rel. dev. (inf,inf,-0.0387448575271) m_ct = 0.902828052513 m_st = -0.430001753015 m_n = (0,1.34323668277e-06,-3.66735714685e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.35233846804,0.246493633864,0.902828052513) b = (0,0,1) a' = (0.0843258241688,0.262445625697,0.961255142473) -> rel. dev. (inf,inf,-0.0387448575271) m_ct = 0.902828052513 m_st = -0.430001753015 m_n = (0,1.34323668277e-06,-3.66735714685e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.35233846804,0.246493633864,0.902828052513) b = (0,0,1) a' = (0.0843258241688,0.262445625697,0.961255142473) -> rel. dev. (inf,inf,-0.0387448575271) m_ct = 0.902828052513 m_st = -0.430001753015 m_n = (0,1.34323668277e-06,-3.66735714685e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.352338468066,0.246493633584,0.902828052579) b = (0,0,1) a' = (0.0843258239873,0.262445625406,0.961255142568) -> rel. dev. (inf,inf,-0.0387448574316) m_ct = 0.902828052579 m_st = -0.430001752876 m_n = (0,1.34323668277e-06,-3.66735714241e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.352338468066,0.246493633584,0.902828052579) b = (0,0,1) a' = (0.0843258239873,0.262445625406,0.961255142568) -> rel. dev. (inf,inf,-0.0387448574316) m_ct = 0.902828052579 m_st = -0.430001752876 m_n = (0,1.34323668277e-06,-3.66735714241e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.122221444108,-0.0991221606286,-0.0642117557536,0.0314599601914) p_j = (22.7361400119,-18.4399459483,-11.9435201945,5.8525875838) p_k = (4.69223734795e-09,-3.25094395704e-09,3.76065318026e-10,-3.36259165432e-09) p_ij -> (22.8583663875,-18.5390721086,-12.0077345411,5.8840488139) p_k -> (-4.92681100361e-06,3.99645832161e-06,2.59124239399e-06,-1.27327527233e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.18045514024,0.476648689047,-0.884144367951,-0.620136357552) p_j = (23.6679631652,9.55729538929,-17.7256300609,-12.4351366769) p_k = (9.21544633222e-08,3.16870195127e-08,8.49307048244e-08,-1.65877436498e-08) p_ij -> (24.8484184904,10.0339441532,-18.6097745724,-13.0552731326) p_k -> (-9.28121259847e-08,-4.31822870794e-08,2.28435798277e-07,8.16222396338e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.39572828193,-0.350916927012,1.47973726963,-1.85114800166) p_j = (42.0287414509,-6.16984792963,26.0144781216,-32.4283057302) p_k = (1.75251400845e-08,1.12295258815e-08,1.34097821755e-08,-1.09817647757e-09) p_ij -> (44.4244713091,-6.52076986893,27.4942154787,-34.2794592521) p_k -> (-1.55871934737e-06,5.02351490317e-06,-7.41379277969e-08,5.51908647139e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.247219836101,0.0779367729761,0.034562557987,0.232053735944) p_j = (10.5077758661,3.31019853266,1.47108353927,9.86366324176) p_k = (1.07438653129e-09,3.68368378595e-10,-7.63704699255e-10,6.59823491875e-10) p_ij -> (10.7550047552,3.38813815686,1.50564738759,10.0957254845) p_k -> (-9.0519539846e-06,-2.85084713791e-06,-1.29109141911e-06,-8.50617414105e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.4765796479,20.3397859176,-3.8792913924,32.4297916817) p_j = (0.623135306464,0.329758935162,-0.0643515472405,0.524800469904) p_k = (2.08937135266e-10,1.52839708203e-11,-1.00795728527e-11,-2.08141414018e-10) p_ij -> (39.0999410399,20.6696648939,-3.94366580343,32.95478482) p_k -> (-0.00022608536915,-0.000120041116212,2.28637788686e-05,-0.000192668583413) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.0492431085,13.984962261,-9.6477238054,-1.42089637472) p_j = (0.0616280766048,0.050543586528,-0.0348857668679,-0.00513312350963) p_k = (3.67004135537e-08,-6.92032070402e-09,2.51121918069e-08,-2.58535775831e-08) p_ij -> (17.1108713179,14.0355059576,-9.68260964891,-1.42602950856) p_k -> (-9.61147108569e-08,-1.17062955773e-07,1.0175418641e-07,-1.55226311804e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.84239234772,2.30299584636,-5.55854216915,3.25839717126) p_j = (30.8427311305,10.3813866308,-25.0532701147,14.6913080346) p_k = (1.47891142637e-08,2.3296389073e-09,6.10414614918e-09,1.32676325828e-08) p_ij -> (37.6851266387,12.6843835534,-30.611814936,17.9497066821) p_k -> (-3.14573640026e-06,-1.07386196291e-06,2.65821216594e-06,-1.46298565618e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.1477980663,22.1415120065,10.0782031607,36.8403493635) p_j = (1.45008617158,0.701649663742,0.331363168109,1.22500453272) p_k = (3.96228941829e-10,7.19275277344e-12,3.88813851042e-10,7.59682849352e-11) p_ij -> (45.5983912862,22.8436492809,10.4093177715,38.0660883141) p_k -> (-0.000507047939799,-0.000487610615341,0.000248557622887,-0.000734417843379) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0958828651959,-0.00823892131854,0.0221990359045,-0.092913114352) p_j = (35.6826390808,-3.07728718529,8.26698697479,-34.5751060983) p_k = (2.82269266673e-07,-6.2001631762e-08,1.27231968211e-07,-2.44220725655e-07) p_ij -> (35.7785248168,-3.0855263329,8.28918664084,-34.6680220109) p_k -> (-2.58847106238e-06,1.64283793902e-07,-5.0291085163e-07,2.55397113591e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.6805372589,16.7503988268,-20.4741651326,3.47617170003) p_j = (18.8357829386,11.8259459872,-14.4540833234,2.45218182389) p_k = (8.39215214005e-08,9.20098229095e-09,-6.43089425841e-08,5.31274278032e-08) p_ij -> (45.5163224655,28.5763463621,-34.9282501967,5.92835369898) p_k -> (-2.1841605431e-06,-1.53878901266e-06,1.67642711091e-06,-1.21934444763e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.3566460317,-3.09676083033,-7.68186028498,16.3818664521) p_j = (18.7942691732,-3.18054349211,-7.86258942077,16.7716541954) p_k = (2.13041400812e-09,7.05406731783e-10,-1.72071675648e-09,1.03932651269e-09) p_ij -> (37.1510239105,-6.2773251435,-15.5444932799,33.1536196412) p_k -> (-0.00010870346869,2.08217757929e-05,4.35724332775e-05,-9.89926384705e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.5662186328,-9.27377297648,18.537300214,-19.656919457) p_j = (1.4961241936,-0.486102781296,0.97107841962,-1.02912506123) p_k = (9.28090479131e-10,-2.84522118409e-10,8.82876774481e-10,-3.04537200071e-11) p_ij -> (30.0624512232,-9.75991095699,19.5084488465,-20.6861193862) p_k -> (-0.000108395799987,3.5198925123e-05,-7.02120220222e-05,7.48680100724e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467731459,0.290647702687,0.953592469557) b = (0,0,1) a' = (0.375164644903,0.270255372654,0.886686823386) -> rel. dev. (inf,inf,-0.113313176614) m_ct = 0.953592469557 m_st = -0.301100318837 m_n = (0,1.02788858987e-06,-3.13292592801e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467737372,0.290647704916,0.953592468829) b = (0,0,1) a' = (0.375164647694,0.270255374409,0.88668682167) -> rel. dev. (inf,inf,-0.11331317833) m_ct = 0.953592468829 m_st = -0.301100321142 m_n = (0,1.0278885898e-06,-3.13292595422e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467725842,0.290647701926,0.953592469835) b = (0,0,1) a' = (0.375164643525,0.270255372097,0.886686824139) -> rel. dev. (inf,inf,-0.113313175861) m_ct = 0.953592469835 m_st = -0.301100317956 m_n = (0,1.0278885898e-06,-3.13292591869e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467725842,0.290647701926,0.953592469835) b = (0,0,1) a' = (0.375164643525,0.270255372097,0.886686824139) -> rel. dev. (inf,inf,-0.113313175861) m_ct = 0.953592469835 m_st = -0.301100317956 m_n = (0,1.0278885898e-06,-3.13292591869e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467737372,0.290647704916,0.953592468829) b = (0,0,1) a' = (0.375164647694,0.270255374409,0.88668682167) -> rel. dev. (inf,inf,-0.11331317833) m_ct = 0.953592468829 m_st = -0.301100321142 m_n = (0,1.0278885898e-06,-3.13292595422e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467737372,0.290647704916,0.953592468829) b = (0,0,1) a' = (0.375164647694,0.270255374409,0.88668682167) -> rel. dev. (inf,inf,-0.11331317833) m_ct = 0.953592468829 m_st = -0.301100321142 m_n = (0,1.0278885898e-06,-3.13292595422e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467725842,0.290647701926,0.953592469835) b = (0,0,1) a' = (0.375164643525,0.270255372097,0.886686824139) -> rel. dev. (inf,inf,-0.113313175861) m_ct = 0.953592469835 m_st = -0.301100317956 m_n = (0,1.0278885898e-06,-3.13292591869e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467725842,0.290647701926,0.953592469835) b = (0,0,1) a' = (0.375164643525,0.270255372097,0.886686824139) -> rel. dev. (inf,inf,-0.113313175861) m_ct = 0.953592469835 m_st = -0.301100317956 m_n = (0,1.0278885898e-06,-3.13292591869e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467725842,0.290647701926,0.953592469835) b = (0,0,1) a' = (0.375164643525,0.270255372097,0.886686824139) -> rel. dev. (inf,inf,-0.113313175861) m_ct = 0.953592469835 m_st = -0.301100317956 m_n = (0,1.0278885898e-06,-3.13292591869e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467737372,0.290647704916,0.953592468829) b = (0,0,1) a' = (0.375164647694,0.270255374409,0.88668682167) -> rel. dev. (inf,inf,-0.11331317833) m_ct = 0.953592468829 m_st = -0.301100321142 m_n = (0,1.0278885898e-06,-3.13292595422e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0786467737372,0.290647704916,0.953592468829) b = (0,0,1) a' = (0.375164647694,0.270255374409,0.88668682167) -> rel. dev. (inf,inf,-0.11331317833) m_ct = 0.953592468829 m_st = -0.301100321142 m_n = (0,1.0278885898e-06,-3.13292595422e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.9466661665,21.9772813502,-11.7238282751,1.3737204411) p_j = (0.0566723519593,0.0499281550327,-0.0266311258251,0.0031173624932) p_k = (1.06668716288e-05,9.35746259573e-06,-5.10373641936e-06,4.14630771724e-07) p_ij -> (25.0033538706,22.0272230337,-11.7504666075,1.37683866465) p_k -> (-4.6852632174e-06,-4.17092648775e-06,2.10284445767e-06,-4.4643504471e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.6016885229,10.6907729357,-12.1605948381,41.5588489532) p_j = (0.109718218884,0.0263027373274,-0.0299174430123,0.102231111545) p_k = (8.60696282437e-09,-7.23150201903e-09,2.59890119771e-09,-3.8769707324e-09) p_ij -> (44.7114105135,10.7170765772,-12.1905133095,41.6610835793) p_k -> (-3.763079647e-06,-9.11361911271e-07,1.03098635851e-06,-3.51834941981e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.9620496898,15.8238120571,4.90906516964,-21.2711112689) p_j = (0.0437680135426,0.0256841594225,0.00796790038398,-0.0345322389616) p_k = (2.19230508835e-06,1.31126422618e-06,3.7096255545e-07,-1.71731607808e-06) p_ij -> (27.0058230348,15.8494993331,4.91703405506,-21.3056477203) p_k -> (-3.13923517403e-06,-1.80528911287e-06,-6.1406719265e-07,2.49509955275e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.1276989622,12.9661896281,3.02730547344,16.4040547285) p_j = (21.7341905645,13.3384266496,3.11430566231,16.8749078294) p_k = (4.96661607576e-10,-1.40575242995e-10,1.59295989275e-10,-4.4892693281e-10) p_ij -> (42.8619209504,26.3046355628,6.1416156384,33.2789869561) p_k -> (-3.14232508387e-05,-1.92851640879e-05,-4.50248537254e-06,-2.43987013846e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.54020658567,-5.06211233734,2.61770239728,-4.93734424544) p_j = (15.549560623,-10.4394297793,5.39558661828,-10.1830637087) p_k = (3.23528379561e-09,-2.28291300608e-09,-1.13743802657e-09,1.99037669977e-09) p_ij -> (23.089774055,-15.50154671,8.01329145215,-15.1204125476) p_k -> (-6.84309634025e-06,4.59109750661e-06,-2.43773073283e-06,4.59546099307e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.0793900318,5.83621306468,8.21484159729,-0.221580702447) p_j = (25.796108757,14.9359801536,21.0244235226,-0.5738809976) p_k = (9.75366506672e-09,8.10100684873e-09,2.8255612917e-09,4.63938317545e-09) p_ij -> (35.8755179489,20.772204095,29.2392811892,-0.795462554644) p_k -> (-1.91503383e-05,-1.0868582148e-05,-1.60665445854e-05,8.59236359008e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.1127622883,25.4166742051,6.55056075041,14.7601246214) p_j = (15.1795310145,12.8121445456,3.30142414075,7.44094836735) p_k = (7.77298074874e-07,6.72369328172e-07,1.83788131921e-07,3.43996666124e-07) p_ij -> (45.2922990292,38.2288233717,9.85198594507,22.2010762779) p_k -> (-4.9490145031e-06,-3.94860028052e-06,-8.70122313756e-07,-2.94519336386e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.37504113695,-1.31563186772,-0.392045385442,-6.2254769056) p_j = (34.9683011576,-7.21102938318,-2.15214263395,-34.1489593278) p_k = (4.77313450275e-07,-2.2098968037e-08,1.50508369205e-07,-4.52423470037e-07) p_ij -> (41.343343643,-8.52666167047,-2.54418843573,-40.3744375756) p_k -> (-8.71087863175e-07,3.97472712521e-07,5.66841297012e-07,8.89773147605e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.7752686597,-5.15127004978,11.9170828922,-14.916728957) p_j = (9.37672802082,-2.43950796226,5.64884842522,-7.07547459521) p_k = (2.49927535086e-10,-2.34637884645e-10,-8.55000239938e-11,-9.90341487172e-12) p_ij -> (29.1521735079,-7.59082356216,17.566038554,-21.9923374701) p_k -> (-0.000176827137201,4.55498820404e-05,-0.00010723669938,0.000133917906977) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.82280983489,-0.629346553705,-4.44066846209,7.5977865137) p_j = (0.106836534985,-0.00764363071988,-0.0537742144353,0.0919997498851) p_k = (2.02377138072e-09,-1.59897508352e-09,-9.87310110456e-10,7.51098262841e-10) p_ij -> (8.92964893658,-0.636990362865,-4.49444396849,7.68978847708) p_k -> (-2.56467803972e-06,1.76840964483e-07,1.29097740942e-06,-2.21274311807e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.1142134216,-9.82297850603,38.2423541016,-21.8248413211) p_j = (0.484553505984,-0.102846595006,0.411934077083,-0.233505876147) p_k = (1.44826826409e-08,-5.26884271761e-09,1.10342432857e-08,-7.76098366679e-09) p_ij -> (45.5990707717,-9.92580298295,38.6545975785,-22.0584626947) p_k -> (-0.000303829657575,-2.21233569437e-05,-0.000309388813587,0.00011548964001) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.6014058161,7.92547836668,-5.15047556649,4.8009581726) p_j = (12.7398194725,9.52485230938,-6.18886265007,5.76872323616) p_k = (6.35758387937e-09,7.39087767899e-10,6.01876822204e-09,1.90972870418e-09) p_ij -> (23.3412265826,17.4503316544,-11.3393388699,10.5696819973) p_k -> (-1.28761291052e-06,-9.77547607306e-07,6.59348679655e-07,-5.866726287e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.4757210603,9.01411174964,-4.56157349456,17.8099126769) p_j = (0.00945430199042,0.00418342518128,-0.00211871302346,0.00820937482412) p_k = (2.02520150449e-08,-9.15720194354e-09,-1.18391166161e-09,-1.80246540629e-08) p_ij -> (20.4851761104,9.0182955236,-4.56369237783,17.8181227407) p_k -> (-7.2786743921e-07,-3.57937897988e-07,1.69060453636e-07,-7.07063803063e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.6457965619,-12.479006461,-20.5935324279,32.7454057546) p_j = (3.43337551003,-1.05408736741,-1.73949070573,2.76606928681) p_k = (1.6742274448e-07,-6.76911015555e-08,-4.95154977735e-08,1.44901710206e-07) p_ij -> (44.0791800662,-13.5330962802,-22.3330271897,35.5114814803) p_k -> (-7.8269236532e-06,2.38407890585e-06,4.00659321187e-06,-6.29395602303e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.43833956535,-0.119539171317,-0.781530629499,1.20155772518) p_j = (36.3958270711,-2.92261067162,-19.7870167123,30.4070476153) p_k = (3.48239473759e-09,-8.16404211904e-10,-1.94454733245e-09,-2.77114951766e-09) p_ij -> (37.8341954835,-3.04215152847,-20.5685629638,31.6086361548) p_k -> (-2.88435232569e-05,1.6847159483e-06,1.56200477726e-05,-3.08170487262e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.5744771184,7.44743470653,31.839533188,-20.4638737197) p_j = (1.77304609781,0.34229467335,1.46321121315,-0.941031225451) p_k = (2.36668467849e-07,9.76319611163e-08,1.36960702736e-09,-2.15587773624e-07) p_ij -> (40.3475241179,7.78972951932,33.3027452748,-21.4049053635) p_k -> (-6.65026306024e-07,-4.18102628075e-08,-8.7227158474e-07,2.02720922715e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.4496499067,-16.2705385455,8.06613625957,17.8295177067) p_j = (13.1481360426,-8.40586921303,4.16713266727,9.21139780394) p_k = (5.02247705485e-08,-2.82804283873e-08,3.57685969097e-08,2.10559355831e-08) p_ij -> (38.5977913547,-24.6764112146,12.2332706386,27.0409192986) p_k -> (-5.35518308808e-06,3.42778639961e-06,-1.67602613477e-06,-3.76687756543e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.857562654624,0.749917148118,0.356519646783,0.214316865931) p_j = (12.0914020701,10.5741826342,5.02586817577,3.02147558632) p_k = (6.70754604182e-10,4.46075308649e-10,1.39955161827e-10,-4.80980626583e-10) p_ij -> (12.9489810997,11.3241141041,5.3823946305,3.23579655114) p_k -> (-1.63743273056e-05,-1.43212905828e-05,-6.80781048024e-06,-4.09936779278e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.1457813847,5.44152504006,2.39324569659,9.42818237785) p_j = (8.9855424849,4.38671443706,1.92941725012,7.60092489573) p_k = (4.72441545466e-08,3.70919592404e-08,1.96948982525e-09,2.91944826798e-08) p_ij -> (20.1313293117,9.82824213072,4.32266411715,17.0291118796) p_k -> (-5.39484401152e-06,-2.61650568767e-06,-1.1684756247e-06,-4.57677951182e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.5647571452,11.068350219,2.40158543926,7.46502827953) p_j = (32.0348316626,26.0661955175,5.59842523824,17.7606735724) p_k = (3.92989703697e-10,-1.54040966676e-10,-1.90461410166e-10,-3.07301714152e-10) p_ij -> (45.5996948312,37.1347171089,8.00007580596,25.2258546156) p_k -> (-0.000106023039635,-0.000171372483372,-6.51286510669e-05,-0.000152763960735) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.7605988598,-5.10354741946,9.71090403038,-39.2565735395) p_j = (0.00793868674336,-0.000696745884216,0.00200339005933,-0.00765007978077) p_k = (3.948993566e-09,3.50938780472e-09,1.78947843672e-09,-2.76607311496e-10) p_ij -> (40.7685479269,-5.10425235038,9.71290843407,-39.2642396814) p_k -> (-1.03763763697e-05,8.18854172424e-06,-1.01183558243e-06,1.60619051464e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.3650728941,9.19170581784,14.9643438,-20.986380662) p_j = (18.2336168423,6.14380986607,10.0071229221,-13.9490456413) p_k = (4.03849256529e-10,-1.48192692712e-10,9.44569562136e-13,-3.75675687413e-10) p_ij -> (45.5997067106,15.3359387596,24.9720864995,-34.9361865466) p_k -> (-0.00101697373599,-0.000423075837487,-0.000619777382976,0.000760242839792) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0170585978473,0.007727122555,-0.0136116840904,-0.00678302246479) p_j = (39.2456539392,17.9932114877,-31.3292850683,-15.3278044933) p_k = (6.76162093971e-08,-5.49375153188e-08,3.44733211897e-08,1.9115732162e-08) p_ij -> (39.2627134691,18.0009394984,-31.3428979707,-15.3345881239) p_k -> (-8.64481602747e-07,-9.43097882455e-07,1.2528454274e-06,6.27269944431e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.9007720716,-4.05317194259,17.8446358927,7.82186014353) p_j = (1.25060781028,-0.254795686968,1.12141114075,0.49146323) p_k = (1.5345938839e-10,1.12103416981e-10,-7.11615906234e-11,7.69275687941e-11) p_ij -> (21.1514834024,-4.30798871747,18.9661398636,8.31336406075) p_k -> (-0.000103520382496,2.1088027625e-05,-9.28301918091e-05,-4.06871481875e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.4853572952,-34.332095358,17.1020946485,9.37651468757) p_j = (0.480868765884,-0.416697401291,0.210095140178,0.116008955835) p_k = (1.33923964097e-10,8.16151544597e-11,1.05941184734e-10,7.16531323912e-12) p_ij -> (39.9667675419,-34.7492746885,17.3124216473,9.49265363817) p_k -> (-0.000541480752293,0.000481929221738,-0.000231858428737,-0.000129994759149) } Blob_List::FourMomentumConservation(): (0x55e0428) Four Momentum is not conserved. p_{in} = (91.1998046068,0,0,-6.89316581131e-05) vs. p_{out} = (136.726361022,-17.4346547238,38.1994354431,17.5352350445), diff = (45.5265564154,-17.4346547238,38.1994354431,17.5353039761). Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.776479398,31.8990245634,2.59062278365,7.07379015968) p_j = (0.005299730581,0.00515813411875,0.000416102946783,0.00114352742941) p_k = (2.36360813082e-08,1.94194026892e-08,-8.12208222603e-09,-1.07509498624e-08) p_ij -> (32.7817841541,31.9041875889,2.59103928478,7.07493477324) p_k -> (-5.00187192998e-06,-4.87189786647e-06,-4.06298870992e-07,-1.09688381089e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.81161695174,0.337639119463,-1.90963620107,-2.03579942232) p_j = (42.5450630695,5.10630192055,-28.891492199,-30.810546097) p_k = (6.1799502332e-09,-1.24199996966e-09,-5.70945561439e-09,-2.01279354804e-09) p_ij -> (45.3567123276,5.44394500132,-30.8011502751,-32.8463690189) p_k -> (-3.23001985372e-05,-3.96254827173e-06,2.18692810261e-05,2.349752139e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.6329853964,-22.4053573656,6.13637539476,-14.9641819107) p_j = (15.9730269779,-13.0276908064,3.49943672584,-8.55399355217) p_k = (2.03047604526e-10,2.51560555194e-11,-1.11186698185e-10,1.68031396771e-10) p_ij -> (43.6063331863,-35.4335017288,9.63604130485,-23.5186300095) p_k -> (-0.000320811783418,0.000453556905754,-0.000229184357629,0.000454546737975) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.35291786753,-4.9642241861,-1.79474934673,-7.72090834354) p_j = (29.0616936256,-15.4252309325,-5.57689852013,-23.9904666474) p_k = (4.04567573931e-09,3.5802516696e-09,-1.3870152125e-09,1.27493608377e-09) p_ij -> (38.4146241463,-20.389461835,-7.37165029491,-31.7113854365) p_k -> (-1.26490810111e-05,6.71998093971e-06,2.42666101125e-06,1.04468366864e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.77127633927,6.42431556685,-1.78299290796,-1.18291548743) p_j = (6.75608954316,6.40988948324,-1.77907577319,-1.18023392642) p_k = (4.07280110949e-07,3.9049403054e-07,-8.4644556086e-08,-7.89100754738e-08) p_ij -> (13.5273756554,12.8342143206,-3.56207126366,-2.36315111802) p_k -> (-9.36569340926e-06,-8.88006170108e-06,2.49786728146e-06,1.62525812919e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.112993144154,0.0605137444807,-0.0888726512782,0.0347446284976) p_j = (23.1693183064,12.4070088859,-18.2249108099,7.12292547054) p_k = (5.32095402884e-08,1.10284575988e-08,-4.17796145673e-08,3.10498326362e-08) p_ij -> (23.2823168414,12.4675255195,-18.3137877016,7.15767175433) p_k -> (-5.33761444466e-06,-2.87810802302e-06,4.19863360079e-06,-1.62424139782e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00446609743912,0.00366474446996,0.000573564210442,-0.00248730746031) p_j = (23.1646436781,19.3293311409,2.33491174993,-12.5509307026) p_k = (4.3782841987e-09,-1.8754691209e-09,-2.09280114161e-10,3.95071386785e-09) p_ij -> (23.1691102242,19.3329980631,2.33548557159,-12.5534203156) p_k -> (-4.44290082058e-07,-2.17965270544e-06,-2.57654322322e-07,2.30946200208e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.033986016,5.95100773864,-9.91490400667,6.01373236015) p_j = (12.2687506518,5.60182574676,-9.33268549147,5.66063356678) p_k = (2.63774557101e-08,3.54942658505e-11,4.25079822973e-09,-2.60326653572e-08) p_ij -> (25.3027369944,11.5528336348,-19.2475897472,11.6743660786) p_k -> (-3.00112789731e-07,-1.49366518265e-07,2.53280957097e-07,-1.77726392714e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.977180382,1.6509715606,4.62406246025,-8.68541695284) p_j = (1.7837024959,0.295166794452,0.826686333824,-1.55275911294) p_k = (6.62262820945e-08,-3.46197617191e-09,1.78715803373e-08,-6.36752838739e-08) p_ij -> (11.7608843954,1.9461386063,5.4507494975,-10.2381773868) p_k -> (-1.45127734896e-06,-2.54707069547e-07,-6.85557469016e-07,1.25729734268e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.6504786814,-14.1212071009,-2.04902849903,-32.6703171462) p_j = (1.71457703052,-0.679164671075,-0.0986557769511,-1.5712341585) p_k = (6.61281329421e-08,-4.43891005932e-08,3.00473787143e-08,-3.87258664678e-08) p_ij -> (37.3650568419,-14.8003722153,-2.14768434893,-34.2415523454) p_k -> (-1.06383387433e-06,3.98887502584e-07,1.03001489116e-07,1.00195143204e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.6489513486,1.91335182245,-2.89961797326,-37.4883293581) p_j = (7.93441674255,0.431885694498,-0.640481735336,-7.89672254407) p_k = (1.81120410487e-10,-8.94652220086e-11,1.57366590639e-10,-5.94808645627e-12) p_ij -> (45.5834349781,2.34528647029,-3.54018388636,-45.3851988411) p_k -> (-6.68867354854e-05,-4.89534255319e-05,8.41779213592e-05,0.000146938949491) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.1532142371,6.58557373488,-2.00117882402,1.94781308616) p_j = (16.6254039746,15.2976158489,-4.65173610324,4.55503654037) p_k = (3.84724899346e-10,-1.7452427801e-10,3.3113821033e-10,8.88895592728e-11) p_ij -> (23.7786942016,21.8832661707,-6.65294171192,6.50287061333) p_k -> (-7.59895187059e-05,-7.65871234076e-05,2.67849894708e-05,-2.09867138095e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.3590713902,-6.78087421962,-1.0008074559,9.05795959921) p_j = (34.23830517,-20.4155468237,-2.95983623967,27.3259283143) p_k = (2.25737789977e-10,1.27341601687e-10,-3.98697986003e-12,-1.86347248285e-10) p_ij -> (45.5974342356,-27.1964645938,-3.96064925092,36.3839467345) p_k -> (-5.76751893533e-05,4.35505975815e-05,5.55533645552e-06,-5.88212107147e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.1590218706,0.237112827571,-21.4159676824,26.6108789951) p_j = (0.00153660856924,5.74606133942e-05,-0.000972625798469,0.00118821851068) p_k = (4.50460240171e-08,-1.70816255319e-08,-1.6866360026e-08,-3.81167716569e-08) p_ij -> (34.1605590441,0.237170499313,-21.4169407978,26.6120685257) p_k -> (-5.19788219577e-07,-2.28211117489e-07,4.72761735537e-07,-1.35022995451e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.53075030073,-0.462342081122,-3.21865520743,-4.47389062727) p_j = (29.381559259,-2.51247643693,-17.0452266126,-23.7996583246) p_k = (6.51846914667e-10,-1.47308893005e-11,2.06340714354e-10,6.18151809511e-10) p_ij -> (34.9123267703,-2.97482059932,-20.2639006171,-28.2735801536) p_k -> (-1.7209954148e-05,2.08125361723e-06,1.87972348442e-05,3.12023505078e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.00072361102,-2.70069033457,6.25196674025,5.88491368819) p_j = (36.5823474397,-10.978855143,25.4096672233,23.9182293564) p_k = (6.51499858308e-10,-1.64136032915e-10,-4.39970893914e-11,-6.28948015317e-10) p_ij -> (45.5831513887,-13.6795695876,31.6616897728,29.8031955863) p_k -> (-8.03373265725e-05,2.41098271445e-05,-5.58092449907e-05,-5.25423005513e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.0679307649,0.140539771994,0.929937593447,1.84168463457) p_j = (43.4771770006,2.95313013791,19.5448688648,38.7239208164) p_k = (4.05232738851e-09,1.51967683665e-09,6.65939539815e-10,3.6970881561e-09) p_ij -> (45.5454766501,3.09369486085,20.4749723884,40.5659339974) p_k -> (-0.000368880478984,-2.49494230207e-05,-0.000165929562296,-0.000328542780004) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.212704496024,0.0885367312204,-0.100078539098,-0.165495425513) p_j = (15.93866365,6.69253088771,-7.45019434265,-12.399420693) p_k = (7.57237506637e-10,-5.27555362181e-10,5.20325491395e-10,-1.5606780802e-10) p_ij -> (16.1513713208,6.78107078978,-7.55027626648,-12.5649195296) p_k -> (-3.17402524885e-06,-3.17138374895e-06,3.38525425558e-06,3.41098488477e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.6193924177,-0.0379835630393,-0.855216426797,1.37462500878) p_j = (33.8700169609,-0.793534211663,-17.8867258869,28.75088502) p_k = (1.14590639865e-08,9.8231759311e-09,5.83314892084e-09,8.88670885366e-10) p_ij -> (35.4894106478,-0.831517804921,-18.7419429845,30.1255111066) p_k -> (-1.25769021508e-06,4.0041872762e-08,6.76638578057e-07,-1.07686289397e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.792281765482,0.19198600625,-0.398865050826,0.65708328281) p_j = (36.5661918967,8.85842543138,-18.40792741,30.327593) p_k = (1.03318103092e-09,-9.39354857571e-10,1.25552240622e-10,-4.11469179113e-10) p_ij -> (37.3584984297,9.05041743933,-18.80680493,30.9846968263) p_k -> (-2.47663994095e-05,-6.00264035988e-06,1.24692631918e-05,-2.05439090895e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.245222729283,0.220945099695,-0.0860737195281,0.0625201142402) p_j = (6.38365655408,5.75135325455,-2.24129978673,1.62775366928) p_k = (2.23845151101e-10,-2.46103404047e-12,-5.57475588759e-11,2.1677775256e-10) p_ij -> (6.6288824881,5.97230124364,-2.32737463166,1.69027459905) p_k -> (-3.20451213875e-06,-2.88939384641e-06,1.1253472294e-06,-8.15320031711e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.933880594,5.76591945616,7.61256558728,36.7121548663) p_j = (7.64476843574,1.16409909132,1.54148410293,7.39670092015) p_k = (3.88341690336e-08,3.41383762186e-08,5.55334864645e-09,1.76585466409e-08) p_ij -> (45.5786507476,6.93001267415,9.15405052325,44.1088617777) p_k -> (-1.6789548809e-06,5.90746571971e-06,-8.27477983911e-07,-5.97357935206e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.2415653862,-13.8974045048,14.5196182502,23.9181571547) p_j = (8.9837266981,-3.99424189858,4.17350406345,6.88006110977) p_k = (2.52019560909e-08,-1.27214324141e-08,-1.19578232477e-08,1.81745485308e-08) p_ij -> (40.2252931638,-17.8916468128,18.6931239238,30.7982191435) p_k -> (-1.05427543673e-06,3.96607203967e-07,-1.62208802834e-06,-8.60825782212e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.2398178466,-1.95181540517,22.5126109343,-32.0801507194) p_j = (0.0211670930475,-0.00105404513684,0.0121432367582,-0.0173053927422) p_k = (1.15229802813e-07,-1.16136090056e-08,-8.89859014582e-08,-7.22809867885e-08) p_ij -> (39.2609851811,-1.95286946231,22.5247543097,-32.0974563095) p_k -> (-1.26202721162e-07,3.92693766393e-10,-2.27572030553e-07,1.25110101834e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.06652142857,0.685153950415,1.61685477816,1.08942898131) p_j = (15.3705478741,5.07390499607,11.9984057474,8.15766446738) p_k = (8.89604545352e-10,-1.7862858955e-10,-6.29881723067e-10,-6.02282921962e-10) p_ij -> (17.437074294,5.75906497894,13.6152767133,9.24710606205) p_k -> (-4.99042169189e-06,-6.03263159338e-06,-1.61884020882e-05,-1.26139687184e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.20276522169,0.117211920124,0.549304462964,1.06356483171) p_j = (1.68731507789,0.164695965878,0.771211249099,1.49169052426) p_k = (7.79898301256e-09,-3.28955329698e-09,3.16984246846e-09,-6.32100258495e-09) p_ij -> (2.89008032341,0.28190791129,1.32051572518,2.55525545197) p_k -> (-1.60266204752e-08,-2.85786274645e-08,-9.94817861422e-09,-1.02323251205e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.76183844842,-0.920297502204,-0.339157261532,-4.65973499978) p_j = (40.5226815593,-7.83145809711,-2.88610033366,-39.6538322195) p_k = (5.64379778225e-06,-9.57589879074e-07,-4.53902065905e-07,-5.54341482708e-06) p_ij -> (45.2845667033,-8.75176462718,-3.22526091962,-44.3136129131) p_k -> (-4.10517920955e-05,8.07027023608e-06,2.87052887038e-06,4.01504406895e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.8034322567,27.9187590967,-2.45773913321,6.64380302406) p_j = (16.7376663392,16.2433899428,-1.41245781585,3.78242257934) p_k = (2.0590765369e-10,-1.96350621187e-10,5.36226400607e-11,3.11294832639e-11) p_ij -> (45.5411881003,44.1623644684,-3.87022765666,10.4262512953) p_k -> (-8.95041185451e-05,-0.00021542911772,3.07076444548e-05,-2.56918797357e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.2360656056,-9.2628208717,31.6124123006,9.32543436996) p_j = (11.0507067193,-2.99769194394,10.2058260133,2.99550953764) p_k = (1.03009015349e-08,2.81995241013e-09,-9.10463659022e-09,-3.90665483697e-09) p_ij -> (45.2867729593,-12.2605155768,41.8182474944,12.3209471776) p_k -> (-6.24120911397e-07,2.76394548848e-06,-9.18962214058e-06,-3.27392063149e-06) } Event 40000 ( 4m 52s elapsed / 3h 58m 29s left ) -> ETA: Thu Aug 17 20:46 XS = 22593961.0816 pb +- ( 4149525.77709 pb = 18.36 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.11262748348,0.361864133367,0.252415976009,-1.02141100495) p_j = (26.4766277663,8.57372484336,6.01882346161,-24.3161844113) p_k = (1.05035035562e-08,-2.65833480771e-09,-4.17398301425e-09,-9.26470225817e-09) p_ij -> (27.5892635346,8.93559366093,6.27124348727,-25.3376031509) p_k -> (-8.27431294503e-06,-4.68686670274e-06,-4.05381910218e-06,7.72538320781e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.44338293278,-1.38607187615,0.347599445673,0.203306837409) p_j = (23.1014855192,-22.1817956541,5.56455067992,3.26838652627) p_k = (4.92753043145e-10,2.82597454284e-10,2.14165615557e-10,-3.42163660004e-10) p_ij -> (24.5448763737,-23.5678754094,5.91215199924,3.47169463282) p_k -> (-7.92122894566e-06,7.87948177816e-06,-1.87343590996e-06,-1.26948176882e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0305957801457,-0.00269161692286,0.0038152382186,0.0302374092541) p_j = (22.6658595538,-1.98894100599,2.81374002168,22.4024143805) p_k = (1.92812598706e-06,-2.21878586064e-07,1.90375885569e-07,1.90583229514e-06) p_ij -> (22.6964651208,-1.99163326018,2.81755668083,22.4326614624) p_k -> (-7.85876595977e-06,4.15387297115e-07,-1.230555986e-06,-7.76681287462e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.46835739741,-0.182075710369,3.25802234359,5.58496072189) p_j = (24.3027241205,-0.683621834532,12.2414637431,20.9833654663) p_k = (1.63019090985e-06,3.28572536739e-08,7.36050634535e-07,1.45419127587e-06) p_ij -> (30.7710895357,-0.86569781086,15.4994901689,26.5683330869) p_k -> (-6.38762291594e-06,2.98817058098e-07,-3.34620096432e-06,-5.44460098162e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.1935338078,6.94649253724,-2.12888193356,-7.14998144295) p_j = (13.2841820753,9.05272937572,-2.77450839517,-9.31770827108) p_k = (2.10718295871e-07,1.47094403839e-07,-9.2309442966e-08,-1.19349919796e-07) p_ij -> (23.4777191109,15.9992241122,-4.90339099792,-16.4676919809) p_k -> (-3.01702951866e-06,-2.0521429267e-06,5.76883338432e-07,2.14755527495e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.3518675089,-32.3384609108,11.4422446622,-1.83024161238) p_j = (4.80342069546,-4.52209886471,1.59916078393,-0.257210074643) p_k = (4.27165390204e-10,3.33634406642e-10,2.66115052157e-10,-1.84210493743e-11) p_ij -> (39.1553115603,-36.8605820055,13.0414131844,-2.08745293361) p_k -> (-2.33554954789e-05,2.22303575121e-05,-7.73798081077e-06,1.24657220657e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.0866220864,3.76439640379,-4.45897354513,18.1726722665) p_j = (20.6979659045,4.08237615807,-4.84011693482,19.7056658234) p_k = (1.49245805028e-08,1.44410870782e-08,2.41376309067e-09,-2.8934175872e-09) p_ij -> (39.7845910184,7.84677295482,-9.2990912924,37.8783412761) p_k -> (-3.01260617874e-06,-3.78515285782e-07,8.14865216192e-07,-3.18906880992e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.03754960482,-0.673360703796,5.06910576187,-3.20979086051) p_j = (22.3598840561,-2.49343310923,18.7729904874,-11.8878944516) p_k = (4.63302900997e-08,1.85087964927e-08,-1.63822657145e-08,3.91859860674e-08) p_ij -> (28.3974342598,-3.16679388046,23.8420967536,-15.0976856323) p_k -> (-5.52568263146e-07,8.59471334103e-08,-5.20729390274e-07,3.59349263235e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.59259036944,1.73415302653,0.0520413689815,-3.14590377143) p_j = (2.40442602075,1.16057603943,0.0347890122255,-2.10549696523) p_k = (8.73923538439e-10,-7.49514108127e-11,-1.12895188831e-10,8.63354581926e-10) p_ij -> (5.99701746765,2.89472958621,0.0868303968503,-5.25140168071) p_k -> (-1.07658740323e-06,-5.20329667353e-07,-1.57562583467e-08,9.44918915113e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.108940989464,0.106834649121,-0.0212117230299,-0.00213535444114) p_j = (7.71538385872,7.56874684022,-1.49154842972,-0.128462592864) p_k = (6.55369214353e-10,-4.77998092704e-10,3.93813375799e-10,2.1434303202e-10) p_ij -> (7.82432657828,7.67558372359,-1.51276073663,-0.130598084116) p_k -> (-1.72944861809e-06,-2.23472018313e-06,5.84276186433e-07,1.37024752572e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.4756592183,-0.276625264702,1.73559286461,8.29144107233) p_j = (0.0238625251993,-0.000780910566273,0.00489211244702,0.0233426117515) p_k = (1.0310474958e-07,3.32091710075e-08,6.23989949907e-08,7.50606805921e-08) p_ij -> (8.49952196117,-0.277406184004,1.74048501979,8.31478389818) p_k -> (-1.14572237031e-07,4.19451490208e-08,1.96659402096e-08,-1.3903606888e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.855120804,-2.00244144088,-0.0420454047695,7.59548440228) p_j = (0.0475039380534,-0.0120797366338,7.29269231827e-05,0.0459423418548) p_k = (5.52678783671e-10,6.35100592408e-11,-1.99874775065e-10,-5.1134065339e-10) p_ij -> (7.90262661363,-2.0145218721,-0.0419722782352,7.64142966657) p_k -> (-1.871026718e-06,6.94650354127e-07,-1.99811042538e-07,-2.92295413429e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.24847971869,-0.33106673229,-3.31954962544,2.63069668018) p_j = (41.3334810071,-3.21402815408,-32.295746846,25.5951442827) p_k = (1.56274382685e-09,9.35686354081e-10,5.31244162213e-10,-1.13333058117e-09) p_ij -> (45.5819765373,-3.54509613736,-35.615308861,28.2258507961) p_k -> (-1.58099625232e-05,1.25193173717e-06,1.23900605544e-05,-9.8344154722e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.87709471,-3.34960351,-27.0620758655,30.4526037984) p_j = (4.7205778304,-0.375898574397,-3.1252930483,3.51782584516) p_k = (3.05973135819e-10,-9.37526197196e-11,-2.00064839852e-10,-2.11661579235e-10) p_ij -> (45.5977389907,-3.72550508283,-30.1874129948,33.970494692) p_k -> (-6.64500156802e-05,2.99833263018e-06,4.40808232955e-05,-6.50486843483e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.3415305177,9.5755112471,26.717205633,-34.0686341987) p_j = (0.378236025617,0.0816772746275,0.227893423045,-0.290612975651) p_k = (1.38351874589e-06,3.16491438235e-07,9.48420841545e-07,-9.56271508019e-07) p_ij -> (44.7197704238,9.65718935954,26.945101393,-34.359250157) p_k -> (-2.49700180888e-06,-5.21319193147e-07,-1.38852656661e-06,2.02633083646e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.6260963433,2.5216168509,12.9692958868,-20.7818053539) p_j = (7.44613415908,0.762428227662,3.92150873231,-6.28373983987) p_k = (1.35932938235e-06,1.49042994196e-07,6.82359364054e-07,-1.16616819279e-06) p_ij -> (32.0723031234,3.28405251378,16.8908428676,-27.0656064766) p_k -> (-7.12616270206e-05,-7.28617686829e-06,-3.75661886114e-05,6.01165901823e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00635159411475,-0.00577519373311,-0.00196425508396,-0.0017696290879) p_j = (28.1939715092,-25.648297073,-8.68978795181,-7.84553835437) p_k = (4.29391702095e-06,-3.89930935795e-06,-1.31320144741e-06,-1.22825562176e-06) p_ij -> (28.200460707,-25.6541976549,-8.69179492846,-7.84734526404) p_k -> (-0.000133309764339,0.000121488841836,4.14083690146e-05,3.60523280096e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.8643235566,5.27617380845,31.4821154714,-27.0861584991) p_j = (2.17635417108,0.274252026964,1.63653960489,-1.40820503668) p_k = (4.79794288893e-08,1.89921969042e-08,-4.38242653879e-08,4.55584603697e-09) p_ij -> (44.0406782736,5.55042590353,33.1186554911,-28.4943638909) p_k -> (-4.97965082502e-07,-4.91167209127e-08,-4.58672694492e-07,3.5969702239e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.1567210058,-1.81864019651,11.3688499455,-11.3349650379) p_j = (14.4301348283,-1.62320721205,10.1536210547,-10.1241280605) p_k = (2.91043979299e-07,-2.75914765685e-08,2.42585838978e-07,-1.58421655457e-07) p_ij -> (30.5868573961,-3.44184760737,21.5224719306,-21.4590943987) p_k -> (-1.27098269687e-06,1.71215885025e-07,-6.87770551622e-07,1.14184690325e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.5991370545,-4.401325536,-21.2501292695,24.3262014349) p_j = (2.23995436698,-0.302360458675,-1.46022515293,1.67144136061) p_k = (3.03201223928e-06,-4.54337172492e-07,-1.83167977174e-06,2.37310454187e-06) p_ij -> (34.8391023758,-4.70368744916,-22.710361642,25.9976509097) p_k -> (-7.92231080027e-06,1.00014161797e-06,5.38785684157e-06,-5.74105858142e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.0088564467,-9.8370418773,-12.2731466557,23.1753860318) p_j = (17.57809865,-6.14767804339,-7.70912767568,14.5521461408) p_k = (2.49643715997e-09,-1.77879445661e-09,-1.51290947395e-10,1.74504951221e-09) p_ij -> (45.587192884,-15.9847695739,-19.9824137627,37.7277409467) p_k -> (-0.000237784855596,4.96514036348e-05,0.000139431195187,-0.000208772319898) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.6717555974,12.0109091596,-9.15842243167,-20.7581404556) p_j = (3.12475134167,1.46197591912,-1.11497060807,-2.52656642547) p_k = (3.02373056146e-10,-1.8862965637e-11,2.65278252076e-10,1.43869169354e-10) p_ij -> (28.7965161837,13.4728894064,-10.2733963436,-23.2847143622) p_k -> (-9.24441196837e-06,-4.32775096204e-06,3.30409934435e-06,7.48131022732e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.1010769061,-18.7744647664,-16.0442388533,-31.5942754527) p_j = (0.0279816446471,-0.0130576519686,-0.0113223851279,-0.0220062208759) p_k = (2.34896144073e-08,-1.71137260928e-08,1.53620048674e-08,4.78449621022e-09) p_ij -> (40.1290591963,-18.7875226366,-16.0555618369,-31.6162825022) p_k -> (-6.22037372722e-07,2.01064327854e-07,6.13855208442e-07,8.3340658108e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.4209743976,33.3916112653,7.18731638227,-4.25984258027) p_j = (11.1045810069,10.7732144138,2.31816133262,-1.36956145097) p_k = (3.75563649618e-08,3.19599918302e-08,4.47398169159e-09,1.9209970719e-08) p_ij -> (45.5255560627,44.1648267559,9.50547818218,-5.62940644911) p_k -> (-6.20694667219e-07,-1.0448256198e-06,-4.62816669433e-07,2.43708352254e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.85554990578,-5.07393723093,-1.84141405651,-2.26976209065) p_j = (15.2660353947,-13.2292357816,-4.80041616674,-5.91567087768) p_k = (3.60488288653e-08,-2.10868374403e-08,-1.06665874716e-08,-2.72229178291e-08) p_ij -> (21.1215858961,-18.3031736333,-6.64183041742,-8.18543306258) p_k -> (-5.59503058994e-07,5.9959546661e-07,1.83504238471e-07,6.70269297842e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.235704469742,-0.112700991098,-0.965267781265) b = (0,0,1) a' = (0.0263834718027,0.115928057931,0.992907144601) -> rel. dev. (inf,inf,-0.00709285539881) m_ct = -0.965267781265 m_st = -0.261262531663 m_n = (0,-1.62901104384e-06,1.90197127381e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.235704469742,-0.112700991098,-0.965267781265) b = (0,0,1) a' = (0.0263834718027,0.115928057931,0.992907144601) -> rel. dev. (inf,inf,-0.00709285539881) m_ct = -0.965267781265 m_st = -0.261262531663 m_n = (0,-1.62901104384e-06,1.90197127381e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.23570446829,-0.11270099037,-0.965267781705) b = (0,0,1) a' = (0.0263834716142,0.11592805714,0.992907144699) -> rel. dev. (inf,inf,-0.00709285530147) m_ct = -0.965267781705 m_st = -0.261262530039 m_n = (0,-1.6290110437e-06,1.90197126049e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.235704469742,-0.112700991098,-0.965267781265) b = (0,0,1) a' = (0.0263834718027,0.115928057931,0.992907144601) -> rel. dev. (inf,inf,-0.00709285539881) m_ct = -0.965267781265 m_st = -0.261262531663 m_n = (0,-1.62901104384e-06,1.90197127381e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.23570446829,-0.11270099037,-0.965267781705) b = (0,0,1) a' = (0.0263834716142,0.11592805714,0.992907144699) -> rel. dev. (inf,inf,-0.00709285530147) m_ct = -0.965267781705 m_st = -0.261262530039 m_n = (0,-1.6290110437e-06,1.90197126049e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.235704469742,-0.112700991098,-0.965267781265) b = (0,0,1) a' = (0.0263834718027,0.115928057931,0.992907144601) -> rel. dev. (inf,inf,-0.00709285539881) m_ct = -0.965267781265 m_st = -0.261262531663 m_n = (0,-1.62901104384e-06,1.90197127381e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.23570446829,-0.11270099037,-0.965267781705) b = (0,0,1) a' = (0.0263834716142,0.11592805714,0.992907144699) -> rel. dev. (inf,inf,-0.00709285530147) m_ct = -0.965267781705 m_st = -0.261262530039 m_n = (0,-1.6290110437e-06,1.90197126049e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.23570446829,-0.11270099037,-0.965267781705) b = (0,0,1) a' = (0.0263834716142,0.11592805714,0.992907144699) -> rel. dev. (inf,inf,-0.00709285530147) m_ct = -0.965267781705 m_st = -0.261262530039 m_n = (0,-1.6290110437e-06,1.90197126049e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.23570446829,-0.11270099037,-0.965267781705) b = (0,0,1) a' = (0.0263834716142,0.11592805714,0.992907144699) -> rel. dev. (inf,inf,-0.00709285530147) m_ct = -0.965267781705 m_st = -0.261262530039 m_n = (0,-1.6290110437e-06,1.90197126049e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.235704469742,-0.112700991098,-0.965267781265) b = (0,0,1) a' = (0.0263834718027,0.115928057931,0.992907144601) -> rel. dev. (inf,inf,-0.00709285539881) m_ct = -0.965267781265 m_st = -0.261262531663 m_n = (0,-1.62901104384e-06,1.90197127381e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.235704469742,-0.112700991098,-0.965267781265) b = (0,0,1) a' = (0.0263834718027,0.115928057931,0.992907144601) -> rel. dev. (inf,inf,-0.00709285539881) m_ct = -0.965267781265 m_st = -0.261262531663 m_n = (0,-1.62901104384e-06,1.90197127381e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.74361175458,3.51009034076,0.169112423875,1.29046338841) p_j = (41.8555956319,39.2766777433,1.94818718216,14.333109846) p_k = (1.4513871914e-09,-9.88617107833e-10,7.26813732161e-10,-7.7517767175e-10) p_ij -> (45.5992447731,42.7868149411,2.11729803816,15.6235924194) p_k -> (-3.73851220914e-05,-4.68580797666e-05,1.56860208844e-06,-1.91857752903e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.88025281293,5.5529974788,-3.47479094516,2.1042636854) p_j = (38.7180648734,31.2490179213,-19.5538786493,11.8420123402) p_k = (1.43356544016e-05,1.16319260623e-05,-7.19866786813e-06,4.28817724996e-06) p_ij -> (45.5987868437,36.8023939961,-23.0289065726,13.9464196065) p_k -> (-0.000454821650976,-0.000366964049821,0.000229779481323,-0.000139292741925) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.440780257,23.3438755216,17.0982739662,9.45270361636) p_j = (2.6785515561,2.0539914055,1.50466284375,0.831713575353) p_k = (3.54231259878e-09,2.11602618217e-11,-8.56872804306e-10,-3.437043028e-09) p_ij -> (33.1193406599,25.3978737143,18.6029417823,10.2844199438) p_k -> (-8.84327618778e-06,-6.78717447755e-06,-4.97315884118e-06,-2.75553857154e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.3961449766,5.36718763137,-10.6565683594,27.9563316115) p_j = (15.2030956816,2.67879556443,-5.3444789076,13.9783660646) p_k = (1.90199070366e-10,-9.97980632929e-11,-4.8235823869e-11,-1.54558468728e-10) p_ij -> (45.5993385907,8.04600276018,-16.0010819491,41.9347933815) p_k -> (-9.79322135422e-05,-1.95644768457e-05,3.46819997787e-05,-9.5705615422e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.0294412434,12.410269847,0.621798244046,-16.9657292292) p_j = (0.273517993245,0.16141080519,0.00810326955301,-0.220664862675) p_k = (2.5077662825e-10,1.95257655796e-10,-1.51360681236e-10,4.30621903934e-11) p_ij -> (21.302974549,12.5716896885,0.629901966792,-17.1864064459) p_k -> (-1.53120671413e-05,-9.03605457125e-06,-4.53344412121e-07,1.23540823367e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.1784831497,-10.8255451124,7.5268844181,31.5328764053) p_j = (0.0464089469623,-0.0147174699155,0.0102072856589,0.0428135230612) p_k = (3.96080003952e-06,-1.27918447203e-06,8.88464845821e-07,3.64173780732e-06) p_ij -> (34.2256752015,-10.8405095817,7.53726347854,31.5764129417) p_k -> (-0.000779144002209,0.000245720171779,-0.000170886317448,-0.000719371565712) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.3467456726,-30.3134559032,-30.4569752785,5.69275052111) p_j = (2.2528843226,-1.57536822101,-1.58307579486,0.295928651789) p_k = (1.41893177136e-09,1.15430885423e-09,3.31571075746e-10,-7.55644197705e-10) p_ij -> (45.5996432614,-31.8888334076,-32.0400603985,5.98868091781) p_k -> (-1.32647545357e-05,9.28451050619e-06,9.32538613085e-06,-1.74567127065e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.7972242865,1.66213434423,-1.55436700453,42.7366781496) p_j = (0.210489429033,0.00817645562013,-0.00764515562495,0.210191571913) p_k = (2.32545379697e-08,-1.67335367405e-08,1.61425094814e-08,-4.25983431606e-10) p_ij -> (43.0077183659,1.67031098047,-1.56201232906,42.9468743654) p_k -> (-4.62718563909e-06,-1.97349261932e-07,1.85047700385e-07,-4.64429297153e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.4987331697,13.3420604141,-6.68385089145,-39.7926862902) p_j = (0.525939443874,0.165075001089,-0.0827223674167,-0.492462742313) p_k = (6.63009082991e-09,-8.25947282245e-10,-9.17537583921e-10,6.51414588386e-09) p_ij -> (43.024672627,13.5071354198,-6.766573261,-40.2851490467) p_k -> (-6.83873935259e-09,-5.40946754057e-09,1.21602283798e-09,2.06793089319e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.7513857483,10.3732785925,-0.321094357814,14.4015167827) p_j = (10.1998630783,5.96161806132,-0.182850516217,8.2742300304) p_k = (9.78558607753e-10,1.77136294124e-10,3.23140648273e-10,-9.06517106456e-10) p_ij -> (27.9512527289,16.3348989706,-0.503944975733,22.6757501352) p_k -> (-3.90127723016e-06,-2.31663611849e-06,1.02024438897e-07,-3.32305718587e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.021455007,6.36642696791,-0.686451440149,28.306222687) p_j = (15.5714442621,3.41605358807,-0.368342166108,15.1876521668) p_k = (3.12770782272e-06,6.27572360298e-07,-1.85210627983e-08,3.06404408048e-06) p_ij -> (44.5930003559,9.78250276004,-1.05479602418,43.4939734428) p_k -> (-9.79591703825e-05,-2.1576492081e-05,2.39939951052e-06,-9.5524982747e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.29692916404,3.74364152282,-2.98954055896,-5.5039050337) p_j = (28.9736807358,14.8652414619,-11.8705707721,-21.8537942061) p_k = (6.44095295024e-10,-2.34580265079e-10,2.7871443632e-10,5.31179531135e-10) p_ij -> (36.2706475325,18.6089022931,-14.8601267498,-27.3577276259) p_k -> (-3.76320421331e-05,-1.93085414839e-05,1.54190118291e-05,2.83866811568e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0512433810069,0.026506883169,0.0208747535637,-0.0385683018207) p_j = (37.2410663543,18.7435670832,15.2597471693,-28.3322401609) p_k = (1.91886186836e-09,6.78981311581e-10,1.56089049136e-09,8.85795443447e-10) p_ij -> (37.2923384993,18.7700896599,15.280630425,-28.3708402893) p_k -> (-2.87619945709e-05,-1.56928161257e-05,-8.50058396917e-06,3.18274271844e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00525697828778,0.00214051979874,0.00201727560378,-0.00435713149306) p_j = (32.815219126,13.1829202695,12.6583101191,-27.2546583979) p_k = (6.66114417878e-08,-3.6427376948e-08,1.15161609131e-08,5.45665522504e-08) p_ij -> (32.8204762426,13.1850608947,12.6603274593,-27.2590157309) p_k -> (-7.16893993058e-08,-1.41835210243e-07,-5.30182155956e-08,2.56123735554e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810022665,0.272829041519,0.846152644179) b = (0,0,1) a' = (0.861188042177,0.155981450801,0.483761245882) -> rel. dev. (inf,inf,-0.516238754118) m_ct = 0.846152644179 m_st = -0.532940618408 m_n = (0,9.60061890699e-07,-3.0955734434e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810022668,0.272829039737,0.846152644752) b = (0,0,1) a' = (0.861188041632,0.155981450066,0.483761247089) -> rel. dev. (inf,inf,-0.516238752911) m_ct = 0.846152644752 m_st = -0.532940617498 m_n = (0,9.60061892158e-07,-3.09557342579e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.457810023156,0.272829040463,0.846152644254) b = (0,0,1) a' = (0.861188042386,0.155981450133,0.483761245726) -> rel. dev. (inf,inf,-0.516238754274) m_ct = 0.846152644254 m_st = -0.532940618288 m_n = (0,9.6006189132e-07,-3.09557343314e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.7505466957,-3.98132655579,15.88580704,18.5574711446) p_j = (19.3255160883,-3.1005980705,12.3993845914,14.4954173945) p_k = (2.7718430376e-08,1.78368044134e-08,9.88284585925e-10,-2.11939374384e-08) p_ij -> (44.0760635458,-7.08192556353,28.2851927343,33.0528906449) p_k -> (-7.34003695158e-07,9.55087064547e-07,-1.10197104419e-06,-2.12705915459e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.1836769258,-24.4327681494,8.70775064282,3.57768873045) p_j = (0.0552995936822,-0.0516071739727,0.0183765146533,0.00755303681407) p_k = (4.73667840526e-08,4.60181297224e-08,-1.01224297933e-08,-4.84561033796e-09) p_ij -> (26.2389767842,-24.4843755725,8.72612724611,3.5852418037) p_k -> (-2.17376012301e-07,2.95120669236e-07,-9.87579431566e-08,-4.12783558446e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0132555506733,0.000200279685606,-0.000965448254833,0.0132188282902) p_j = (34.0620680997,0.755722879035,-2.33059305439,33.9738384963) p_k = (4.28919369081e-08,5.42143680958e-10,1.9591870956e-08,-3.81521015508e-08) p_ij -> (34.0753238098,0.755923164551,-2.33155863978,33.9870579371) p_k -> (-1.16511944981e-07,-5.28792576393e-09,1.56726533973e-07,-6.5064837429e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.3670889736,-9.2400527745,-9.33837520792,12.8361259952) p_j = (0.290938597933,-0.146456717986,-0.147909390197,0.203269549651) p_k = (4.12482509461e-08,3.20121364599e-08,-6.72968975966e-09,-2.51267363931e-08) p_ij -> (18.658028107,-9.38650977681,-9.48628487439,13.0393959344) p_k -> (-4.94203932888e-07,3.16339222373e-07,2.69545425979e-07,-4.14622410183e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.5225370966,-9.76121756219,-7.79341572028,37.4968297548) p_j = (0.446011288592,-0.109869315709,-0.0877374878749,0.423269342427) p_k = (3.21613406706e-08,-6.33633960615e-09,-2.38879680807e-08,-2.05807576582e-08) p_ij -> (39.9685484816,-9.87108690723,-7.88115316711,37.9200993637) p_k -> (-6.43230748665e-08,2.29929604245e-08,-6.49351883375e-08,-2.87047711822e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.6435293596,-0.346119348877,-4.71837787513,12.7969920298) p_j = (23.0411486029,-0.585762223662,-7.96688035898,21.6120389807) p_k = (3.50303696319e-07,-6.60305594949e-08,-1.84892715315e-07,2.90116060752e-07) p_ij -> (36.6846819145,-0.931881524267,-12.6852594348,34.4090348174) p_k -> (-3.60170406211e-06,-1.14302408094e-07,1.01576799771e-06,-3.51680787603e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.418168005,41.9470493496,-11.8564857662,12.7545592267) p_j = (0.00317208027838,0.00296258328966,-0.000671819153433,0.000913155282212) p_k = (9.86934909357e-09,5.20780002133e-09,-5.72709666074e-09,-6.12235642603e-09) p_ij -> (45.4213639043,41.950036962,-11.8571613596,12.755485969) p_k -> (-2.38091399396e-05,-2.50238860353e-05,3.76851102679e-06,-1.3593153076e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.6737484145,-1.2208504204,-11.7132057154,38.9315315164) p_j = (0.219087911506,-0.00670250722644,-0.0628826319947,0.209762637184) p_k = (1.3739241539e-07,-3.4430182823e-08,-3.84040466721e-08,1.27343502059e-07) p_ij -> (40.8928746761,-1.22755279466,-11.7760994404,39.1413310374) p_k -> (-3.82126320986e-05,-1.67390247774e-07,1.10546348795e-05,-3.67565016361e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.77329555195,7.2917753624,-0.562662871191,6.48311102044) p_j = (0.481434409046,0.359358114668,-0.0275455439055,0.319189722026) p_k = (5.10814549731e-10,-2.86539739691e-10,3.25691942886e-10,2.69725428722e-10) p_ij -> (10.2547329614,7.65113581515,-0.590208640688,6.80230274302) p_k -> (-2.99987460561e-06,-2.33837283004e-06,2.25917485108e-07,-2.00028237174e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.37579286426,1.53773083708,1.46808119391,2.62223167229) p_j = (38.9381490407,17.7382434956,16.9321107731,30.2462856096) p_k = (2.05842907722e-08,8.91069324171e-09,3.49183915117e-09,-1.82241495689e-08) p_ij -> (42.313945454,19.2759759495,18.400193511,32.8685200433) p_k -> (-3.52843666107e-06,-1.60789685388e-06,-1.54053462076e-06,-2.77964163686e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0811491387455,-0.0734842084841,0.0340269637557,0.00523636898769) p_j = (9.79395608657,-8.86028709197,4.12618455224,0.625691229173) p_k = (4.63970590036e-10,-1.22557313797e-10,-4.37988656786e-10,9.17342854399e-11) p_ij -> (9.87511594202,-8.93378111078,4.16021627625,0.630928258796) p_k -> (-1.07162441276e-05,9.81020228785e-06,-4.76069900923e-06,-6.60542905873e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.6394721676,-4.86798919484,-0.517112473257,4.48529447788) p_j = (38.9531239166,-28.5673368947,-3.04388588614,26.3056625903) p_k = (4.77578001504e-09,-3.58660977586e-09,-2.83784178253e-09,1.37512149098e-09) p_ij -> (45.5926461537,-33.4353627704,-3.56100117034,30.7909917081) p_k -> (-5.00647197939e-05,3.66772651432e-05,2.80810519859e-06,-3.46385517425e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.7855850616,-13.9255627262,9.71392344662,41.4423337101) p_j = (0.342309131112,-0.106475087371,0.0742454838968,0.316743121682) p_k = (1.00042806473e-07,-9.26278209771e-08,1.03088905777e-08,3.63644975552e-08) p_ij -> (45.1278957228,-14.0320382853,9.78816926314,41.7590782513) p_k -> (-1.43002682762e-06,3.79088239022e-07,-3.22309298362e-07,-1.38317857434e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.6598420048,19.4066836494,-3.18686907225,24.8106850171) p_j = (13.9375779744,8.53415195735,-1.4099647762,10.9286929453) p_k = (3.06659195406e-09,-2.59599249652e-09,-1.56354110992e-09,4.69199482795e-10) p_ij -> (45.5974493719,27.9408583183,-4.59683549406,35.7394030323) p_k -> (-2.9389639419e-05,-2.27141471996e-05,1.64404928205e-06,-2.50694456376e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.93784731513,-2.34005390228,3.28025164749,-4.36143641492) p_j = (1.52913259843,-0.601837309343,0.844506582582,-1.12376465003) p_k = (1.84478561721e-09,5.80783145435e-10,1.14576534901e-09,1.3240661593e-09) p_ij -> (7.46697997222,-2.94189137801,4.12475824859,-5.48520140161) p_k -> (-5.68152009883e-08,1.66971820814e-07,-1.73742673582e-08,3.37990597732e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.8378516582,-3.86918784553,1.15798937132,4.21532418861) p_j = (39.7587760399,-26.3468519701,7.91931507828,28.7034512237) p_k = (5.32802168397e-09,3.59142212944e-09,-1.79571885536e-09,-3.50213903069e-09) p_ij -> (45.5966423927,-30.2160507668,9.0773078616,32.9187872731) p_k -> (-1.46892343125e-05,1.09547750267e-05,-3.41379687985e-06,-1.18642979388e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.219009130101,-0.0770401348326,0.000890857574617,-0.205009812119) p_j = (42.8279677569,-15.0671261301,0.170801645762,-40.0897413208) p_k = (1.41239997388e-08,-4.30435813848e-09,-1.45337393604e-09,-1.33733905383e-08) p_ij -> (43.0471599653,-15.1442306789,0.171693247189,-40.2949225046) p_k -> (-0.000183064159639,6.44096626017e-05,-7.45306065794e-07,0.000171358348965) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.93159417733,-3.8892620466,-0.983415856023,-6.84227448885) p_j = (37.6195720682,-18.4470025597,-4.66383465836,-32.4528726839) p_k = (1.0288250502e-10,6.8246406753e-11,-1.50326012318e-11,7.55138203203e-11) p_ij -> (45.5519704075,-22.336658932,-5.64735021114,-39.2958408913) p_k -> (-0.000804161894163,0.000394325750181,9.96967490856e-05,0.000693718670924) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.9695208466,9.72742764573,-16.7370678152,24.1735171999) p_j = (0.00222415616772,0.000700110573241,-0.00120157543188,0.00173578003363) p_k = (5.51324644101e-07,1.71457163161e-07,-2.33490946885e-07,4.6908771258e-07) p_ij -> (30.9717588266,9.72813209852,-16.7382768688,24.1752637659) p_k -> (-1.32725036863e-05,-4.17075632519e-06,7.2446603081e-06,-1.03168609975e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.4378820593,13.8867765711,8.46270667986,-22.099262522) p_j = (3.50439407377,1.77369818283,1.08507672558,-2.82088303198) p_k = (4.63007893449e-09,-3.57354543286e-09,2.13314063245e-09,2.029052108e-09) p_ij -> (30.9422813253,15.66047945,9.54778476136,-24.9201517484) p_k -> (-5.18760262302e-06,-4.69968920491e-06,-1.35378524213e-06,6.19640576183e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0186993672829,-0.000123597874898,-0.00416291972041,-0.0182296779966) p_j = (40.2283237807,-0.0950362319167,-8.95978003007,-39.217742721) p_k = (4.32421258981e-08,1.78798837116e-08,-3.20559563624e-08,-2.28605964992e-08) p_ij -> (40.247028353,-0.0951600609654,-8.96394383611,-39.2359777081) p_k -> (-5.16172605458e-06,2.49053650356e-07,8.54268577655e-07,5.28620245532e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.5062058076,-21.9821117229,-17.9425880423,31.6485043992) p_j = (3.09313881779,-1.59952323457,-1.30584251465,2.30299989039) p_k = (4.96153117655e-08,-2.82036284718e-08,-2.12849161526e-08,3.48308318459e-08) p_ij -> (45.6001498954,-23.5820512593,-19.2487704591,33.9521039805) p_k -> (-0.0008052204108,0.000416273625849,0.000339880827061,-0.000599656109749) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.9134247006,5.97888023734,-13.9655086667,34.7368008215) p_j = (0.517560806869,0.0814168574536,-0.190275509208,0.474379294157) p_k = (5.72931249273e-09,-1.03612531221e-09,-6.10050344446e-10,-5.60172304332e-09) p_ij -> (38.4309978672,6.06029907987,-14.1557887564,35.2111916415) p_k -> (-1.2354000102e-05,-1.98611327473e-06,4.57988272018e-06,-1.15314081803e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.231903573224,-0.172855050746,-0.0183515594743,0.153504459122) p_j = (30.865367432,-23.0027766287,-2.28174533546,20.4532836558) p_k = (9.25432286594e-09,-3.655074211e-09,5.23497615493e-09,6.69910000878e-09) p_ij -> (31.0972920169,-23.1756515049,-2.30010605638,20.6068013102) p_k -> (-2.10023906764e-05,1.98217311276e-05,9.16668643813e-06,-1.31885422707e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.0393723585,9.31363598128,14.794385001,30.3667576887) p_j = (8.16866280844,2.17181597117,3.44853367412,7.07939848884) p_k = (9.34582487695e-11,2.49947249059e-11,-3.55431700842e-11,-8.27437984217e-11) p_ij -> (43.2088217849,11.4856610493,18.243250805,37.4468379222) p_k -> (-0.000786617918795,-0.000209096787662,-0.000332129870449,-0.000681744694838) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.7248841532,-13.7940298204,1.51308488916,30.7376499846) p_j = (0.158255017593,-0.0647362578639,0.0071220334057,0.144232950989) p_k = (1.40982557394e-07,-4.8510881603e-08,-8.0875501924e-09,1.32126331166e-07) p_ij -> (33.8831618685,-13.8587753767,1.52020796402,30.881903617) p_k -> (-2.25567458827e-05,9.24989837348e-06,-1.04953435676e-06,-2.05492955239e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.508851324152,-0.229714539855,0.21473403073,-0.400062740476) p_j = (2.36556531294,-1.06888927997,0.997272209657,-1.85979114333) p_k = (1.26979289383e-10,2.22445083089e-11,-5.60017486826e-11,1.11778322513e-10) p_ij -> (2.87441767216,-1.29860431085,1.21200670902,-2.25985475976) p_k -> (-1.03494552106e-06,4.91042553286e-07,-4.68688692856e-07,8.76066672095e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.649293110965,0.104876631253,-0.0986382833645,0.633129469554) p_j = (34.4794003689,5.57281949688,-5.22339911612,33.6227428138) p_k = (2.3189274139e-07,1.2324050012e-08,2.12431195264e-07,9.21702151258e-08) p_ij -> (35.1286937951,5.67769618802,-5.3220375352,34.2558726384) p_k -> (-8.33179143456e-08,-4.75604631234e-08,3.48150725582e-07,-2.62807876794e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.7721604516,6.88824020514,-15.4760356381,-18.0749661479) p_j = (20.8250354408,5.68026741227,-13.0355570328,-15.2148255357) p_k = (2.32042688782e-10,-2.57157859335e-11,7.8681008083e-11,2.16775642831e-10) p_ij -> (45.5971989378,12.5685431205,-28.5116810737,-33.2899431839) p_k -> (-3.0451689419e-06,-3.5503153561e-05,8.84028750061e-05,0.000151500615793) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.10595875408,-3.30811076901,-3.66749618602,1.29487052009) p_j = (18.5621672592,-12.020805561,-13.3390408718,4.7036449318) p_k = (1.44290586305e-08,8.78440624525e-09,4.26274288287e-09,1.06236072536e-08) p_ij -> (23.6681264277,-15.3289170247,-17.0065376996,5.99851539312) p_k -> (-4.0000580448e-07,7.03456159101e-07,6.46044140851e-07,6.9387116941e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.1267112003,-2.85171698151,12.925887421,-17.7307781324) p_j = (0.00449476572069,-0.000573495433194,0.00262501914311,-0.00360323415424) p_k = (6.28603372811e-08,-5.8003782771e-08,-1.42833298494e-08,1.95696160353e-08) p_ij -> (22.1312061666,-2.85229050025,12.9285125598,-17.7343815308) p_k -> (-1.37636337882e-07,-3.46929702744e-08,-1.33993882656e-07,1.8377856037e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.7599644044,-13.5469297439,-1.25794022068,-25.3383865599) p_j = (10.1987518492,-4.80453579312,-0.445592400428,-8.98512228672) p_k = (1.09219712468e-09,5.95888661446e-10,-5.98733318737e-10,-6.92338393121e-10) p_ij -> (38.9587620199,-18.3514871307,-1.70353460465,-34.3235491763) p_k -> (-4.57651325974e-05,2.15943352107e-05,1.98293635856e-06,4.03290398907e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.7255867397,-14.3420156063,2.78978069265,-8.14057515295) p_j = (12.5044967124,-10.7245403714,2.079879817,-6.08446972219) p_k = (8.69476843459e-10,-2.2233477876e-10,-4.81541759743e-10,6.8896643885e-10) p_ij -> (29.2300936901,-25.0665652061,4.86966275237,-14.2250508111) p_k -> (-1.02371829378e-05,9.22820655092e-06,-2.24319921172e-06,5.93665612048e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.61888554153,0.742347126584,7.92909868574,-3.29598282056) p_j = (28.8753521217,2.48639873347,26.5640697317,-11.0432776286) p_k = (7.51252822396e-07,5.29673931135e-08,6.95592341284e-07,-2.78794822712e-07) p_ij -> (37.4943243169,3.22875374968,34.4932479722,-14.3392938994) p_k -> (-8.59023604889e-05,-7.83665055937e-06,-7.88591665817e-05,3.31714077655e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.4020785196,-10.0586176454,-21.7810699798,29.9854770884) p_j = (5.43551507141,-1.42320333556,-3.08425124955,4.24343146367) p_k = (1.55006252582e-10,-7.96347542315e-11,8.98418769412e-11,9.8047938026e-11) p_ij -> (43.8377424027,-11.4818598823,-24.8654059794,34.2290247902) p_k -> (-0.000148811555515,3.89012058069e-05,8.47500937553e-05,-0.000116238030703) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.1689424483,-14.6980082883,-5.98539764195,-6.55104207111) p_j = (7.00268613993,-5.99624527346,-2.43551689725,-2.67411915183) p_k = (4.85152857318e-09,8.36054715282e-10,3.46759461305e-09,-3.28848552481e-09) p_ij -> (24.1716294225,-20.694256087,-8.42091670191,-9.2251610198) p_k -> (-8.29409431802e-07,2.5261216603e-06,2.16617774829e-06,-2.06425147198e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.0450104626,2.42098607688,10.5440299033,25.8744057258) p_j = (4.55166730429,0.394521651061,1.71032411309,4.1996213334) p_k = (5.16787597747e-08,-9.49211610494e-09,1.72073722981e-08,4.7796446357e-08) p_ij -> (32.5966826576,2.81551056092,12.2543562386,30.0740315512) p_k -> (-4.83905191118e-06,-2.84247565552e-06,-2.20497905712e-06,-4.4442158309e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00258259660093,0.00165715310173,0.000319309290286,0.00195491441698) p_j = (42.6551075144,26.783900713,5.37976129347,32.758800773) p_k = (4.44940378323e-08,3.10866184474e-08,-8.04222669535e-09,3.0800391984e-08) p_ij -> (42.65769967,26.7855633166,5.38008420167,32.7607636195) p_k -> (-9.51457684195e-06,-5.41944492305e-06,-3.60694736745e-06,-7.90130653883e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.438236945325,0.898343647491,0.030447836802) b = (0,0,1) a' = (0.911786105529,-0.410429758673,-0.0139108217058) -> rel. dev. (inf,-inf,-1.01391082171) m_ct = 0.030447836802 m_st = -0.999536357135 m_n = (0,2.9007347635e-08,-8.55842950287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.438236945325,0.898343647491,0.030447836802) b = (0,0,1) a' = (0.911786105529,-0.410429758673,-0.0139108217058) -> rel. dev. (inf,-inf,-1.01391082171) m_ct = 0.030447836802 m_st = -0.999536357135 m_n = (0,2.9007347635e-08,-8.55842950287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.438236945325,0.898343647491,0.030447836802) b = (0,0,1) a' = (0.911786105529,-0.410429758673,-0.0139108217058) -> rel. dev. (inf,-inf,-1.01391082171) m_ct = 0.030447836802 m_st = -0.999536357135 m_n = (0,2.9007347635e-08,-8.55842950287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.438236945325,0.898343647491,0.030447836802) b = (0,0,1) a' = (0.911786105529,-0.410429758673,-0.0139108217058) -> rel. dev. (inf,-inf,-1.01391082171) m_ct = 0.030447836802 m_st = -0.999536357135 m_n = (0,2.9007347635e-08,-8.55842950287e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.6997661575,5.82082218034,-10.4929069439,-15.6236269692) p_j = (18.5525192013,5.47442147776,-9.88360762136,-14.7153314127) p_k = (1.38698228411e-09,-1.16248648995e-09,7.51806424784e-10,8.44971822414e-11) p_ij -> (38.2523077369,11.2952508676,-20.3765270563,-30.3389765839) p_k -> (-2.2376677979e-05,-7.21068329401e-06,1.24917740436e-05,1.82021145747e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.3405734298,0.763346621754,-14.0786191537,-8.25978962642) p_j = (28.2633174513,1.32072378111,-24.3504680177,-14.2872498881) p_k = (8.29621817435e-11,-6.38843133609e-12,7.64509339587e-11,3.15752691665e-11) p_ij -> (44.6039160865,2.08407158097,-38.4291088934,-22.5470522586) p_k -> (-2.52053256098e-05,-1.17811090905e-06,2.17220182321e-05,1.27441592639e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.71329589449,-0.999027875582,4.04866475332,-6.48885125233) p_j = (34.0287220901,-4.40113075332,17.8609262992,-28.6281554926) p_k = (1.17787417808e-08,2.1857290443e-09,-8.65541343685e-09,-7.68408504572e-09) p_ij -> (41.7420189512,-5.40015879511,21.9095917245,-35.1170075829) p_k -> (-9.54874334269e-07,1.68395144051e-07,-6.806442574e-07,8.30234856863e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.2535279566,-20.9603380613,-25.9940237188,-25.8908397709) p_j = (1.83486984952,-0.908703575469,-1.12891811957,-1.12541061658) p_k = (2.06658035651e-08,1.87177260961e-08,5.55041275471e-09,6.77606592941e-09) p_ij -> (44.088398477,-21.8690426704,-27.122942693,-27.0162512689) p_k -> (-6.5022985396e-07,1.0523384173e-06,8.60142058912e-07,8.88186622916e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.1094085937,2.95045099562,5.11219318962,6.93841802152) p_j = (36.4102665585,11.792783575,20.4333705733,27.7329250788) p_k = (2.04505554767e-08,-1.51112233086e-08,-5.59207319167e-09,-1.25938523888e-08) p_ij -> (45.5196768105,14.7432351077,25.5455646936,34.6713443635) p_k -> (-1.6378416916e-06,-5.52267091614e-07,-9.36267163354e-07,-1.27575201248e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0116825545552,-0.00204738663114,0.00199958752308,0.0113266031384) p_j = (41.4998241949,-9.09192367394,6.4215699067,39.9791917383) p_k = (2.07702452159e-09,2.45375867435e-10,-6.83962554776e-10,1.94576868441e-09) p_ij -> (41.5115936127,-9.09401526487,6.42361907273,39.9906040045) p_k -> (-8.68611779339e-05,4.42045506253e-05,-4.95791929382e-05,-8.56610712106e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0681889267551,0.0664290883804,-0.00467859560312,0.0146634474852) p_j = (30.4644921558,29.6790334974,-2.19167377012,6.51435484587) p_k = (1.32289372361e-08,-1.30331916529e-08,2.05713151936e-09,9.53350019801e-10) p_ij -> (30.5326816853,29.7454636006,-2.19635245872,6.52901845319) p_k -> (-5.89571602205e-07,-1.02787173084e-06,9.50499863261e-08,-1.58884772894e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0500725202287,-2.51253525502e-05,0.0500482047642,-0.00156008033488) p_j = (1.75616576937,-0.00175910394144,1.75531978738,-0.0544753070504) p_k = (6.84209797817e-10,-5.49689356887e-10,-4.00718652765e-10,-7.3534993069e-11) p_ij -> (1.80623847958,-0.00178422616298,1.8053681886,-0.0560353929631) p_k -> (-1.89301406106e-07,-3.68070480832e-09,-1.96850995282e-07,5.50424103865e-09) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00243592323267,0.00148692555586,0.00061309560607,0.00182945020455) p_j = (35.4937739306,21.8040813631,8.63995726815,26.6409677406) p_k = (2.95458749066e-08,-1.91541042286e-08,-8.7624459516e-09,-2.07195189203e-08) p_ij -> (35.4962102462,21.8055685941,8.64057048683,26.6427975594) p_k -> (-3.62794366993e-07,-3.24638399718e-07,-1.31838488571e-07,-3.89333118633e-07) } Event 50000 ( 6m 4s elapsed / 3h 57m 1s left ) -> ETA: Thu Aug 17 20:45 XS = 21717345.8341 pb +- ( 3393825.09912 pb = 15.62 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.564831063029,0.365647101229,0.246639723087,0.352852907201) p_j = (12.1181582472,7.84554665794,5.29057005822,7.57014038192) p_k = (6.4589224984e-08,5.48878752831e-08,2.91442444624e-08,1.75983563308e-08) p_ij -> (12.6829902913,8.2111943874,5.53721020913,7.92299391405) p_k -> (-9.16488259506e-07,-5.73348828858e-07,-3.98678701607e-07,-6.07337092617e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.867519396253,-0.194986091657,0.729320395908,0.427389853702) p_j = (30.4837119687,-6.85283524083,25.6270728173,15.0182716506) p_k = (1.2010211237e-05,-2.74598017094e-06,1.01045451314e-05,5.88242590638e-06) p_ij -> (31.3517381772,-7.04793499763,26.3568192355,15.4459113937) p_k -> (-0.000494802016396,0.000110919163942,-0.000415917826448,-0.000244007047796) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.0945984704,5.60832828672,-1.8309315834,-6.9214207142) p_j = (13.3765218683,8.24390962638,-2.69101703792,-10.1846805874) p_k = (2.26391126648e-09,7.44625010456e-10,1.95019495386e-09,8.76108299514e-10) p_ij -> (22.471124992,13.8522409485,-4.52195017448,-17.1061055103) p_k -> (-4.65100377767e-06,-3.03462848628e-06,1.55510650446e-06,4.20959743153e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.26783392066,5.5567364193,4.51463414259,1.24986752233) p_j = (38.3306505726,29.319418493,23.7773886,6.6517865207) p_k = (2.22584940111e-09,-7.7470560812e-10,1.99782351888e-09,6.02444644925e-10) p_ij -> (45.5985106531,34.8761918536,28.2920347577,7.9016570947) p_k -> (-2.61575782972e-05,-3.69420810387e-05,-1.20130746577e-05,-3.05106712251e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.9093475625,-4.28142452683,-7.94047163711,34.7577265736) p_j = (0.00367759989022,-0.000358930602777,-0.000828646370876,0.00356500420294) p_k = (9.15778781919e-09,-6.45110462897e-10,-7.90206584373e-09,-4.58325856359e-09) p_ij -> (35.9130260558,-4.28178359798,-7.94130003342,34.7612934668) p_k -> (-8.84281327274e-07,1.39902401664e-07,-2.57963604255e-07,-1.89358568292e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.2150223193,11.2939355215,-8.60241746997,0.715746914772) p_j = (0.176110465679,0.139932633235,-0.106558690739,0.00888817784402) p_k = (2.52078777733e-10,2.0232747347e-10,1.40942799097e-10,-5.23830969224e-11) p_ij -> (14.3911342474,11.4338693167,-8.70897704966,0.724635167126) p_k -> (-1.46221016895e-06,-1.16170802045e-06,8.89094322609e-07,-7.45620585829e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.292429075731,-0.0909258643276,-0.177260758214,0.214069790317) p_j = (42.1519658307,-13.1000568518,-25.6038750781,30.8158776421) p_k = (1.13404823138e-07,8.24914743839e-08,9.75998798476e-09,-7.72046189651e-08) p_ij -> (42.4443951569,-13.1909830094,-25.7811361324,31.0299479085) p_k -> (-1.37100709452e-07,3.75758137494e-07,3.05808091738e-07,-5.53289249083e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.253325249337,0.249895889133,-0.0140353104907,0.0390990614404) p_j = (18.2704266099,18.0213260522,-1.02153437508,2.82785490202) p_k = (2.46257484995e-09,-1.3226928253e-09,-6.86147652174e-10,1.96059818874e-09) p_ij -> (18.5237567529,18.2712268307,-1.03556995003,2.86695469462) p_k -> (-4.89121927671e-06,-4.89064367493e-06,2.63779214582e-07,-7.29192440652e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.47290548145,-5.79935793421,5.93054931406,-1.72805083318) p_j = (0.218944961014,-0.149827669489,0.153274679276,-0.0446703268604) p_k = (5.62529989529e-09,2.98405988345e-09,-2.65676109839e-09,3.95992436767e-09) p_ij -> (8.69185067018,-5.94918576236,6.08382415543,-1.77272120859) p_k -> (-2.22083960999e-07,1.61648719299e-07,-1.64750012743e-07,5.24999316243e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.435019432155,0.242675633948,-0.349817729927,0.0893196443597) p_j = (38.9061863789,21.5885597614,-31.3870922989,7.90416744516) p_k = (7.12618301341e-09,1.40029933476e-09,-6.98237842101e-09,-2.60846606694e-10) p_ij -> (39.3412405609,21.8312690981,-31.7369310975,7.99350379689) p_k -> (-3.47427440772e-05,-3.37014082721e-05,2.10617115464e-05,-1.67076329536e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.56719031307,-0.51131925943,-0.855407738459,-3.42515356526) p_j = (32.4071497023,-4.64475890436,-7.77203660037,-31.1166356412) p_k = (2.12428285296e-08,-1.34855375841e-09,-6.85403558068e-09,-2.00614396898e-08) p_ij -> (35.9748339623,-5.15614897667,-8.62756278045,-34.5422634871) p_k -> (-0.000493925717613,7.08115284347e-05,0.000118434775226,0.000474260603301) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.0383847843,6.7325743757,3.85116736739,-9.20671822093) p_j = (33.5595450698,18.7591984898,10.7396399446,-25.6709109922) p_k = (3.1001537591e-08,2.43833689347e-08,-1.88532521137e-08,-3.33188767315e-09) p_ij -> (45.5979336789,25.4917748347,14.5908092259,-34.8776326275) p_k -> (-3.79380525573e-06,-1.94478650783e-06,-1.93276304294e-06,3.41100245294e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.6281415696,-13.3511274778,5.47219396601,-2.40520561507) p_j = (0.0640859259625,-0.0585074135559,0.0239570191008,-0.0104856903096) p_k = (8.56243546345e-10,4.11657290467e-10,-3.08653068942e-10,-6.84414798941e-10) p_ij -> (14.6922333265,-13.4096402372,5.496153179,-2.41569225319) p_k -> (-5.83006496946e-06,5.34626224358e-06,-2.19419924985e-06,9.47119989547e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.3519642923,-11.3727113902,10.2782190926,-38.4057886099) p_j = (1.48268007656,-0.406651623993,0.369765315772,-1.37704330992) p_k = (2.78178611687e-10,8.89463906582e-11,-1.17099819032e-10,-2.36132732221e-10) p_ij -> (42.8352934849,-11.7795428526,10.6481472696,-39.783434968) p_k -> (-0.000649115812212,0.00017983846094,-0.000162861333786,0.000603047904061) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.1757555326,9.7824655346,44.0121070144,2.8437109844) p_j = (0.162114650673,0.0352041803373,0.157950951736,0.00966035690021) p_k = (1.66371174391e-07,-7.95270407033e-08,1.43560296732e-07,2.72994261448e-08) p_ij -> (45.3378715777,9.81767260691,44.1700597398,2.85337105186) p_k -> (-1.22801498748e-06,-2.97149391404e-06,-1.63013915255e-06,3.16741595174e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.5950510589,-9.8952055179,-16.4369136351,13.7345990981) p_j = (0.0234998362463,-0.00984274144362,-0.016335633432,0.013729888013) p_k = (5.31652418651e-09,7.05551554035e-10,3.59161727611e-09,-3.85589530696e-09) p_ij -> (23.6185514129,-9.90504850027,-16.4532496883,13.7483293439) p_k -> (-5.12456372448e-07,2.41639570575e-07,4.23420052797e-07,-3.61592940479e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.80346669,-40.4753838892,-1.87837845968,-10.2832300709) p_j = (3.78042407903,-3.65132413278,-0.156269925915,-0.966963290372) p_k = (3.74694525773e-10,3.41490035797e-10,-5.41770892335e-11,-1.44394482014e-10) p_ij -> (45.5839372141,-44.1269624348,-2.03463931917,-11.2501893816) p_k -> (-4.6444690188e-05,0.000254413179995,-9.06648124199e-06,-3.97974309774e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.4786013304,-1.56732058681,13.7101163407,-17.7444000709) p_j = (23.0785425124,-1.60973676682,14.0764685322,-18.2175987908) p_k = (6.41336580698e-08,1.6218543589e-08,1.99836842283e-08,-5.87429767129e-08) p_ij -> (45.5571555937,-3.1770581957,27.786592061,-35.9620081287) p_k -> (-1.16867143944e-05,8.58293286221e-07,-7.16808401791e-06,9.20830319018e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.82371384557,1.55135607196,0.760209108391,4.50373086601) p_j = (29.3398736229,9.43550077159,4.62181802167,27.3941290712) p_k = (7.74728516354e-10,-5.0497411068e-10,-5.84221684505e-10,-6.23748167518e-11) p_ij -> (34.1636131445,10.9868651091,5.38203118269,31.897883919) p_k -> (-2.56752521857e-05,-8.26602289639e-06,-4.05320781116e-06,-2.39818234995e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.18144999048,-0.106830876217,0.14175303025,1.16803994893) p_j = (0.00461137655407,-0.000407399717205,0.000560065216154,0.00455907294826) p_k = (7.31094947024e-10,-7.05221656466e-10,-1.92706234919e-10,5.74805212144e-12) p_ij -> (1.18606140815,-0.10723826577,0.142313106491,1.17259907811) p_k -> (-4.03892409517e-08,-1.08700652646e-08,-1.12180419953e-08,-5.62233660739e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.816982999,14.0541714247,2.08539713482,27.3462579802) p_j = (2.0108696167,0.91545668756,0.134756706778,1.78532246346) p_k = (1.20681083049e-08,-1.32242125978e-09,5.02867686294e-09,1.08904942164e-08) p_ij -> (32.8278574527,14.9696334099,2.22015226042,29.1315846539) p_k -> (-4.82486685627e-06,-5.2990054531e-06,1.58620852475e-06,-4.19934076845e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944371383,0.0298802929462,0.94628694899) b = (0,0,1) a' = (0.610765338661,0.0249900709812,0.791417208205) -> rel. dev. (inf,inf,-0.208582791795) m_ct = 0.94628694899 m_st = -0.323328022559 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370977,0.0298802929592,0.946286949127) b = (0,0,1) a' = (0.610765337984,0.0249900710049,0.791417208726) -> rel. dev. (inf,inf,-0.208582791274) m_ct = 0.946286949127 m_st = -0.323328022156 m_n = (0,1.5411749632e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.321944370406,0.0298802929567,0.946286949322) b = (0,0,1) a' = (0.610765337029,0.0249900710209,0.791417209463) -> rel. dev. (inf,inf,-0.208582790537) m_ct = 0.946286949322 m_st = -0.323328021586 m_n = (0,1.54117496365e-06,-4.86646882791e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.297450241,-13.23787899,-2.59686064466,10.8266642822) p_j = (2.21557860468,-1.69405209244,-0.334252469753,1.388254785) p_k = (4.17036416081e-09,1.37279175865e-09,-8.42648186502e-11,3.93704017038e-09) p_ij -> (19.5130399466,-14.9319420057,-2.9311150704,12.2149253104) p_k -> (-1.10966907432e-05,1.09246574649e-05,1.95590909779e-06,-6.23925462939e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.1351487058,-7.90211397873,-4.58081319502,-12.0683665625) p_j = (30.4520061408,-15.8754035524,-9.07317237156,-24.3510530196) p_k = (9.17974210347e-10,4.32102061219e-10,2.98658340295e-10,7.52837095574e-10) p_ij -> (45.5871753139,-23.7775984844,-13.6540359515,-36.4195505969) p_k -> (-2.04663871841e-05,8.0953737104e-05,5.03852295743e-05,0.000131015495374) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.0638968741,4.48388890589,-9.55238991292,-12.1117864088) p_j = (8.87316890628,2.47255127622,-5.27638821124,-6.69173699948) p_k = (7.10895996681e-08,2.84033441723e-08,-6.2990817414e-08,1.67074255738e-08) p_ij -> (24.9370662922,6.95644016109,-14.8287780326,-18.8035251377) p_k -> (-4.40706633853e-07,4.94285785635e-08,-1.54518363438e-07,1.74612458181e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0172594531145,-0.00302465461466,0.000323920202603,0.0169892690242) p_j = (42.0745870283,-7.50700051306,0.943909365224,41.3887044012) p_k = (1.91565356645e-07,-1.35953570413e-08,-8.92092176326e-09,1.90873961788e-07) p_ij -> (42.0918862514,-7.51003495868,0.944235908373,41.4057324736) p_k -> (-3.95785095719e-05,9.77741111452e-06,-2.63186721633e-06,-3.86125321334e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.36444591345,1.05412107913,0.337811745418,2.0893339735) p_j = (31.7384567344,14.1517191402,4.52478844266,28.0461186407) p_k = (6.0930458278e-09,2.45594694357e-09,-1.54276955431e-09,5.35848804882e-09) p_ij -> (34.1029254562,15.2058504476,4.86260398077,30.1354727749) p_k -> (-2.28023053168e-05,-1.0225840346e-05,-3.79423312014e-06,-2.01553275279e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0134479714092,0.00327455841175,0.000669808706424,0.0130259954908) p_j = (45.4269103817,11.1137113492,2.31868371417,43.9853761233) p_k = (2.87910390702e-07,1.00856284244e-07,-2.03687274651e-07,1.76725482629e-07) p_ij -> (45.4403588772,11.1169860299,2.31935359227,43.9984026462) p_k -> (-2.36164826362e-07,-2.14199822324e-08,-2.73072272794e-07,-3.50642459068e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.280926524113,-0.0220130200599,0.0936632885828,-0.263936218185) p_j = (30.5070310773,-2.38774318234,10.1615771629,-28.6656584995) p_k = (1.23715229068e-07,3.02200265578e-08,3.66377681104e-08,-1.14236079455e-07) p_ij -> (30.7879623881,-2.40975668266,10.255242058,-28.9295992208) p_k -> (-4.66296809876e-06,5.10478956217e-07,-1.56986822386e-06,4.38884692322e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (36.7739915833,34.3192735239,12.2435990369,-4.96066572004) p_j = (1.05590431147,0.985461301679,0.351484158394,-0.142333496643) p_k = (6.93387498788e-09,6.45117110476e-09,8.5097642326e-10,-2.39517254749e-09) p_ij -> (37.8301569713,35.3049784757,12.595170156,-5.10303439613) p_k -> (-0.000261069595002,-0.000243643629638,-8.6959911509e-05,3.51770596527e-05) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734163,-0.516480785207,-0.80793480858) b = (0,0,1) a' = (0.794275253515,0.327237821468,0.511900605445) -> rel. dev. (inf,inf,-0.488099394555) m_ct = -0.80793480858 m_st = -0.589271877053 m_n = (0,-8.51371538602e-07,5.44248169643e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734419,-0.516480784867,-0.807934808707) b = (0,0,1) a' = (0.794275253545,0.327237821258,0.511900605532) -> rel. dev. (inf,inf,-0.488099394468) m_ct = -0.807934808707 m_st = -0.589271876878 m_n = (0,-8.51371538602e-07,5.44248169199e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734295,-0.516480785485,-0.807934808355) b = (0,0,1) a' = (0.79427525383,0.327237821436,0.511900604977) -> rel. dev. (inf,inf,-0.488099395023) m_ct = -0.807934808355 m_st = -0.58927187736 m_n = (0,-8.51371538602e-07,5.44248170087e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734357,-0.516480785176,-0.807934808531) b = (0,0,1) a' = (0.794275253687,0.327237821347,0.511900605255) -> rel. dev. (inf,inf,-0.488099394745) m_ct = -0.807934808531 m_st = -0.589271877119 m_n = (0,-8.51371538602e-07,5.44248169643e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734033,-0.516480784164,-0.807934809292) b = (0,0,1) a' = (0.794275252697,0.32723782137,0.511900606777) -> rel. dev. (inf,inf,-0.488099393223) m_ct = -0.807934809292 m_st = -0.589271876076 m_n = (0,-8.51371540378e-07,5.44248169199e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734419,-0.516480784867,-0.807934808707) b = (0,0,1) a' = (0.794275253545,0.327237821258,0.511900605532) -> rel. dev. (inf,inf,-0.488099394468) m_ct = -0.807934808707 m_st = -0.589271876878 m_n = (0,-8.51371538602e-07,5.44248169199e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734295,-0.516480785485,-0.807934808355) b = (0,0,1) a' = (0.79427525383,0.327237821436,0.511900604977) -> rel. dev. (inf,inf,-0.488099395023) m_ct = -0.807934808355 m_st = -0.58927187736 m_n = (0,-8.51371538602e-07,5.44248170087e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734295,-0.516480785485,-0.807934808355) b = (0,0,1) a' = (0.79427525383,0.327237821436,0.511900604977) -> rel. dev. (inf,inf,-0.488099395023) m_ct = -0.807934808355 m_st = -0.58927187736 m_n = (0,-8.51371538602e-07,5.44248170087e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734295,-0.516480785485,-0.807934808355) b = (0,0,1) a' = (0.79427525383,0.327237821436,0.511900604977) -> rel. dev. (inf,inf,-0.488099395023) m_ct = -0.807934808355 m_st = -0.58927187736 m_n = (0,-8.51371538602e-07,5.44248170087e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734419,-0.516480784867,-0.807934808707) b = (0,0,1) a' = (0.794275253545,0.327237821258,0.511900605532) -> rel. dev. (inf,inf,-0.488099394468) m_ct = -0.807934808707 m_st = -0.589271876878 m_n = (0,-8.51371538602e-07,5.44248169199e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.283705734419,-0.516480784867,-0.807934808707) b = (0,0,1) a' = (0.794275253545,0.327237821258,0.511900605532) -> rel. dev. (inf,inf,-0.488099394468) m_ct = -0.807934808707 m_st = -0.589271876878 m_n = (0,-8.51371538602e-07,5.44248169199e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.2101343017,-24.0137409499,-0.273935247646,25.7491507164) p_j = (2.16266959676,-1.4753704074,-0.0164496652861,1.58118669176) p_k = (6.76774155422e-09,-5.76997846411e-09,3.52674375656e-09,2.67868503305e-10) p_ij -> (37.3728055646,-25.4891124519,-0.290385055424,27.330338796) p_k -> (-1.65931555784e-06,1.08876229454e-06,1.46018903774e-07,-1.38755208212e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818883335,0.47625444858,0.75966646416) b = (0,0,1) a' = (0.919472406573,0.208832572638,0.33310576422) -> rel. dev. (inf,inf,-0.66689423578) m_ct = 0.75966646416 m_st = -0.650312896405 m_n = (0,8.19861597279e-07,-5.13992326034e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818884133,0.476254446969,0.759666464705) b = (0,0,1) a' = (0.919472406593,0.208832571999,0.333105764566) -> rel. dev. (inf,inf,-0.666894235434) m_ct = 0.759666464705 m_st = -0.650312895768 m_n = (0,8.19861596391e-07,-5.1399232337e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818883335,0.47625444858,0.75966646416) b = (0,0,1) a' = (0.919472406573,0.208832572638,0.33310576422) -> rel. dev. (inf,inf,-0.66689423578) m_ct = 0.75966646416 m_st = -0.650312896405 m_n = (0,8.19861597279e-07,-5.13992326034e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818883959,0.476254447605,0.759666464408) b = (0,0,1) a' = (0.919472406697,0.208832572129,0.333105764198) -> rel. dev. (inf,inf,-0.666894235802) m_ct = 0.759666464408 m_st = -0.650312896116 m_n = (0,8.19861596391e-07,-5.13992324258e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818884029,0.476254446035,0.759666465351) b = (0,0,1) a' = (0.919472406157,0.208832572118,0.333105765694) -> rel. dev. (inf,inf,-0.666894234306) m_ct = 0.759666465351 m_st = -0.650312895014 m_n = (0,8.19861597279e-07,-5.13992322482e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818884133,0.476254446969,0.759666464705) b = (0,0,1) a' = (0.919472406593,0.208832571999,0.333105764566) -> rel. dev. (inf,inf,-0.666894235434) m_ct = 0.759666464705 m_st = -0.650312895768 m_n = (0,8.19861596391e-07,-5.1399232337e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818883335,0.47625444858,0.75966646416) b = (0,0,1) a' = (0.919472406573,0.208832572638,0.33310576422) -> rel. dev. (inf,inf,-0.66689423578) m_ct = 0.75966646416 m_st = -0.650312896405 m_n = (0,8.19861597279e-07,-5.13992326034e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818883335,0.47625444858,0.75966646416) b = (0,0,1) a' = (0.919472406573,0.208832572638,0.33310576422) -> rel. dev. (inf,inf,-0.66689423578) m_ct = 0.75966646416 m_st = -0.650312896405 m_n = (0,8.19861597279e-07,-5.13992326034e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818883335,0.47625444858,0.75966646416) b = (0,0,1) a' = (0.919472406573,0.208832572638,0.33310576422) -> rel. dev. (inf,inf,-0.66689423578) m_ct = 0.75966646416 m_st = -0.650312896405 m_n = (0,8.19861597279e-07,-5.13992326034e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818884133,0.476254446969,0.759666464705) b = (0,0,1) a' = (0.919472406593,0.208832571999,0.333105764566) -> rel. dev. (inf,inf,-0.666894235434) m_ct = 0.759666464705 m_st = -0.650312895768 m_n = (0,8.19861596391e-07,-5.1399232337e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.442818884133,0.476254446969,0.759666464705) b = (0,0,1) a' = (0.919472406593,0.208832571999,0.333105764566) -> rel. dev. (inf,inf,-0.666894235434) m_ct = 0.759666464705 m_st = -0.650312895768 m_n = (0,8.19861596391e-07,-5.1399232337e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.1296936186,14.2162455433,5.85938553183,-22.3514258982) p_j = (15.2012284191,7.96523913609,3.28024480901,-12.5248674623) p_k = (1.31278194193e-08,9.84000751911e-09,3.75762955454e-09,-7.83543970181e-09) p_ij -> (42.3310441371,22.1815478334,9.13965644557,-34.8763947894) p_k -> (-0.000122086225559,-6.314418461e-05,-2.61009772142e-05,0.000101421097941) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.5508121603,11.5405444485,15.668243353,-29.7520121894) p_j = (1.47120610368,0.476027803526,0.650468197596,-1.23074613698) p_k = (3.05198875135e-09,-2.35655111984e-09,-1.2528845269e-09,-1.48039208876e-09) p_ij -> (37.0220215714,12.016575744,16.3187148858,-30.9827618702) p_k -> (-3.30441860541e-06,-3.49434182656e-06,-3.33639439276e-06,3.54227041655e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.274931915,-9.07289740647,-6.13792264125,-2.67067931249) p_j = (34.3225244841,-27.7913923624,-18.4983760471,-7.96770237494) p_k = (1.92870824897e-10,1.75518535815e-10,8.53573863955e-12,7.95056055576e-11) p_ij -> (45.5976018366,-36.8647098668,-24.6364801702,-10.6385292555) p_k -> (-0.000145437342059,0.000420098095915,0.000181481813573,0.000147568173328) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.9085690189,19.1881117695,3.73318730283,34.7932976365) p_j = (5.66713421488,2.723485896,0.529989738429,4.94147201358) p_k = (1.87623839793e-07,7.22832604682e-08,2.06555464926e-08,1.7190457793e-07) p_ij -> (45.5757353272,21.9116159296,4.26317955221,39.7347963135) p_k -> (-3.19058062885e-05,-1.81917273903e-05,-2.49029648325e-06,-2.64916092512e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.11312094287,3.82888848495,0.07158008413,-1.50075086276) p_j = (41.4817895122,38.6009160076,0.555445959798,-15.1789203931) p_k = (2.0926507094e-10,-1.63308004097e-10,6.12773983215e-11,1.15612927137e-10) p_ij -> (45.5950024548,42.4299189212,0.627022609154,-16.679720377) p_k -> (-9.19995012616e-05,-0.000114428805094,3.43483509646e-06,4.9121219087e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00125668132374,0.000313089544408,-0.00072641933469,0.000976492619946) p_j = (44.0480028738,10.1499639926,-25.8515916819,34.1891795109) p_k = (6.90395520299e-11,7.19177023638e-12,6.86213398742e-11,2.70949112433e-12) p_ij -> (44.0506911735,10.1506069924,-25.8531585907,34.1912673271) p_k -> (-0.00143161833298,-0.000329910292312,0.000840489480684,-0.00111132360251) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.7508641274,-8.43886120033,37.8162074362,-0.591225341782) p_j = (0.739548150577,-0.160076346497,0.721933208073,-0.0109303886524) p_k = (3.75029386492e-08,-1.89605128296e-08,2.49384265482e-08,2.06166011429e-08) p_ij -> (39.4904193855,-8.59893823061,38.5381485135,-0.602157534508) p_k -> (-7.07001872513e-06,6.64820361429e-07,-7.84434780243e-06,1.82469075882e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.86914636337,4.83571012151,-2.21524345589,4.34669711543) p_j = (30.2885780491,21.3255912893,-9.76864780042,19.1622189882) p_k = (4.37704494466e-10,3.65720644428e-10,1.36878751315e-10,1.9773174466e-10) p_ij -> (37.1584360598,26.1618024071,-11.9841209987,23.5093664124) p_k -> (-0.000711646890942,-0.000500995905055,0.000229742554863,-0.000450308601229) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.151651571,4.13948985632,-14.1021648918,-19.1649639368) p_j = (16.231572611,2.78232245303,-9.47788518622,-12.8799193938) p_k = (1.16428412964e-07,-3.98533163546e-08,9.21304730503e-08,-5.8985295116e-08) p_ij -> (40.3832245546,6.92181237511,-23.5800503007,-32.0448836274) p_k -> (-2.56202525861e-07,-1.05609472278e-07,3.14761347653e-07,2.37758019495e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.0395768248,-7.10543511996,17.2687996424,-20.9169600846) p_j = (17.4951855711,-4.43533215062,10.7670904643,-13.0567649061) p_k = (1.6335718239e-08,-1.41592367665e-08,-2.43844531422e-09,-7.77339575907e-09) p_ij -> (45.534771183,-11.5407674997,28.035898009,-33.9737324272) p_k -> (-8.77070996452e-06,2.14946834554e-07,-7.90466402556e-06,7.42867503334e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.5044719829,-20.4099352228,-35.2744431742,-15.2245619134) p_j = (2.06594629957,-0.979798765805,-1.68155935973,-0.693171415266) p_k = (8.96236775791e-11,7.79172928187e-11,9.62341125461e-12,-4.32244548707e-11) p_ij -> (45.570705339,-21.3901117015,-36.9564019985,-15.917809461) p_k -> (-0.000287056444595,0.000377712903825,0.000399464601237,7.61322833744e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.9182166556,-4.52658899344,-1.81462467616,0.63716908315) p_j = (7.65950271554,-7.04950742317,-2.82640835165,0.991888486537) p_k = (5.32610580093e-10,1.78577366609e-10,2.58786036784e-10,-4.2989887733e-10) p_ij -> (12.5777361875,-11.5761119001,-4.64103923715,1.62905975245) p_k -> (-1.68158165454e-05,1.54836873891e-05,6.20960312503e-06,-2.1831898469e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.3372096763,4.20267153481,-7.82906863563,-9.94607451309) p_j = (30.8410350042,9.72716042529,-18.1040167513,-22.9955727838) p_k = (2.68551709247e-08,-3.3573342609e-09,-1.38196022811e-08,-2.27804106202e-08) p_ij -> (44.1782556623,13.9298373382,-25.9330921484,-32.9416550391) p_k -> (-1.09549456191e-05,-5.38149330787e-06,6.7476147354e-06,7.71944341338e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.9491702114,7.42358670665,2.14270150966,-22.6685232087) p_j = (0.10789924228,0.0331635755058,0.00960621312265,-0.102225947849) p_k = (1.17576510857e-10,-8.28112264206e-11,1.07005570668e-11,8.2778931327e-11) p_ij -> (24.0571407184,7.45677259885,2.15231409826,-22.7708169809) p_k -> (-7.12646279268e-05,-2.23167821067e-05,-6.37546831972e-06,6.78244188599e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.73806797,-2.26867031339,20.1300927497,-28.2199551238) p_j = (8.76303042677,-0.570827313122,5.0797411265,-7.11766032674) p_k = (1.69738435839e-08,-4.56870025411e-09,-1.10456936289e-08,1.20511821342e-08) p_ij -> (43.5011016381,-2.83949780763,25.2098359383,-35.3376183109) p_k -> (-3.22430811295e-06,1.76549075581e-07,-2.07320197099e-06,2.87245550723e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.5445144273,-17.3525016342,-14.363448502,0.914967173804) p_j = (23.0082397115,-17.6957231022,-14.6736899626,0.960885733303) p_k = (5.34440702729e-09,-4.74779385595e-09,-1.82545262797e-10,2.4470005371e-09) p_ij -> (45.5528175755,-35.0482682518,-29.0372057409,1.87583698185) p_k -> (-6.34313982673e-05,4.35106723664e-05,6.7276109851e-05,1.59277060543e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.6205598504,-0.403230726067,-7.42710584529,-10.195785143) p_j = (0.00765902696016,-0.00020019915496,-0.00451660794378,-0.00618230272285) p_k = (4.96298437378e-10,-1.26715554031e-10,3.12203690624e-10,-3.64396980731e-10) p_ij -> (12.6282372461,-0.403431472333,-7.43163347959,-10.2019822984) p_k -> (-1.83682720145e-05,5.46984356364e-07,1.10266692572e-05,1.48523165233e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00226174652256,0.00100286336733,0.0010143633245,0.00175522917155) p_j = (26.7464709066,11.8103221404,11.9254677674,20.8248220984) p_k = (9.16148333964e-09,-4.84828502032e-09,-1.00620874661e-09,-7.70807735714e-09) p_ij -> (26.7487350948,11.8113260914,11.9264832248,20.8265792444) p_k -> (-2.4324762169e-06,-1.09246447799e-06,-1.09508386981e-06,-1.92457564552e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.3872477379,-2.89478080439,5.19150161535,-14.1928132525) p_j = (22.8128324208,-4.29275090261,7.69269936152,-21.0432884617) p_k = (3.60658875647e-07,-1.23393222557e-08,8.37666935878e-08,-3.50579102004e-07) p_ij -> (38.2000856408,-7.18753417631,12.8842038068,-35.2361063072) p_k -> (-5.12146224096e-06,2.45696320178e-06,-2.74615854945e-06,4.24251672371e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.26831136997,-0.627455118388,1.02548836537,-0.404088379077) p_j = (31.9739979965,-15.8145416236,25.8546127651,-10.187041763) p_k = (1.21266773579e-08,-5.19807434602e-09,-1.06793049188e-08,2.44719669109e-09) p_ij -> (33.2423110911,-16.4419975955,26.8801025361,-10.591130695) p_k -> (-1.71252748871e-06,8.48265861109e-07,-1.41631188377e-06,5.55335410546e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.9108044991,-13.8349435581,6.83103045002,6.92146433501) p_j = (23.0797277474,-18.8832316384,9.32464140187,9.44184613898) p_k = (2.27401012808e-10,1.72031283722e-10,-1.46299649022e-10,2.67572872193e-11) p_ij -> (39.9907832429,-32.7183807478,16.1557733837,16.3634132135) p_k -> (-0.000250996204066,0.000205551522264,-0.00010153198202,-0.000102739457397) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.1499201367,1.872984633,-0.70220001891,-11.9841313004) p_j = (9.53448396455,1.46988728026,-0.551111332793,-9.40436559011) p_k = (1.83884994193e-07,4.1737971031e-08,1.95748201941e-08,-1.78012525662e-07) p_ij -> (21.6844116587,3.34287307663,-1.25331179233,-21.3885043453) p_k -> (-7.37359260405e-06,-1.12162980348e-06,4.60202522201e-07,7.27676067669e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.5084999463,18.9457365315,-0.117272643258,-32.3717914646) p_j = (0.0222069833733,0.0114114199919,3.11948244699e-05,-0.0190506858457) p_k = (8.93067067237e-09,-4.30451222164e-09,-1.23062061564e-09,7.72745712084e-09) p_ij -> (37.5307103292,18.9571503521,-0.117241365807,-32.3908462811) p_k -> (-3.39061764265e-06,-2.40491353587e-06,-8.38575381704e-08,4.13838046143e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.72819211158,-0.451931616412,3.28530957085,-1.70350088307) p_j = (7.8412095358,-0.951205897848,6.90903372973,-3.58399598851) p_k = (5.14438716594e-08,-5.03047082473e-09,5.11910226426e-08,-8.03426709765e-10) p_ij -> (11.5694029708,-1.40313768546,10.1943444149,-5.28749767736) p_k -> (-1.27199946665e-06,1.66171814753e-07,-1.06309075676e-06,8.04977355884e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.1868975751,-36.3448406271,6.59022495652,-4.2996332492) p_j = (7.48953899406,-7.32011011521,1.3269324224,-0.865119986564) p_k = (1.4796117693e-08,-1.47147130445e-08,-1.51994103907e-09,-3.03485374059e-10) p_ij -> (44.6766458792,-43.6651552949,7.91719477428,-5.16477753576) p_k -> (-0.000209295218792,0.000204537899222,-3.73968702889e-05,2.42997016038e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.7998601809,-11.2947031835,6.57496969507,14.8739341363) p_j = (25.6922974783,-14.6461542683,8.52692825174,19.3099924768) p_k = (8.26229146681e-10,4.23241221886e-10,-4.06438998339e-10,-5.81665478933e-10) p_ij -> (45.4921984252,-25.9408816741,15.101912223,34.1839585586) p_k -> (-4.07651039076e-05,2.42227891132e-05,-1.4276598705e-05,-3.19460738645e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.95779592,9.75704731169,28.7811615479,-17.2769286419) p_j = (0.138259397623,0.0387604323051,0.113881836782,-0.0681484935241) p_k = (5.71453529212e-08,2.54842380791e-08,5.10498248032e-08,3.17180805259e-09) p_ij -> (35.0960578639,9.79580822099,28.895045383,-17.3450791638) p_k -> (-2.48910463085e-06,-4.51506824817e-07,-1.94723031832e-06,2.03160050738e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.31089202328,0.842089041091,0.252941330338,0.972288345591) p_j = (18.4187538816,11.8209802484,3.56394824566,13.6679622995) p_k = (3.28840402145e-08,8.49328672968e-09,7.90114219543e-09,3.07700524716e-08) p_ij -> (19.72964693,12.663071895,3.81688953661,14.6402504224) p_k -> (-9.92265931643e-07,-2.59707997152e-06,4.72859704725e-08,2.53491874602e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.2159810421,0.0562084394378,-0.0935581033605,1.21107282497) p_j = (18.7989722987,0.867350856103,-1.44412627416,18.7233426846) p_k = (1.22829196827e-09,-4.52869894481e-11,4.21303515322e-11,-1.22673348427e-09) p_ij -> (20.0149592142,0.923559567089,-1.53768482946,19.9344213721) p_k -> (-5.87217010306e-06,-2.71593356527e-07,4.51984713656e-07,-5.86370528666e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.0132729408,23.9270210868,-1.9185772476,-0.673795654081) p_j = (21.4553617009,21.3783483177,-1.71429248739,-0.599975159857) p_k = (2.82822505154e-09,8.8187354373e-10,-2.61979629411e-09,5.98177782907e-10) p_ij -> (45.4686661454,45.3054008521,-3.63287218165,-1.27377171643) p_k -> (-3.15009000893e-05,-3.14467037938e-05,2.44403106064e-06,9.03087087445e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.527238675,-10.2070962594,-0.889175954683,-24.4687340047) p_j = (13.304120923,-5.11916859002,-0.445846785622,-12.271714107) p_k = (2.37755287561e-10,1.09070419745e-10,-1.23271514987e-11,2.10902390893e-10) p_ij -> (39.8313617916,-15.3262656936,-1.33502281383,-36.7404501354) p_k -> (-2.19342233621e-06,8.44301859537e-07,7.35097248628e-08,2.02389786708e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.5044535478,-0.804721185395,-3.22133291127,12.0555711859) p_j = (3.36410654969,-0.217704819272,-0.868791347468,3.24268701603) p_k = (1.88856626859e-09,1.24110967862e-09,-3.18374531111e-10,-1.38742953838e-09) p_ij -> (15.8685632748,-1.02242653129,-4.09012511748,15.2982620228) p_k -> (-3.17547671358e-06,5.27858826094e-07,8.58425782901e-07,-3.8223330181e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.6760241205,12.0709793475,-15.516228464,0.827065315264) p_j = (25.8984094559,15.9118316911,-20.4030799183,1.12051525125) p_k = (6.71927833806e-09,9.39137741161e-10,-6.65288012247e-09,-7.68648332349e-11) p_ij -> (45.5746362142,27.9829934663,-35.9194433856,1.94759585247) p_k -> (-0.000202631089898,-0.000182426812822,0.000134996601236,-1.52860320153e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.76149032961,-2.06204619143,4.19898525628,0.887850483402) p_j = (22.2673360441,-9.64310813689,19.6369216139,4.1516297389) p_k = (1.39051824655e-07,-6.19962562561e-08,1.19822131883e-07,3.3682797684e-08) p_ij -> (27.028907335,-11.7051893828,23.8359782783,5.03949528763) p_k -> (-8.08222845983e-05,3.49924448191e-05,-7.12883027578e-05,-1.50316432279e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00666689552496,-0.00167724362923,0.00032543223524,-0.00644425663744) p_j = (43.4805783764,-11.0196879484,2.13594981036,-42.006724365) p_k = (7.33374823009e-08,-2.74924745795e-08,5.26446132259e-08,-4.30243519457e-08) p_ij -> (43.4872458625,-11.0213653366,2.13627524355,-42.0131692081) p_k -> (-5.17238618158e-07,1.17087409102e-07,5.16904352654e-08,5.43453360535e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.08111806,-2.949705368,10.2673518825,-14.5879249333) p_j = (27.1482069949,-4.42501916011,15.4042658243,-21.91239245) p_k = (3.03005206572e-09,1.04441153517e-09,-4.68817229282e-10,2.80546722464e-09) p_ij -> (45.2293252341,-7.37472502709,25.6716184768,-36.5003191313) p_k -> (-1.76194070889e-07,5.00024110117e-07,-7.70474926526e-07,1.75070466213e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.03947839531,-1.1290097442,-3.62120196222,-4.69973750689) p_j = (39.5048997428,-7.3505048329,-23.6873237834,-30.7492743714) p_k = (2.48866031585e-08,2.44434983077e-08,-4.64850566414e-09,4.99741478348e-10) p_ij -> (45.5443801403,-8.47951720444,-27.3085277428,-35.4490149774) p_k -> (-1.97731386109e-06,2.65178121062e-06,1.99246739463e-06,3.09957038525e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0813031091013,-0.0412199266779,-0.0327138680061,-0.0619751243184) p_j = (38.925711317,-19.6364186247,-15.7661983633,-29.6824704885) p_k = (2.46408488266e-08,-1.98082722434e-08,4.59030273323e-09,1.3918797476e-08) p_ij -> (39.0070170339,-19.6776397171,-15.7989135835,-29.7444482657) p_k -> (-2.58317315627e-06,1.14588874212e-06,1.35676861301e-06,2.66682540051e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.9847093271,20.6021129236,-2.86465959578,-7.11857518616) p_j = (13.0398426374,12.2198541761,-1.69929524971,-4.22197294842) p_k = (2.81831954171e-07,2.66294130441e-07,9.11995458251e-09,-9.18341598539e-08) p_ij -> (35.02457432,32.8219880477,-4.56395779289,-11.3405553726) p_k -> (-2.20735850078e-05,-2.06816236989e-05,2.95652264404e-06,7.14615893571e-06) } Event 60000 ( 7m 16s elapsed / 3h 54m 58s left ) -> ETA: Thu Aug 17 20:45 XS = 21110482.1979 pb +- ( 2866837.35677 pb = 13.58 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.4915209965,-4.48283721379,-10.5639554072,0.601723757535) p_j = (28.6681814316,-11.1821338608,-26.3546513226,1.50228578503) p_k = (2.05170208999e-09,-5.23162636808e-11,-1.73733209455e-09,1.09014748831e-09) p_ij -> (40.160029756,-15.6650987869,-36.9189076472,2.10402664892) p_k -> (-0.000327325891384,0.000127712252868,0.000300915613661,-1.71052653188e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.0099433334,33.9519118145,18.2111803851,6.11524913621) p_j = (0.0572957123401,0.0499122790017,0.026673757265,0.00894839263667) p_k = (5.90736932569e-09,-2.86053083083e-09,-2.19222107348e-09,-4.68065964644e-09) p_ij -> (39.0672464062,34.0018305589,18.2378576151,6.12419872425) p_k -> (-7.35458851508e-06,-6.46832860696e-06,-3.47500914266e-06,-1.20008290416e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.1212023524,-26.8233797975,-7.24045343682,30.3155968632) p_j = (4.47862886947,-2.92148965863,-0.788689040129,3.30166387189) p_k = (3.19749283207e-08,-2.57658173639e-08,-7.20769029704e-09,1.75090804257e-08) p_ij -> (45.5999058355,-29.7449181132,-8.02915561041,33.6173157589) p_k -> (-7.45816813357e-05,4.86312497685e-05,1.31262584713e-05,-5.50062651854e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.9903032688,16.4603242295,-14.0201332744,35.9955435829) p_j = (0.0256426132892,0.0100549370543,-0.00855924108905,0.0219813841492) p_k = (2.35598766229e-06,1.06324741622e-06,-7.80222712953e-07,1.95228976205e-06) p_ij -> (42.015962167,16.4703855421,-14.0286979533,36.0175389311) p_k -> (-1.3928959028e-05,-5.31227793843e-06,4.65753139878e-06,-1.20116953966e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0081657962754,0.00183660116925,0.00522435963249,0.00600109918156) p_j = (2.77518482537,0.635119394076,1.78087882997,2.03143908676) p_k = (1.80093018139e-09,-5.60518004403e-10,-1.60202312702e-09,6.0223827827e-10) p_ij -> (2.78335062678,0.636956040023,1.78610331652,2.0374402218) p_k -> (-3.33486727122e-09,-4.53382711374e-08,-1.28520942e-07,-3.52570748152e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.4838848912,-2.47334690493,9.37113410092,-16.9022534357) p_j = (0.962410715944,-0.122163309484,0.462804630511,-0.834938552204) p_k = (3.36224196965e-09,3.45070307367e-10,-1.61122315897e-09,2.93079330812e-09) p_ij -> (20.4462966358,-2.59551034553,9.83393922844,-17.7371928844) p_k -> (-1.02529098456e-06,1.31466909359e-07,-4.9862237983e-07,8.99392816223e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478704,0.375904635894,-0.912134557976) b = (0,0,1) a' = (0.553441999719,-0.31735268252,0.770057937979) -> rel. dev. (inf,-inf,-0.229942062021) m_ct = -0.912134557976 m_st = -0.409890897857 m_n = (0,-1.49611775513e-06,-6.16573064882e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478584,0.375904635735,-0.912134558063) b = (0,0,1) a' = (0.553441999441,-0.31735268245,0.770057938208) -> rel. dev. (inf,-inf,-0.229942061792) m_ct = -0.912134558063 m_st = -0.409890897663 m_n = (0,-1.49611775591e-06,-6.16573064882e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478756,0.375904635961,-0.912134557939) b = (0,0,1) a' = (0.553441999838,-0.317352682549,0.770057937882) -> rel. dev. (inf,-inf,-0.229942062118) m_ct = -0.912134557939 m_st = -0.409890897939 m_n = (0,-1.49611775413e-06,-6.16573064605e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478756,0.375904635961,-0.912134557939) b = (0,0,1) a' = (0.553441999838,-0.317352682549,0.770057937882) -> rel. dev. (inf,-inf,-0.229942062118) m_ct = -0.912134557939 m_st = -0.409890897939 m_n = (0,-1.49611775413e-06,-6.16573064605e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478584,0.375904635735,-0.912134558063) b = (0,0,1) a' = (0.553441999441,-0.31735268245,0.770057938208) -> rel. dev. (inf,-inf,-0.229942061792) m_ct = -0.912134558063 m_st = -0.409890897663 m_n = (0,-1.49611775591e-06,-6.16573064882e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478584,0.375904635735,-0.912134558063) b = (0,0,1) a' = (0.553441999441,-0.31735268245,0.770057938208) -> rel. dev. (inf,-inf,-0.229942061792) m_ct = -0.912134558063 m_st = -0.409890897663 m_n = (0,-1.49611775591e-06,-6.16573064882e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478756,0.375904635961,-0.912134557939) b = (0,0,1) a' = (0.553441999838,-0.317352682549,0.770057937882) -> rel. dev. (inf,-inf,-0.229942062118) m_ct = -0.912134557939 m_st = -0.409890897939 m_n = (0,-1.49611775413e-06,-6.16573064605e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478756,0.375904635961,-0.912134557939) b = (0,0,1) a' = (0.553441999838,-0.317352682549,0.770057937882) -> rel. dev. (inf,-inf,-0.229942062118) m_ct = -0.912134557939 m_st = -0.409890897939 m_n = (0,-1.49611775413e-06,-6.16573064605e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478756,0.375904635961,-0.912134557939) b = (0,0,1) a' = (0.553441999838,-0.317352682549,0.770057937882) -> rel. dev. (inf,-inf,-0.229942062118) m_ct = -0.912134557939 m_st = -0.409890897939 m_n = (0,-1.49611775413e-06,-6.16573064605e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478584,0.375904635735,-0.912134558063) b = (0,0,1) a' = (0.553441999441,-0.31735268245,0.770057938208) -> rel. dev. (inf,-inf,-0.229942061792) m_ct = -0.912134558063 m_st = -0.409890897663 m_n = (0,-1.49611775591e-06,-6.16573064882e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.163420478584,0.375904635735,-0.912134558063) b = (0,0,1) a' = (0.553441999441,-0.31735268245,0.770057938208) -> rel. dev. (inf,-inf,-0.229942061792) m_ct = -0.912134558063 m_st = -0.409890897663 m_n = (0,-1.49611775591e-06,-6.16573064882e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.78745955355,3.25150353777,7.77990314564,2.47391939915) p_j = (5.49511086149,2.03324833552,4.86511736473,1.54686056693) p_k = (6.00209090528e-09,6.93612456433e-10,-1.53279935226e-10,5.95991120555e-09) p_ij -> (14.2825721666,5.2847525221,12.6450220636,4.02078045725) p_k -> (-1.74559142252e-06,-6.48116459612e-07,-1.55341104247e-06,-4.85197053646e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.63381402585,-1.24877646354,0.293341023651,-4.45272285395) p_j = (0.0387843349999,-0.0105886061152,0.00248237466886,-0.0372282671894) p_k = (1.0173814779e-09,2.71207824415e-10,-7.64542606459e-11,9.77571010525e-10) p_ij -> (4.67259883384,-1.25936526913,0.29582344686,-4.48995183373) p_k -> (-4.71978701899e-07,1.99748384277e-07,-4.86161293167e-08,7.13568994559e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.03376622061,1.5072575927,0.536787902636,-2.57755131436) p_j = (42.5649019039,21.0917235807,7.6103423681,-36.1800049686) p_k = (6.0619135692e-09,4.95229426925e-09,3.02700534218e-09,1.74894691479e-09) p_ij -> (45.5987003989,22.5989939601,8.14713283522,-38.7575950831) p_k -> (-3.22683221263e-05,-1.27817583877e-05,-2.56144902533e-06,3.88019351796e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00230987498927,0.00213792284198,-0.000803672655957,-0.000344845834879) p_j = (33.1864900528,29.8893922658,-11.7954685641,-8.29664229411) p_k = (1.15851805394e-09,-4.34334019893e-10,1.07143554941e-10,1.06866441374e-09) p_ij -> (33.1888137415,29.8915525837,-11.7962806418,-8.29699974228) p_k -> (-1.38125558493e-05,-2.23954663312e-05,8.40515464873e-06,1.26034031913e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.138360065817,-0.00282555983143,-0.132003118717,-0.0413606174207) p_j = (42.003583192,-0.915838011116,-39.9947303592,-12.8017102451) p_k = (7.22939629968e-09,-1.90440294497e-09,6.93031757575e-09,7.79814837124e-10) p_ij -> (42.1419505295,-0.918663389569,-40.1267430898,-12.8430736591) p_k -> (-7.26442933541e-06,-1.83282236443e-07,9.61879806383e-06,2.7973108967e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.53817813803,1.74320171713,-1.70909759013,8.18173081429) p_j = (37.0609158789,7.56917294008,-7.42177419628,35.5124819544) p_k = (7.04060769086e-09,1.30837144262e-09,1.50067337466e-11,6.91795449429e-09) p_ij -> (45.6000966725,9.31257946422,-9.13107302131,43.6951734834) p_k -> (-0.00100264859004,-0.000204805700682,0.000201234910979,-0.000960707788863) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.9695676577,-35.7323007019,-2.07561012225,-15.4117400898) p_j = (6.52389386256,-5.98462188021,-0.331950953177,-2.57590773234) p_k = (1.06956935915e-10,8.55481718896e-11,1.68200767053e-11,6.19455572459e-11) p_ij -> (45.493786079,-41.7172353919,-2.40758011148,-17.987784774) p_k -> (-0.000324558655237,0.000312809904162,1.90360683625e-05,0.000136951882997) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.7107672249,3.49399339363,3.65272932662,-14.8754087482) p_j = (1.41843098574,0.315504090553,0.329349682894,-1.34310551206) p_k = (3.85423449457e-10,-2.8485770004e-10,4.26953724068e-11,2.56095242004e-10) p_ij -> (17.1292126673,3.80950073437,3.98208237474,-16.2185280071) p_k -> (-1.44562707618e-05,-3.25047514904e-06,-3.36517975241e-06,1.37470716801e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.7081250775,0.929089376798,-21.6219805541,1.69394339598) p_j = (9.80358668079,0.402759471907,-9.76253333867,0.800649378219) p_k = (5.01012163244e-10,-2.39268992709e-10,4.3928732536e-10,-2.8088723915e-11) p_ij -> (31.5117464465,1.33186531392,-31.3846024767,2.49459942205) p_k -> (-3.46876617296e-05,-1.64654518043e-05,8.85843912197e-05,-6.64788347993e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.08248434332,-0.795475716369,-1.92456201588,0.0045245820352) p_j = (43.4987063153,-16.6432054784,-40.1887390265,0.0801121999961) p_k = (6.53431273175e-08,-7.36726985261e-09,-6.30996644208e-08,-1.52931357674e-08) p_ij -> (45.5812036979,-17.4386885463,-42.113312724,0.0846388719247) p_k -> (-1.29739151333e-05,7.34411373493e-06,1.16185409276e-05,-2.10518656293e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.9740719225,-1.7283113224,-27.5880667223,-19.7521917137) p_j = (11.6227543752,-0.601170103498,-9.41569479002,-6.78761411643) p_k = (8.9428400412e-10,2.4741882698e-10,-8.48387493815e-10,1.3699002987e-10) p_ij -> (45.5972814657,-2.3295523838,-37.0041109408,-26.5401777743) p_k -> (-0.00045516711852,7.09581478662e-05,0.000349427625995,0.000371944340847) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.6835812575,-10.8643148496,-0.350209705002,-43.341278823) p_j = (0.202926488998,-0.0491008667494,-0.00172850149256,-0.19688899691) p_k = (4.53385262211e-08,-4.50893517854e-08,-2.95415840759e-09,3.71554374757e-09) p_ij -> (44.8865105254,-10.9134162173,-0.35193821496,-43.5381707598) p_k -> (-2.7335140409e-06,4.55898381269e-07,5.51128298554e-09,2.94359535502e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.3698160516,0.930761329812,-3.79466630385,19.9915881551) p_j = (19.4454737717,0.888479165782,-3.62279792514,19.0843493515) p_k = (1.55336841457e-08,-1.83654437095e-09,2.45688162765e-09,-1.52278080272e-08) p_ij -> (39.8152905373,1.81924052834,-7.41746436226,39.0759382089) p_k -> (-6.98501409602e-07,-3.45832382731e-08,1.35733652762e-07,-7.17451626997e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.4729035236,-28.3149704301,14.0019498666,-7.52976179784) p_j = (6.64673945779,-5.79467261961,2.86518952003,-1.54648105895) p_k = (5.46429352287e-08,4.71159572894e-08,-6.5250434523e-09,-2.68953819283e-08) p_ij -> (39.1196441991,-34.1096459818,16.8671405054,-9.07624285869) p_k -> (-1.16307422005e-06,2.97926074211e-06,-1.12538664965e-06,-2.49941569663e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.719926398104,-0.178230522599,-0.375456018522,-0.587844092985) p_j = (29.5705464449,-7.32259523114,-15.4213875036,-24.1449295629) p_k = (2.60759018821e-07,-8.63971196612e-08,-1.62819777361e-07,-1.84446533469e-07) p_ij -> (30.2904850033,-7.50082875637,-15.7968498532,-24.7327835962) p_k -> (-1.18994992846e-05,2.91623423321e-06,6.16831341027e-06,9.75587924046e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.62580387946,-0.683042265562,0.791961245364,1.24478468169) p_j = (42.679234754,-17.9292781088,20.7895546906,32.6780122016) p_k = (1.283182018e-06,-5.51349719082e-07,5.02711571713e-07,1.0439591248e-06) p_ij -> (44.3050425265,-18.6123220077,21.5815178534,33.9227998535) p_k -> (-2.6098714585e-06,1.08198605631e-06,-1.41470380299e-06,-1.92623084061e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.327781768971,0.0760756649878,-0.267561392674,0.17339054881) p_j = (45.2608289597,10.5635030602,-36.9735675731,23.8727950213) p_k = (1.08657063029e-07,-5.73833603702e-08,-8.32208722633e-08,3.98471293615e-08) p_ij -> (45.5886108827,10.6395805624,-37.2411292122,24.0461860316) p_k -> (-4.53624302565e-08,-1.89459361177e-06,1.63213652371e-07,-4.21602660339e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00567504472311,0.00057006244541,-0.00564395824547,-0.000164002259555) p_j = (8.1336959577,0.901759216727,-8.08210549092,-0.153006800541) p_k = (1.52419020597e-09,-3.76565829613e-10,5.48071708962e-10,-1.37148067865e-09) p_ij -> (8.13937124607,0.902329462751,-8.08775028323,-0.153170422006) p_k -> (-2.42125140382e-07,-1.83955477517e-07,8.34612353451e-07,-3.82166311499e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.585201845262,0.0983109910291,-0.804906050011) b = (0,0,1) a' = (0.952215082732,-0.037029737441,0.303175254207) -> rel. dev. (inf,-inf,-0.696824745793) m_ct = -0.804906050011 m_st = -0.593402267147 m_n = (0,-9.2212188596e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.585201846829,0.0983109910319,-0.804906048871) b = (0,0,1) a' = (0.952215083909,-0.0370297370488,0.303175250558) -> rel. dev. (inf,-inf,-0.696824749442) m_ct = -0.804906048871 m_st = -0.593402268693 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.58520184479,0.0983109912103,-0.804906050332) b = (0,0,1) a' = (0.952215082389,-0.0370297376233,0.303175255262) -> rel. dev. (inf,-inf,-0.696824744738) m_ct = -0.804906050332 m_st = -0.593402266712 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.58520184581,0.0983109911211,-0.804906049602) b = (0,0,1) a' = (0.952215083149,-0.0370297373361,0.30317525291) -> rel. dev. (inf,-inf,-0.69682474709) m_ct = -0.804906049602 m_st = -0.593402267702 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.585201846829,0.0983109910319,-0.804906048871) b = (0,0,1) a' = (0.952215083909,-0.0370297370488,0.303175250558) -> rel. dev. (inf,-inf,-0.696824749442) m_ct = -0.804906048871 m_st = -0.593402268693 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.585201846829,0.0983109910319,-0.804906048871) b = (0,0,1) a' = (0.952215083909,-0.0370297370488,0.303175250558) -> rel. dev. (inf,-inf,-0.696824749442) m_ct = -0.804906048871 m_st = -0.593402268693 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.58520184479,0.0983109912103,-0.804906050332) b = (0,0,1) a' = (0.952215082389,-0.0370297376233,0.303175255262) -> rel. dev. (inf,-inf,-0.696824744738) m_ct = -0.804906050332 m_st = -0.593402266712 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.58520184479,0.0983109912103,-0.804906050332) b = (0,0,1) a' = (0.952215082389,-0.0370297376233,0.303175255262) -> rel. dev. (inf,-inf,-0.696824744738) m_ct = -0.804906050332 m_st = -0.593402266712 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.58520184479,0.0983109912103,-0.804906050332) b = (0,0,1) a' = (0.952215082389,-0.0370297376233,0.303175255262) -> rel. dev. (inf,-inf,-0.696824744738) m_ct = -0.804906050332 m_st = -0.593402266712 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.585201846829,0.0983109910319,-0.804906048871) b = (0,0,1) a' = (0.952215083909,-0.0370297370488,0.303175250558) -> rel. dev. (inf,-inf,-0.696824749442) m_ct = -0.804906048871 m_st = -0.593402268693 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.585201846829,0.0983109910319,-0.804906048871) b = (0,0,1) a' = (0.952215083909,-0.0370297370488,0.303175250558) -> rel. dev. (inf,-inf,-0.696824749442) m_ct = -0.804906048871 m_st = -0.593402268693 m_n = (0,-9.22121884628e-07,-1.12627699167e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00319647356628,0.000422388850962,-0.00209057091555,0.00238087046384) p_j = (42.7107219543,5.62617337352,-27.9353172987,31.814619131) p_k = (1.00218188977e-07,2.9678490154e-08,2.71237600713e-08,-9.17996580261e-08) p_ij -> (42.7139188303,5.62659581536,-27.9374081329,31.8170003015) p_k -> (-3.02205048541e-07,-2.33064327837e-08,2.90474263309e-07,-3.91814328538e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.8613360026,-0.276828870109,-2.44758921253,-10.5783407293) p_j = (29.2517523777,-0.748104375225,-6.59129815109,-28.4896497994) p_k = (9.33533962605e-10,-5.43425780898e-10,-6.36858195699e-10,4.13024161122e-10) p_ij -> (40.1131283278,-1.02493425216,-9.0388963538,-39.0680294707) p_k -> (-3.99465309684e-05,1.00627719601e-06,8.98953538098e-06,3.89424192555e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.4542648426,9.61633632702,13.6445979692,28.9920481867) p_j = (2.21979252517,0.638789554811,0.905231571517,1.92353387321) p_k = (9.50134401507e-09,3.31520724074e-09,7.92998081503e-09,4.04973400433e-09) p_ij -> (35.6740742602,10.2551306995,14.549836164,30.915596974) p_k -> (-1.68829751317e-05,-4.81437107513e-06,-6.61542855163e-06,-1.49099980238e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.08975352476,0.971669236654,-0.279598623064,-0.406504919087) p_j = (17.027787783,15.1819270479,-4.36892078941,-6.35351706005) p_k = (1.67828675369e-08,3.58080384327e-09,-1.56221518763e-08,-4.97904121429e-09) p_ij -> (18.1175453858,16.1535999298,-4.64852044954,-6.76002350177) p_k -> (-4.0612317207e-06,-3.64168211142e-06,1.02144561165e-06,1.51765977474e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.50725316264,0.621315387658,-0.626888139946,-1.2217980788) p_j = (33.2690780518,13.7163464714,-13.83196974,-26.9697980526) p_k = (1.67350431973e-08,7.01521297111e-09,-3.0728515667e-09,-1.48797191156e-08) p_ij -> (34.7763544526,14.3376714348,-14.4588677101,-28.1916149127) p_k -> (-2.32215045024e-05,-9.56868299351e-06,9.82705607022e-06,1.87663682301e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.9160110856,-16.8294729076,15.9861748441,-31.2356683027) p_j = (3.16892510229,-1.37026131212,1.30180054412,-2.54357732018) p_k = (6.57920979522e-09,-5.88285210277e-09,2.92656231961e-09,3.3658030582e-10) p_ij -> (42.0849954695,-18.1997598517,17.2879997401,-33.7792932134) p_k -> (-5.92750645652e-05,2.56260671776e-05,-2.43489104541e-05,4.75908267568e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.0585581071,-12.3786937118,-3.57691732898,-2.12121291916) p_j = (24.4874147893,-23.2081614486,-6.71555583694,-3.98949057395) p_k = (2.14767148953e-10,1.20610110494e-10,-8.97020171411e-11,1.5340580449e-10) p_ij -> (37.5459932816,-35.5868760474,-10.2924786052,-6.11070772053) p_k -> (-2.03849887193e-05,2.08872099776e-05,5.43922166152e-06,4.22757246366e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.1024917744,5.08601737524,5.78945455072,33.2203941651) p_j = (0.272753467353,0.0406960996297,0.0462921561573,0.265697793944) p_k = (6.41069697198e-08,-4.53077371525e-08,3.35251884217e-08,-3.05446264793e-08) p_ij -> (34.3752456014,5.126713529,5.83574676773,33.4860923103) p_k -> (-2.95562916364e-07,-9.94413631439e-08,-2.73312545929e-08,-3.81746083633e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.93863292853,1.14535870341,4.84175306049,-7.42595040198) p_j = (5.66366166468,0.725936323641,3.06746197547,-4.70539657574) p_k = (1.72127146552e-08,-1.7002375102e-08,-2.31289508868e-09,1.3591622346e-09) p_ij -> (14.6022948316,1.87129506755,7.90921517111,-12.1313471839) p_k -> (-2.2115647802e-07,-5.75017528037e-08,-1.37452523141e-07,2.07505755689e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.1267456274,6.22891402675,-34.4065177441,-25.2449669277) p_j = (1.19481457543,0.173124734963,-0.953726024154,-0.698581682166) p_k = (2.36265081435e-08,-7.95737346174e-09,1.67638386771e-08,-1.46241512355e-08) p_ij -> (44.3215615149,6.40203914492,-35.3602454217,-25.9435493644) p_k -> (-1.28844558844e-06,-3.91168364366e-07,1.67021856967e-06,7.39862210608e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.282918695,0.0533609952315,-0.0952945645435,-0.260987620658) p_j = (6.38998695872,1.2061371557,-2.15296107901,-5.89422811626) p_k = (2.78357641999e-08,-1.68017300642e-08,-4.15043032497e-09,-2.18015044709e-08) p_ij -> (6.67290583973,1.25949819725,-2.24825570888,-6.15521591047) p_k -> (-1.58172067888e-07,-6.31258588735e-08,6.11784185534e-08,1.51746013533e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00471102649457,0.00155835511428,-0.00262204846271,0.0035902871514) p_j = (43.6196015665,14.3796225724,-24.2432506696,33.2890506393) p_k = (6.11175777782e-06,1.88130679217e-06,-3.37327063013e-06,4.7365929891e-06) p_ij -> (43.6243372806,14.3811895594,-24.2458865263,33.2926595) p_k -> (-1.85758361333e-05,-6.75059018551e-06,1.04349192576e-05,-1.38369461808e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.5613882728,13.5462864462,29.8860459557,13.7089283513) p_j = (8.54881933749,3.25758010939,7.18548404883,3.29230965737) p_k = (4.46376376052e-09,-3.96221680512e-09,-8.29886500032e-10,1.88076439933e-09) p_ij -> (44.1102096901,16.8038679255,37.0715322198,17.001238794) p_k -> (-2.07538394292e-06,-1.37387257837e-06,-2.21608981832e-06,-7.83395780246e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.658637814,4.21752254758,-2.79442714794,-20.0295530855) p_j = (23.8345466789,4.86574843679,-3.22406724401,-23.108775345) p_k = (0.000308428792731,6.26784669411e-05,-4.18804979477e-05,-0.000299074829865) p_ij -> (44.4936662442,9.08336970823,-6.01855934873,-43.1387954625) p_k -> (-0.000173322502331,-3.60453918713e-05,2.30762767388e-05,0.000167957221166) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.151156077732,0.0917732791988,-0.0922730437474,-0.0768863476704) p_j = (43.6694613014,26.2380830261,-26.7030515588,-22.4840362684) p_k = (1.63327771606e-09,3.99905951169e-10,1.58297737456e-09,4.30577672126e-11) p_ij -> (43.8206457912,26.3298748372,-26.7953484603,-22.5609394641) p_k -> (-2.84104248429e-05,-1.8531577199e-05,2.38593046902e-05,1.68481041403e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (36.2227137143,-5.01753906041,-4.39715667149,35.6030097578) p_j = (0.245826060958,-0.03406523823,-0.0298251164513,0.241620516966) p_k = (4.16572966625e-09,-2.96811557028e-09,-1.30165584368e-09,-2.6171135269e-09) p_ij -> (36.468542516,-5.05160467793,-4.42698212052,35.8446329696) p_k -> (-2.73656447902e-06,3.76323969764e-07,3.31283172894e-07,-2.69744798587e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.9180418087,-32.2762394756,5.96250213021,8.55140303104) p_j = (11.6298432379,-11.0668637913,2.04438997683,2.93227713347) p_k = (1.37411768448e-09,6.71620666018e-11,1.3713408659e-09,5.57693423691e-11) p_ij -> (45.54792095,-43.3431374334,8.00689841759,11.4836892168) p_k -> (-3.59019847309e-05,3.41666198374e-05,-6.30917907696e-06,-9.05225302628e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.1719215641,-21.7053782831,33.6111649622,3.59853103647) p_j = (0.385807817779,-0.207712775603,0.322837606258,0.0384571852382) p_k = (9.67037174075e-10,-1.32566646454e-10,-8.05606948782e-10,5.18248061921e-10) p_ij -> (40.5577692478,-21.9131177719,33.9340573495,3.63698607064) p_k -> (-3.98649915105e-05,2.6713061553e-05,-5.478181264e-05,2.15158196659e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.6337587813,8.84099034785,18.6099204548,1.12238664577) p_j = (24.6514271543,10.5557509708,22.2356359264,1.35848339592) p_k = (6.54903368517e-10,4.01293612197e-10,3.84040524132e-11,5.16128558381e-10) p_ij -> (45.2854119611,19.3968371811,40.8457645907,2.48087864767) p_k -> (-0.000226024816385,-9.58620076759e-05,-0.000208209499934,-8.60545426007e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.6668530138,-4.31529788789,7.50847623282,9.24392525244) p_j = (32.9128306167,-11.2126417439,19.5095489748,24.0189213565) p_k = (2.08320623899e-09,-1.95188940973e-09,6.77807980951e-10,-2.65445088975e-10) p_ij -> (45.5797763873,-15.5279712319,27.0180801906,33.2629143004) p_k -> (-9.27547625729e-05,3.15981353172e-05,-5.49823085247e-05,-6.76917790337e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.385357618403,-0.263508171041,0.0686145763866,0.272682925324) p_j = (21.5406211756,-14.7368185541,3.82781398924,15.2372037985) p_k = (5.24614034666e-09,-3.95505422543e-09,-4.16189392851e-10,3.42145022303e-09) p_ij -> (21.9260957129,-15.0004066076,3.89644973293,15.5099695131) p_k -> (-0.000116913688091,7.98785592329e-05,-2.1167722474e-05,-8.27858009265e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.81118266572,-1.14018610485,0.393849830562,-2.53921364547) p_j = (33.0331350094,-13.3982858871,4.62885139792,-29.8370185939) p_k = (3.27080899786e-07,2.26306295755e-08,2.18601435969e-08,-3.25563977966e-07) p_ij -> (35.8443214075,-14.5384735105,5.02270175222,-32.3762356097) p_k -> (-3.40530120013e-06,1.54126150953e-06,-5.0187867684e-07,3.04476836277e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.07733273341,1.20817128703,0.432580425597,1.63355673359) p_j = (0.00103375705936,0.000603368203334,0.000210284971825,0.000812638111092) p_k = (6.66565527599e-09,-1.55959807363e-09,-5.57603816468e-10,6.45660279901e-09) p_ij -> (2.07836656696,1.20877472939,0.432790737114,1.63436942523) p_k -> (-6.98245352648e-08,-7.57111805472e-08,-2.71025560883e-08,-4.70635779237e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.3817990717,6.64519555397,-3.25678990654,-31.5248411047) p_j = (0.009019448084,0.00184681081013,-0.000898578934383,-0.00878249904471) p_k = (1.07151226128e-08,-9.60834027004e-09,4.5026937434e-10,-4.72132645126e-09) p_ij -> (32.3908248829,6.64704367805,-3.25768912641,-31.533629802) p_k -> (-6.35236366975e-06,-1.32287861732e-06,6.41381175503e-07,6.19358101872e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.05916440183,-0.134283380991,5.35863649095,-2.82497012017) p_j = (12.7039405874,-0.281298393672,11.2348575512,-5.92359295233) p_k = (2.72745495579e-09,2.59435432976e-09,7.74583514407e-10,-3.2917278216e-10) p_ij -> (18.7631219634,-0.415582160189,16.5935090595,-8.74857099036) p_k -> (-1.69714858753e-05,3.88120527162e-07,-1.50165811394e-05,7.91753427709e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.18457975,0.696971381645,-2.56071633801,-10.8651639156) p_j = (28.1711715316,1.81439059178,-6.60203300634,-27.3264716425) p_k = (2.95025325887e-10,-1.95073516363e-11,1.13247173602e-10,2.71720842264e-10) p_ij -> (39.355806164,2.51137479344,-9.1628063456,-38.1918244573) p_k -> (-5.48821506321e-05,-1.28200417657e-05,5.70013599912e-05,0.000188899484641) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.563478683813,0.0296988498466,0.11596298064,-0.55061673835) p_j = (1.69531292731,0.0904296878806,0.34869819272,-1.65659831083) p_k = (3.1182602741e-09,-1.55464357621e-09,-1.16816233432e-09,2.43762743294e-09) p_ij -> (2.25879162544,0.120128564488,0.464661203651,-2.20721514605) p_k -> (-1.11928974977e-08,-2.83154981129e-08,-3.14590558881e-08,9.93060818022e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00683838491575,-0.00269188516446,0.00419373049335,-0.00468293573085) p_j = (11.1251103405,-4.48549141901,6.83602861387,-7.5443462015) p_k = (4.17300839646e-10,-7.7536396543e-11,-8.57709355858e-11,4.00964570488e-10) p_ij -> (11.1319562916,-4.48818641445,6.84022721887,-7.54903471854) p_k -> (-7.56579882477e-06,3.1102002076e-06,-4.8745917165e-06,5.58170365572e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00517748793225,-0.0024936395218,0.00223641754235,-0.00394798427051) p_j = (45.0237954488,-22.1967470654,18.4412797078,-34.5595974958) p_k = (5.71268861788e-08,5.06907160688e-09,-4.72931460603e-08,3.1640859246e-08) p_ij -> (45.02897354,-22.1992415477,18.4435175325,-34.563547182) p_k -> (-5.4607579969e-07,8.47822757777e-07,-1.45447523003e-06,1.73351579491e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.1761867008,4.62778806112,-34.9856242583,-17.0106812721) p_j = (6.3838909403,0.75852644259,-5.70278487205,-2.7671186958) p_k = (1.36149360188e-09,5.03083623628e-10,9.08245814812e-10,8.80716584772e-10) p_ij -> (45.5601300089,5.38632027115,-40.6884585291,-19.7778245236) p_k -> (-5.23663697258e-05,-5.7669393243e-06,4.93997159374e-05,2.45566025328e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.6273903393,-17.925970694,13.9230912116,24.8114587807) p_j = (8.56328945978,-4.56901037867,3.54506892925,6.31558048151) p_k = (1.37339742514e-10,-8.31991440805e-11,-1.07482932917e-10,-1.97015150196e-11) p_ij -> (42.1907770938,-22.4950328727,17.4682016602,31.127111954) p_k -> (-9.72945799056e-05,5.17999076965e-05,-4.15195032257e-05,-7.26918245846e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.060544090702,-0.0201151918505,-0.00242331560657,0.0570534268666) p_j = (15.7147737976,-5.21637950354,-0.632042137253,14.8102674898) p_k = (2.9982443338e-08,-3.41707485374e-09,1.19700724525e-08,-2.7276146524e-08) p_ij -> (15.7753180602,-5.23649475296,-0.634465460762,14.8673210829) p_k -> (-1.41971976397e-07,5.41511582242e-08,1.98723499323e-08,-1.93490874878e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.9618194038,-1.39676885232,24.2216914214,-29.196890826) p_j = (4.8767826102,-0.178860688885,3.11201379784,-3.75051831127) p_k = (2.65440872209e-10,-2.35925202659e-10,1.00510363121e-10,-6.85246771024e-11) p_ij -> (42.8389655007,-1.57564283141,27.3339371706,-32.9476887444) p_k -> (-0.000363486445366,1.32899683262e-05,-0.000231951205855,0.000279607008842) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.5854500899,4.11542515257,5.46328134637,10.564534382) p_j = (32.7548611201,10.6936815463,14.2089447164,27.5069444328) p_k = (1.34959615632e-08,9.23631109137e-09,3.46607457451e-09,9.20966127504e-09) p_ij -> (45.3403328058,14.8091050943,19.6722397178,38.0715007549) p_k -> (-2.15823579097e-05,1.61381633212e-06,-1.36515784739e-05,-2.19309245288e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00271084073204,-0.000702665338016,0.00161230814683,0.00206285756583) p_j = (31.6402916909,-8.15567176797,18.9747969009,23.9697759453) p_k = (1.31568311146e-07,-2.2503825342e-08,8.67887517761e-08,9.62886852569e-08) p_ij -> (31.6430030032,-8.15637531377,18.9764089673,23.9718393852) p_k -> (-3.40025774648e-07,8.57955308575e-07,3.28560483709e-07,-4.86044603676e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.00809687747,2.6535550794,-0.500443510528,-2.96193219243) p_j = (2.05429242415,1.36014385004,-0.256364677127,-1.51802609445) p_k = (2.77022352708e-08,1.11068479401e-08,-2.12650356802e-08,-1.38509959525e-08) p_ij -> (6.06238945695,4.01369903733,-0.75680819462,-4.47995840628) p_k -> (-1.27628080104e-07,-9.67800222185e-08,-1.43003013875e-08,1.05554188057e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.64565971411,0.442224827979,-1.67645993868,6.41550561618) p_j = (3.5760112636,0.237949037762,-0.902016596782,3.45218812812) p_k = (1.58657096388e-09,7.68363585174e-10,1.10973581724e-09,8.33851239789e-10) p_ij -> (10.2216753672,0.68017415739,-2.57847764373,9.86769798221) p_k -> (-4.38787017387e-06,-2.90880000475e-07,1.10937004694e-06,-4.23707505259e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.28116033836,-0.0626314398884,-1.25845272142,0.231831540731) p_j = (25.0341203339,-1.22447074026,-24.5907519202,4.52799870771) p_k = (6.53966492898e-08,-1.06715263312e-08,5.86564986456e-08,2.68748114846e-08) p_ij -> (26.3152809682,-1.28710219433,-25.849204937,4.75983030138) p_k -> (-2.30503559351e-07,3.51295603718e-09,3.54056195917e-07,-2.60663952645e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.8172730772,-7.64351816824,-10.9958236337,20.8941507513) p_j = (0.0590264962109,-0.0181662540876,-0.0261516702608,0.049701153004) p_k = (2.41275082087e-08,-1.41828198584e-08,-6.21165558571e-09,-1.8504044283e-08) p_ij -> (24.8762998103,-7.6616844949,-11.0219754092,20.9438521058) p_k -> (-2.1271627304e-07,5.83898960294e-08,9.89745281288e-08,-2.20052658761e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.56212820813,-3.00962107828,-7.99175991046,0.619672454712) p_j = (26.8964081596,-9.44911846604,-25.1069720588,1.94187696294) p_k = (1.66429995834e-08,-3.1618436499e-09,1.17843826352e-09,1.62973438005e-08) p_ij -> (35.4585403528,-12.458740986,-33.0987359471,2.56154947259) p_k -> (-3.96841118189e-06,1.43847814282e-06,3.97895120585e-06,-3.86386092011e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.8379457082,-3.74150804281,-3.92694687673,-13.8110404616) p_j = (2.77754462638,-0.707900199656,-0.735574403796,-2.58313022423) p_k = (9.30009407374e-11,-3.12755477001e-11,-6.08935902438e-12,8.73674251839e-11) p_ij -> (17.6154923026,-4.44940829862,-4.66252285074,-16.3941823682) p_k -> (-1.96790738549e-06,5.61227451179e-08,1.57021704572e-06,1.16824087488e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.7244857509,34.3940944879,25.2649408963,2.02748823474) p_j = (2.65031437245,2.13361216978,1.56721333712,0.12533051405) p_k = (1.01473915866e-07,-9.07437607909e-08,-3.52665611664e-08,2.86145655907e-08) p_ij -> (45.3748002831,36.5277068175,26.8321543452,2.15281875206) p_k -> (-5.82844208452e-08,-2.50620303177e-07,-1.4701484119e-07,2.53505212378e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.5869660988,-15.8606467031,-15.0583231794,5.64427380041) p_j = (1.22970439848,-0.863475046941,-0.819856377826,0.307277188687) p_k = (2.39680855869e-07,-8.04419472226e-08,-2.07111065484e-07,-8.98944520987e-08) p_ij -> (23.8166707484,-16.7241219275,-15.878179724,5.95155105371) p_k -> (-1.14335261259e-08,9.69826743358e-08,-4.02851210168e-08,-1.54506276662e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.6265323646,16.9281845649,5.6594190775,8.16139177453) p_j = (24.0774231376,20.767206807,6.94291041744,10.0120637891) p_k = (4.12738831352e-09,1.01363568296e-09,2.36243384966e-09,3.22905279168e-09) p_ij -> (43.704032443,37.6954577354,12.6023516811,18.1734875576) p_k -> (-7.69367679787e-05,-6.63624279547e-05,-2.21837700423e-05,-3.19907964261e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.39438365483,1.25700697751,0.306276663363,-2.01474592703) p_j = (8.60000737951,4.51501145553,1.09914530343,-7.23648243873) p_k = (6.37881209395e-09,-2.70621053888e-09,-1.83412681464e-09,-5.47737604869e-09) p_ij -> (10.9943918204,5.77201886537,1.40542207588,-9.25122902682) p_k -> (-7.79671657902e-07,-4.3503513325e-07,-1.10916130835e-07,6.55587826692e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.3321245958,10.9898108468,0.0581241793841,-13.4023588273) p_j = (28.2677009343,17.9207847296,0.0925764550549,-21.8609199345) p_k = (6.60610531599e-08,-5.37477331971e-08,2.11249303298e-08,-3.20777373624e-08) p_ij -> (45.5998261364,28.9105961291,0.150700599667,-35.2632792642) p_k -> (-5.40288915829e-07,-6.06398858238e-07,5.58971675335e-08,4.70262563113e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0268417321804,-0.00664282518411,-0.00214757361167,0.0259179356354) p_j = (42.5426875662,-9.7529898947,-4.24339547825,41.1916623636) p_k = (4.78606846481e-09,1.8046044739e-09,-3.83531069184e-09,2.22266723595e-09) p_ij -> (42.5695431516,-9.75964654005,-4.24553211635,41.2176025577) p_k -> (-1.38485306209e-05,1.38219704029e-05,-1.09393490768e-05,-2.22561825929e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.5168455724,1.35512910996,-8.22654334415,-11.8838720574) p_j = (30.5326244981,2.83607642507,-17.3030221305,-24.9960647784) p_k = (8.4781631428e-09,2.94669996675e-09,-7.13579824002e-09,3.5037985425e-09) p_ij -> (45.0494733053,4.19120551067,-25.5295669564,-36.8799410585) p_k -> (-3.22627843374e-06,2.73111293581e-08,1.47456734645e-06,4.22617712559e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.9463519432,4.30559297536,0.362176635946,5.43897991665) p_j = (3.190197731,1.9822150715,0.161377237633,2.49442224981) p_k = (2.28522036129e-10,1.32505712452e-10,1.84563429077e-10,2.45230640999e-11) p_ij -> (10.1366137917,6.28784832655,0.523547716499,7.93346080688) p_k -> (-6.41172831699e-05,-4.02795521683e-05,6.15726414677e-06,-5.86403878495e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.4858091165,0.437244009048,3.11022337219,10.0043750969) p_j = (0.264952255135,0.011080415265,0.0786205012486,0.252776064298) p_k = (1.35078031869e-08,5.04430232147e-09,9.87358889189e-09,7.71543808654e-09) p_ij -> (10.7507649287,0.448324566569,3.18884492056,10.257154562) p_k -> (-3.54355789867e-06,-1.37211486839e-07,-1.03724757317e-06,-3.39304868113e-06) } Event 70000 ( 8m 28s elapsed / 3h 53m 38s left ) -> ETA: Thu Aug 17 20:44 XS = 20482185.0516 pb +- ( 2493785.5882 pb = 12.17 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.9335165454,-6.49359289517,-0.554767670742,8.77879651157) p_j = (22.3217390972,-13.2539920171,-1.14222417849,17.9244820249) p_k = (4.32328064612e-10,-1.32271434106e-11,-4.29294536515e-10,-4.93978154597e-11) p_ij -> (33.2554073187,-19.7476754113,-1.69699886842,26.703401031) p_k -> (-0.000151675599877,9.04989585599e-05,7.01876613984e-06,-0.000122494561785) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.4516210141,-0.841222703776,15.2120495596,2.57652566867) p_j = (8.96543719228,-0.488496520791,8.82652565209,1.4942824736) p_k = (3.28628437613e-08,4.32900985822e-09,-6.04049643899e-09,3.20115388074e-08) p_ij -> (24.417059386,-1.32971929288,24.0385763986,4.07080832126) p_k -> (-1.14674331542e-06,7.2645584992e-08,-1.1929436301e-06,-1.46973589743e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.34077697449,-0.603801941305,-0.481762281702,-1.09590657218) p_j = (41.4550215946,-18.6724103874,-14.8929316785,-33.8830413592) p_k = (4.85121964365e-06,-2.0484737491e-06,-1.67868000564e-06,-4.06449514316e-06) p_ij -> (42.7958096944,-19.2762176555,-15.3746981053,-34.978956795) p_k -> (-6.2740872373e-06,3.27832136549e-06,2.46640672152e-06,4.79910384144e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.6827289035,12.7132786788,7.54218992655,-35.7469080029) p_j = (6.91157769989,2.304455294,1.37582128551,-6.36918424054) p_k = (4.17691687132e-10,3.5875284111e-10,-1.74320982207e-10,1.23985280998e-10) p_ij -> (45.5943423033,15.0176791012,8.91809532238,-42.1162788046) p_k -> (-3.5699475589e-05,5.48720260065e-05,-8.4110497923e-05,0.00018656129852) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.5338008324,-9.60936678693,22.464346849,-2.21823666148) p_j = (14.2191125948,-5.56918616306,13.0198752586,-1.28459204237) p_k = (1.88088424579e-10,1.82561608136e-10,3.84943476675e-11,2.37878468347e-11) p_ij -> (38.7533238729,-15.1787137395,35.4845979482,-3.50286580802) p_k -> (-0.000410445444146,0.000160789722482,-0.000375840454549,3.7104192357e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.4391427687,-3.68257593072,-15.8445428904,40.278384024) p_j = (2.15986116582,-0.156159739775,-0.762683852513,2.01467807165) p_k = (1.22129670562e-10,3.15583444581e-11,-7.1937127466e-12,-1.17766385199e-10) p_ij -> (45.5990312366,-3.83879781983,-16.6072900234,42.2934179185) p_k -> (-2.73019459662e-05,6.21493737334e-05,6.32804220935e-05,-0.000355822910574) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.85780250344,6.05782431435,1.74592074752,7.57831086172) p_j = (35.1813274236,21.6197960743,6.23073355292,27.0460380903) p_k = (2.20132661115e-06,1.36095313783e-06,3.68200463056e-07,1.69058387091e-06) p_ij -> (45.040164707,27.678256268,7.97683761202,34.6251444548) p_k -> (-0.00103257867875,-0.000634518345795,-0.00018294337938,-0.000793812145549) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.2697322817,-11.8101266453,13.9410354568,-26.5989484857) p_j = (4.52315051074,-1.6554318832,1.95412724898,-3.72824657416) p_k = (1.01348702301e-06,-3.85996159371e-07,4.21304771697e-07,-8.37057465241e-07) p_ij -> (36.7930805479,-13.4656308624,15.8952481848,-30.3273580588) p_k -> (-0.000196741975589,7.19478508611e-05,-8.50577087546e-05,0.0001621618638) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0914154213712,0.0584394403525,-0.00165773477376,0.0702770445536) p_j = (25.0558161255,16.0086941381,-0.459501331287,19.2692628877) p_k = (3.47522373836e-06,2.18971518115e-06,-4.00068114553e-08,2.69828221506e-06) p_ij -> (25.1472456295,16.0671436936,-0.461160188218,19.3395498283) p_k -> (-1.06074543105e-05,-7.9254065728e-06,1.08215050115e-06,-7.19785604453e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.4593750186,-8.11969545386,-1.8301249026,-22.9996133637) p_j = (0.263064254854,-0.0873485427515,-0.019653420458,-0.247359611346) p_k = (2.96727406326e-08,1.07633734052e-08,3.69296514741e-10,2.76493172277e-08) p_ij -> (24.7224393057,-8.20704400817,-1.84977832558,-23.2469730076) p_k -> (-2.55585597131e-09,2.23207479166e-08,2.88854640207e-09,6.02680891859e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.59569502946,2.72823826041,-4.69673278881,6.66208602049) p_j = (36.5769362676,11.6092823406,-19.9857995214,28.3489796598) p_k = (4.09975553399e-08,5.68717113817e-10,-3.08464306729e-08,2.69995151321e-08) p_ij -> (45.1726336504,14.3375213481,-24.6825335959,35.0110675043) p_k -> (-2.31228732162e-06,-7.46474045243e-07,1.25491479963e-06,-1.79696257874e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.48856130666,1.75228864198,3.80527878681,4.95487292472) p_j = (22.0700848397,5.96714189891,12.9389178116,16.8542655804) p_k = (9.34905110872e-09,-2.35860290218e-09,3.77657551722e-09,8.22065899171e-09) p_ij -> (28.5586715115,7.71943852896,16.7442118652,21.8091576251) p_k -> (-2.53558068213e-05,-7.9904224437e-06,-1.52630036148e-05,-1.91117079158e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.0466552422,36.2516272767,6.49222222528,-9.55084004096) p_j = (0.0239417864966,0.0229761900403,0.00405300352809,-0.00537373187674) p_k = (3.45262042172e-09,-1.94958107322e-09,2.84748208767e-09,-1.0753320464e-10) p_ij -> (38.0706084916,36.2746242562,6.49627293163,-9.55621807982) p_k -> (-1.14593945035e-05,-2.07913710426e-05,2.30002977863e-06,4.30688278108e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0217886220095,-0.000551326730212,0.00648032537477,0.0207953232951) p_j = (39.6857697781,-2.08514189292,10.7374118317,38.1486630607) p_k = (1.76884599779e-09,-2.00930157492e-10,-1.19301451078e-09,-1.29041181689e-09) p_ij -> (39.7075595006,-2.08569274269,10.7439007305,38.169474248) p_k -> (-1.09875965748e-06,-4.77159407097e-07,-8.57458404813e-06,-1.58653068176e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.236923104049,0.125639913268,0.0151009351469,0.200297606535) p_j = (43.3269632499,22.8122528962,2.93999173895,36.7176158108) p_k = (6.48788115894e-09,6.28925087032e-09,-1.47064371692e-09,6.12480636539e-10) p_ij -> (43.5638900546,22.9378904054,2.95509581976,36.9179239548) p_k -> (-3.69414822998e-06,2.41041390048e-06,-3.1471385511e-06,-1.05368620069e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.92673302657,-3.6628232981,3.25860490833,6.22882942557) p_j = (37.6639951673,-17.4040613497,15.4833503155,29.5963011796) p_k = (9.61913095695e-09,8.65575377441e-10,-1.97024978583e-09,9.37531902063e-09) p_ij -> (45.5907455444,-21.0668926653,18.7419623565,35.8251442391) p_k -> (-1.73408841952e-05,8.01837050624e-06,-7.13468194746e-06,-1.36246047084e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.694227710048,0.0324212841302,0.671548164581,-0.172985653687) p_j = (27.2098438176,1.27328826027,26.3200186641,-6.78313755605) p_k = (8.90464559317e-07,2.32392793117e-08,8.309240255e-07,-3.19299751243e-07) p_ij -> (27.9040726955,1.30570962249,26.991567997,-6.95612337708) p_k -> (-2.77380584279e-07,-5.48482055329e-08,-3.3742681893e-07,-1.51961625061e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.98498362458,0.243810661262,1.21135207583,2.71722464086) p_j = (0.289258274718,0.0234040287871,0.117360967435,0.263341991054) p_k = (1.97140580612e-09,-5.9310147383e-10,-1.25707220476e-09,1.39801086582e-09) p_ij -> (3.27424226769,0.267214768279,1.32871332417,2.98056699259) p_k -> (-3.66412806541e-07,-7.88237472238e-08,-2.82160869669e-07,-3.59278820916e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.2130167741,-10.7784429532,-9.1077188691,-15.8387722113) p_j = (24.3337619047,-12.3744310686,-10.4532105412,-18.1586291758) p_k = (3.60519944287e-09,-2.92723980262e-09,1.62814302096e-09,1.33337182638e-09) p_ij -> (45.5467914607,-23.1528798508,-19.5609368398,-33.9974133859) p_k -> (-1.27783727102e-05,5.82601560595e-06,7.43115767321e-06,1.20001129318e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.5527873955,6.96921940993,-4.9047916863,-0.723305995347) p_j = (36.9520498536,30.1109434075,-21.1899441563,-3.12591460972) p_k = (2.09186795674e-06,1.69555045609e-06,-1.21618879013e-06,-1.48003466402e-07) p_ij -> (45.5051280365,37.0803999566,-26.0949022496,-3.8492458036) p_k -> (-0.000288695494245,-0.000235443592445,0.000165190890607,2.50505345964e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.8644478831,-6.17218537849,-2.73715407074,12.1092952045) p_j = (24.6285844449,-10.9646752332,-4.8607413762,21.5108405708) p_k = (9.39060126973e-10,4.33089942509e-10,2.40776822661e-11,-8.32878495398e-10) p_ij -> (38.4930467997,-17.1368670627,-7.59789830547,33.6201484313) p_k -> (-1.44707868621e-05,6.45149221157e-06,2.85855737969e-06,-1.26567487762e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.4997381026,28.5404819396,9.00065156524,-9.83171717398) p_j = (8.02676395307,7.27247433158,2.29422865129,-2.50530867369) p_k = (2.57689087173e-09,-1.93925121425e-09,-8.12840740512e-10,1.48961863516e-09) p_ij -> (39.526513729,35.8129668693,11.29488356,-12.3370295027) p_k -> (-1.16706702329e-05,-1.06000125086e-05,-3.34430342352e-06,3.65650667611e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00275034390649,-0.000519059783203,0.000766985030096,0.00258973020004) p_j = (35.1294569559,-6.62736002121,9.71484563588,33.1025470234) p_k = (1.42306321396e-08,3.09571716988e-09,2.98573093951e-09,1.35651330179e-08) p_ij -> (35.1322427912,-6.6278858155,9.71562244224,33.1051701962) p_k -> (-3.54771956275e-05,6.73759835657e-06,-9.81835039049e-06,-3.34290184227e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.901025348,-11.6750158494,13.9827496337,19.7949963974) p_j = (15.1493462658,-6.57451917354,7.87468660891,11.1475423628) p_k = (3.13302967782e-08,-5.14378438952e-09,-1.68586475027e-08,-2.59020256598e-08) p_ij -> (42.0503728163,-18.2495355453,21.8574368696,30.9425396479) p_k -> (-1.17105026121e-06,5.17183019966e-07,-6.43818191648e-07,-9.13580143092e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.8502493164,3.42738984822,0.380272699411,10.2876771786) p_j = (0.0846473544451,0.026738549048,0.00294422742291,0.0802593055929) p_k = (4.23723354876e-09,-2.27402756546e-09,-2.51217834206e-09,2.54399338865e-09) p_ij -> (10.9348983281,3.45412892482,0.383216987901,10.3679380572) p_k -> (-1.65299804955e-06,-5.29820367801e-07,-6.35784710712e-08,-1.57042059534e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.05877717529,0.657112059615,0.00111267048543,0.830187695634) p_j = (44.5392182153,27.6437550436,0.044316319083,34.9222393667) p_k = (5.6966559534e-09,-3.59151652504e-09,-2.75188800565e-09,3.46121508004e-09) p_ij -> (45.5980089664,28.3008755323,0.0454290042959,35.7524377073) p_k -> (-1.35700990853e-05,-8.43265609696e-06,-1.74793486109e-08,-1.06414723149e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.415424817914,-0.538425705476,-0.733157541285) b = (0,0,1) a' = (0.314028392167,0.561975834364,0.765225019522) -> rel. dev. (inf,inf,-0.234774980478) m_ct = -0.733157541285 m_st = -0.680058835437 m_n = (0,-7.25638656718e-07,5.32903889905e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.415424817914,-0.538425705476,-0.733157541285) b = (0,0,1) a' = (0.314028392167,0.561975834364,0.765225019522) -> rel. dev. (inf,inf,-0.234774980478) m_ct = -0.733157541285 m_st = -0.680058835437 m_n = (0,-7.25638656718e-07,5.32903889905e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.415424817914,-0.538425705476,-0.733157541285) b = (0,0,1) a' = (0.314028392167,0.561975834364,0.765225019522) -> rel. dev. (inf,inf,-0.234774980478) m_ct = -0.733157541285 m_st = -0.680058835437 m_n = (0,-7.25638656718e-07,5.32903889905e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.415424817914,-0.538425705476,-0.733157541285) b = (0,0,1) a' = (0.314028392167,0.561975834364,0.765225019522) -> rel. dev. (inf,inf,-0.234774980478) m_ct = -0.733157541285 m_st = -0.680058835437 m_n = (0,-7.25638656718e-07,5.32903889905e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00795642432122,0.00585224191026,-0.00481267130439,0.00242778654723) p_j = (39.8426963209,29.296299602,-24.1049569964,12.1703873379) p_k = (7.68118627095e-07,6.60503423506e-07,-2.13411509096e-07,3.28933094053e-07) p_ij -> (39.850655167,29.3021536233,-24.1097711362,12.1728158629) p_k -> (-1.65363945825e-06,-1.11893203325e-06,1.25512398697e-06,-4.09556778713e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0305481750208,-0.023414674039,-0.0147387889458,-0.0129503720857) p_j = (16.851550628,-12.915332447,-8.12694690804,-7.14994267833) p_k = (2.71355949648e-08,-2.18853597773e-08,1.54557846915e-08,-4.3000309786e-09) p_ij -> (16.8820998456,-12.93874792,-8.1416862046,-7.16289349399) p_k -> (-1.01547781384e-06,7.77010008335e-07,5.23060831981e-07,4.39279314257e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.7376480997,-0.446121210231,6.83442670165,16.3620215021) p_j = (27.6092585883,-0.701788275655,10.6482100675,25.4635872448) p_k = (3.23969759377e-08,-5.54167178381e-10,-1.43782698254e-09,-3.2360306877e-08) p_ij -> (45.346909052,-1.14790955108,17.4826379607,41.8256121793) p_k -> (-2.33160309193e-06,6.46372044777e-08,-1.19299387968e-06,-3.46478752533e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.61123691118,0.963154688066,-0.306940498056,-8.55169700808) p_j = (4.40617321069,0.490540924504,-0.158677890043,-4.37590599662) p_k = (1.28955957994e-08,-2.94848098948e-09,-2.52409206419e-09,-1.22976343306e-08) p_ij -> (13.0174134224,1.45369880038,-0.465617180987,-12.9276066094) p_k -> (-3.28763479018e-06,-3.19076299127e-06,-1.20963704053e-06,3.59244228321e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.154942091536,-0.0555911120456,-0.0561672002295,-0.133273874444) p_j = (45.3952286325,-16.2871969532,-16.4558872196,-39.0468663764) p_k = (1.27507348012e-08,-3.18615509041e-09,-2.03324925974e-09,-1.21776660951e-08) p_ij -> (45.55053338,-16.3429181814,-16.5121858836,-39.1804521906) p_k -> (-0.000362643226868,0.000130112897674,0.000131461696423,0.000311927641572) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.5141783094,0.84110610032,-27.1299327897,16.0125801129) p_j = (14.0843988989,0.473042624501,-12.119049932,7.16066699161) p_k = (2.70655389234e-10,2.30429286246e-10,-1.40260609266e-10,2.20032788143e-11) p_ij -> (45.5994349656,1.31378109557,-39.2498844167,23.1738866466) p_k -> (-0.000857757014511,0.000367629480513,0.000901694914329,-0.000639542055287) } MlPMom : 0.001 8.31744e-09 nan nan 0.875003793628 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.599880407,0,0,45.599880407) (1.36424205266e-12) p_1 = (45.5994778459,0,0,-45.5994778459) (-4.54747350886e-13) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (6.92203716792e-07,6.13862618275e-07,-1.86598207977e-07,-2.59807198141e-07) (2.01948391737e-28) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1993582529,0,0,0.000402561127402) (8317.32294558) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.2005998692,12.0911239679,-16.4310915052,-24.9139034492) p_j = (2.9482759539,1.10565167573,-1.50557913139,-2.28102980065) p_k = (5.12045302193e-08,-8.64523397463e-09,3.76346568715e-08,3.36273103239e-08) p_ij -> (35.1488759275,13.196775827,-17.9366710198,-27.1949337095) p_k -> (-5.3194753491e-08,-1.92027708401e-07,4.20794354028e-07,4.93330379214e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.6493066027,3.43957323357,23.6672866771,29.0774683385) p_j = (7.01341136141,0.640755858455,4.40885682675,5.41658124055) p_k = (4.9090688738e-08,4.84013855442e-08,-3.8242355431e-09,-7.25095528572e-09) p_ij -> (44.6627204122,4.08032931541,28.076145043,34.49405147) p_k -> (-2.39900244381e-06,-1.74982661694e-07,-1.54297283572e-06,-1.89824818975e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.3050833128,-2.85651539099,3.00134578867,16.8017306174) p_j = (21.2398940935,-3.50318917082,3.68413724635,20.6225095342) p_k = (1.87599723689e-08,5.62367289372e-09,1.69826978207e-08,-5.64790847233e-09) p_ij -> (38.544982276,-6.35970539989,6.68548382513,37.4242449744) p_k -> (-4.85088895985e-06,8.43705771914e-07,-7.73131354492e-07,-4.82844881233e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.4872330078,-3.68396299176,22.5920025841,-5.2611738499) p_j = (22.1113207663,-3.46706945891,21.2901885444,-4.85981554588) p_k = (2.33006702884e-10,1.85343916384e-10,-1.07632644956e-10,9.13999520214e-11) p_ij -> (45.5986391389,-7.15110709325,43.882364898,-10.1210478533) p_k -> (-8.53645934846e-05,7.46427592428e-05,-0.000173769656236,5.84575956113e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.9726025752,1.53014924775,-3.58728570799,-4.52349489335) p_j = (23.1551170594,5.93262687931,-13.906791913,-17.5375175847) p_k = (2.73666707056e-09,1.75264781073e-09,2.0825610573e-09,2.8372012427e-10) p_ij -> (29.1277258429,7.46277771659,-17.4940813535,-22.0610171825) p_k -> (-6.20551734798e-06,-1.58778335724e-06,3.73455538316e-06,4.70475099235e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.5172652342,-2.23088074603,5.93651076814,-8.39010601864) p_j = (3.99830825888,-0.848152036719,2.25702587344,-3.18950486162) p_k = (4.21661264403e-09,-2.60175659683e-09,-1.11260919077e-09,-3.12614565147e-09) p_ij -> (14.5155834438,-3.07903488951,8.19354226657,-11.5796188189) p_k -> (-9.94651385078e-06,2.10415812418e-06,-5.62609963772e-06,7.93549441536e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.7435899197,-17.1895828092,-4.28504401429,0.995803132993) p_j = (19.3706704501,-18.7658490068,-4.67805030427,1.08702810018) p_k = (6.17822756092e-09,3.31820912499e-09,-2.85796817105e-09,-4.35797207782e-09) p_ij -> (37.1142788838,-35.9554497521,-8.96309878964,2.08283227225) p_k -> (-1.85077374297e-05,1.79393359794e-05,4.4682283491e-06,-1.04343291163e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.383360683499,0.0385701312449,0.145648829552,0.352511243904) p_j = (15.1520409132,1.52966821405,5.67023431023,13.9675660678) p_k = (1.96432210989e-10,-1.50687467092e-11,-1.36462986039e-10,-1.4048936876e-10) p_ij -> (15.5354057934,1.56823942275,5.81588864527,14.3200872045) p_k -> (-4.19644481209e-06,-1.07747108513e-06,-5.50561969925e-06,-9.89291083098e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.7270552939,-2.89259469011,-5.25469732762,-15.6145903167) p_j = (0.0314370977387,-0.00536179076588,-0.00986098949112,-0.0293649995789) p_k = (2.94894587295e-09,-8.03340960616e-10,4.74354336182e-10,-2.79748349284e-09) p_ij -> (16.7585737727,-2.8979704715,-5.26458427467,-15.6440312725) p_k -> (-8.13781008517e-05,1.39898176892e-05,2.59580327722e-05,7.59534324066e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.5289182654,-0.379626491532,32.7855667652,-23.823427784) p_j = (0.00837288214779,-4.74398120232e-05,0.00684389036971,-0.00482328410239) p_k = (1.56806010334e-09,1.36400998168e-09,6.63083051288e-10,-3.98259351513e-10) p_ij -> (40.5374112361,-0.379676645195,32.7925084983,-23.8283222607) p_k -> (-0.000120086990915,2.71521558953e-06,-9.78420702147e-05,7.11922824337e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.765370571108,-0.109673634823,-0.712899952188,-0.25600285763) p_j = (24.7496853038,-3.51126498135,-23.0380758635,-8.33456665812) p_k = (1.05650748139e-10,1.73335998083e-12,9.41250248362e-11,4.79496814659e-11) p_ij -> (25.5150948387,-3.62094436929,-23.7510146587,-8.59058375095) p_k -> (-3.89636494376e-05,5.7531240949e-06,3.88431933231e-05,1.42352450778e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.8870865015,0.687999306772,-1.05320548465,-1.40659540207) p_j = (17.6714271655,6.44515676905,-9.86221256385,-13.1710309252) p_k = (6.60117321587e-08,1.61615326222e-08,-2.94531478008e-08,-5.68231091531e-08) p_ij -> (19.5585182256,7.1331578524,-10.9154206991,-14.5776296151) p_k -> (-4.49261177593e-06,-1.76040991162e-06,2.62109377669e-06,3.23106642153e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.9346894155,11.6297785294,17.3813322775,-35.1892929335) p_j = (0.701322283792,0.199244834434,0.297809872673,-0.602879524808) p_k = (4.04009058392e-08,-3.88966148451e-10,-1.74087564257e-08,3.64556835037e-08) p_ij -> (41.6360130323,11.8290237426,17.6791427164,-35.7921736045) p_k -> (-1.29259759873e-06,-3.79155471464e-07,-5.83573486423e-07,1.18268570048e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.5301737081,2.74682813467,7.48637164638,-26.3499457147) p_j = (16.0220984754,1.60605637539,4.36574833066,-15.3319426032) p_k = (7.07374453783e-10,1.24876746583e-10,-6.45803283341e-10,2.6024374654e-10) p_ij -> (43.5523380366,4.35289095458,11.8521400218,-41.6819537174) p_k -> (-6.58524453634e-05,-6.44439308495e-06,-2.00454220769e-05,6.53997408939e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.5120868369,4.89377652729,-1.33133377163,-10.3347300414) p_j = (33.8552484967,14.4036242088,-3.91138778032,-30.3877361127) p_k = (2.5332707015e-09,1.8646961446e-09,-4.16886839502e-11,-1.71424379446e-09) p_ij -> (45.3673642633,19.2974103426,-5.24272575598,-40.722494041) p_k -> (-2.89272451468e-05,-9.60463149902e-06,4.20398810475e-06,2.78851509634e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.4990827499,-32.5332130427,-16.4591783593,-27.2185970972) p_j = (0.0954457326364,-0.0675371170045,-0.0368389643979,-0.0564935076563) p_k = (3.17267281941e-10,1.31695710568e-10,-2.71177841195e-10,-9.88793004644e-11) p_ij -> (45.5948434569,-32.6010211853,-16.4961112975,-27.2752906422) p_k -> (-0.000314974024633,0.000271025712298,9.39735251766e-05,0.000200037309693) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.5245660408,-19.3053347397,3.28339885965,-23.4152188651) p_j = (0.00820662491521,-0.005182658675,0.000875337560819,-0.00630258087707) p_k = (2.32953237871e-07,-2.12449707743e-07,-6.10617332599e-08,-7.35105262309e-08) p_ij -> (30.5327747329,-19.3105186921,3.28427443753,-23.4215230536) p_k -> (-1.83416607946e-06,1.08131957255e-06,-3.01378586753e-07,1.53410908688e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.30888704111,-1.95316099845,3.68803063958,6.00028515116) p_j = (27.0107983752,-7.22541881266,13.6369163513,22.1677934012) p_k = (9.81319477476e-09,-2.75468729902e-09,-6.58313331134e-09,6.73593690054e-09) p_ij -> (34.3196979799,-9.17858315951,17.3249543644,28.1680889818) p_k -> (-1.25537274158e-05,3.34564374782e-06,-7.38011282131e-06,-1.04227084456e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.5937082321,6.21197279532,28.1432408321,-35.3292459559) p_j = (0.00529732684294,-3.34944808714e-05,0.00318637613318,-0.00423173214401) p_k = (8.3984890577e-10,4.44967468181e-10,-1.86729552561e-10,-6.87360014926e-10) p_ij -> (45.5990851092,6.21189897532,28.1465854506,-35.3335336672) p_k -> (-7.95494270562e-05,4.03259624364e-05,-0.000158242589992,5.59784878149e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.3548971073,-20.4632415005,-11.0045525869,-2.36786582069) p_j = (21.8306046368,-19.127249946,-10.287296768,-2.21249486289) p_k = (9.77431973771e-09,-8.7770654143e-09,4.32787929598e-10,4.27938689702e-09) p_ij -> (45.1855069476,-39.590496004,-21.2918518466,-4.58036125267) p_k -> (-5.1936901535e-06,4.54869579514e-06,2.49214615167e-06,5.73363274192e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.4740134557,14.1661247676,0.243111431182,23.5389723918) p_j = (16.1090617713,8.30630721069,0.144206486431,13.8016787444) p_k = (1.28359801052e-08,1.77963874018e-09,1.06035396791e-08,7.01143472932e-09) p_ij -> (43.5830774021,22.4724331454,0.387317838111,37.3406530373) p_k -> (-2.16225274485e-06,-1.16533781025e-06,9.01052869817e-08,-1.89409471574e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.7977106893,-6.20901521928,-6.99774592907,10.1418194711) p_j = (27.3398160931,-12.2809424765,-13.8792927373,20.0999808211) p_k = (1.24429698925e-09,7.10603450141e-10,9.57733005573e-10,3.55051977669e-10) p_ij -> (41.13754672,-18.4899696409,-20.8770525186,30.2418162641) p_k -> (-1.99363296502e-05,1.19457797378e-05,1.38532678609e-05,-1.59715967758e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.577118173285,-0.351655835676,-0.0997320343477,0.44660618054) p_j = (30.3981341216,-18.5335831286,-5.24116774119,23.5177170491) p_k = (7.29189291161e-09,-4.66769374511e-09,-5.07416172211e-09,2.37428273875e-09) p_ij -> (30.9752583412,-18.8852426388,-5.34090061451,23.9643280816) p_k -> (-6.03895643358e-06,3.66982221323e-06,8.33889911345e-07,-4.84961080183e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.3253264417,3.58050837686,-16.0773131577,37.900957335) p_j = (4.20442812075,0.371583052239,-1.68996736027,3.83186014607) p_k = (1.14035181728e-10,9.13152063872e-11,-1.40834597059e-11,-6.68279455891e-11) p_ij -> (45.5299945982,3.95191776129,-17.767446854,41.7334468599) p_k -> (-0.000240035608584,0.000173667904134,0.000166336059845,-0.000629378881179) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.6290493327,-0.665657693768,-9.91885543882,-9.32331444988) p_j = (3.29416441674,-0.16102813998,-2.39734154448,-2.25351784146) p_k = (1.10916892731e-09,-1.57882762634e-10,9.70473296109e-10,5.13321699025e-10) p_ij -> (16.9232190316,-0.826686091624,-12.3162008301,-11.5768359066) p_k -> (-5.28104621367e-06,2.57718150432e-07,3.84778686868e-06,3.61580891983e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.4299853942,0.912991866697,-7.81812105223,12.0941269855) p_j = (6.86706130874,0.433879714294,-3.72076572222,5.75536114001) p_k = (4.39557875611e-08,2.96134007721e-09,-3.57291980644e-08,2.54315976269e-08) p_ij -> (21.2970490282,1.34687172684,-11.5388879551,17.8494901502) p_k -> (-2.28129994539e-06,-1.42886790955e-07,1.14493339876e-06,-1.99923330335e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.14725709617,-1.91345805827,-0.575821199922,4.74356024723) p_j = (11.938669711,-4.43976014204,-1.33513339471,11.0017172827) p_k = (5.79159774456e-08,3.02000405044e-08,-4.36008818119e-08,2.3263303295e-08) p_ij -> (17.0859272842,-6.3532184273,-1.9109546124,15.7452779984) p_k -> (-4.19152325293e-07,2.57188186747e-07,-2.58314870605e-08,-4.45234633162e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.205184636,2.25532225493,-2.87515564896,-3.70687855419) p_j = (4.12975083357,1.78967664456,-2.2811173593,-2.94081673151) p_k = (4.33705408036e-08,-1.17909068914e-08,2.27826743856e-08,-3.49703906304e-08) p_ij -> (9.33493556591,4.04499894924,-5.15627307372,-6.64769535324) p_k -> (-5.2971285136e-08,-6.15462969478e-08,8.82373076827e-08,3.25679314628e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.7222185717,6.58887555788,-5.20363494393,-9.55843855658) p_j = (24.1399526116,12.476796553,-9.87228679182,-18.1550217121) p_k = (2.97057470021e-09,-3.70944066298e-10,-2.07461120508e-09,-2.09349056358e-09) p_ij -> (36.8622804635,19.0657466388,-15.0759583132,-27.713543747) p_k -> (-0.000109277163837,-7.45283550536e-05,3.65753263605e-05,8.3476172156e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.208973465728,-0.0155894336853,0.977797044472) b = (0,0,1) a' = (0.409261101691,-0.0145452083034,0.912301368824) -> rel. dev. (inf,-inf,-0.0876986311759) m_ct = 0.977797044472 m_st = -0.20955414532 m_n = (-0,1.74743352943e-06,2.78600751358e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.208973466134,-0.0155894337156,0.977797044385) b = (0,0,1) a' = (0.40926110245,-0.0145452083275,0.912301368483) -> rel. dev. (inf,-inf,-0.0876986315169) m_ct = 0.977797044385 m_st = -0.209554145727 m_n = (-0,1.74743352588e-06,2.78600751358e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.208973465728,-0.0155894336853,0.977797044472) b = (0,0,1) a' = (0.409261101691,-0.0145452083034,0.912301368824) -> rel. dev. (inf,-inf,-0.0876986311759) m_ct = 0.977797044472 m_st = -0.20955414532 m_n = (-0,1.74743352943e-06,2.78600751358e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.208973466134,-0.0155894337156,0.977797044385) b = (0,0,1) a' = (0.40926110245,-0.0145452083275,0.912301368483) -> rel. dev. (inf,-inf,-0.0876986315169) m_ct = 0.977797044385 m_st = -0.209554145727 m_n = (-0,1.74743352588e-06,2.78600751358e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.473686615241,0.0471515626168,0.10397397036,0.459722909032) p_j = (39.8068516624,4.70110580696,8.22652486938,38.6627641541) p_k = (9.26009991463e-10,-8.00715062494e-11,-8.98419971866e-10,2.09585328039e-10) p_ij -> (40.280545417,4.74828281117,8.33064200832,39.1225836723) p_k -> (-7.13842034727e-06,-2.54416748002e-05,-0.0001431694744,-9.66089160706e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.09087198691,-0.222722585984,-0.0399882289422,-1.06714445277) p_j = (37.9482016051,-7.74954747383,-1.3681514704,-37.1232902713) p_k = (6.34823648372e-08,-3.4066886347e-08,5.2199665598e-08,-1.20271696198e-08) p_ij -> (39.0390745325,-7.97227016385,-1.40813996056,-38.190435853) p_k -> (-8.77019044054e-07,6.99680584582e-08,3.1341648965e-07,1.11690903637e-06) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880231141,-0.00297298247563,-0.967753848112) b = (0,0,1) a' = (0.487534255139,0.00268220088336,0.873099739929) -> rel. dev. (inf,inf,-0.126900260071) m_ct = -0.967753848112 m_st = -0.251897775823 m_n = (0,-1.85862429802e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880232874,-0.00297298247424,-0.967753847661) b = (0,0,1) a' = (0.487534258265,0.002682200878,0.873099738184) -> rel. dev. (inf,inf,-0.126900261816) m_ct = -0.967753847661 m_st = -0.251897777555 m_n = (0,-1.85862429802e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880231782,-0.00297298247227,-0.967753847945) b = (0,0,1) a' = (0.487534256295,0.00268220087882,0.873099739284) -> rel. dev. (inf,inf,-0.126900260716) m_ct = -0.967753847945 m_st = -0.251897776464 m_n = (0,-1.8586242998e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.25188023069,-0.0029729824703,-0.967753848229) b = (0,0,1) a' = (0.487534254325,0.00268220087963,0.873099740384) -> rel. dev. (inf,inf,-0.126900259616) m_ct = -0.967753848229 m_st = -0.251897775372 m_n = (0,-1.85862430158e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880231782,-0.00297298247227,-0.967753847945) b = (0,0,1) a' = (0.487534256295,0.00268220087882,0.873099739284) -> rel. dev. (inf,inf,-0.126900260716) m_ct = -0.967753847945 m_st = -0.251897776464 m_n = (0,-1.8586242998e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880232874,-0.00297298247424,-0.967753847661) b = (0,0,1) a' = (0.487534258265,0.002682200878,0.873099738184) -> rel. dev. (inf,inf,-0.126900261816) m_ct = -0.967753847661 m_st = -0.251897777555 m_n = (0,-1.85862429802e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880231782,-0.00297298247227,-0.967753847945) b = (0,0,1) a' = (0.487534256295,0.00268220087882,0.873099739284) -> rel. dev. (inf,inf,-0.126900260716) m_ct = -0.967753847945 m_st = -0.251897776464 m_n = (0,-1.8586242998e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880231782,-0.00297298247227,-0.967753847945) b = (0,0,1) a' = (0.487534256295,0.00268220087882,0.873099739284) -> rel. dev. (inf,inf,-0.126900260716) m_ct = -0.967753847945 m_st = -0.251897776464 m_n = (0,-1.8586242998e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880231782,-0.00297298247227,-0.967753847945) b = (0,0,1) a' = (0.487534256295,0.00268220087882,0.873099739284) -> rel. dev. (inf,inf,-0.126900260716) m_ct = -0.967753847945 m_st = -0.251897776464 m_n = (0,-1.8586242998e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880232874,-0.00297298247424,-0.967753847661) b = (0,0,1) a' = (0.487534258265,0.002682200878,0.873099738184) -> rel. dev. (inf,inf,-0.126900261816) m_ct = -0.967753847661 m_st = -0.251897777555 m_n = (0,-1.85862429802e-06,5.70977576331e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.251880232874,-0.00297298247424,-0.967753847661) b = (0,0,1) a' = (0.487534258265,0.002682200878,0.873099738184) -> rel. dev. (inf,inf,-0.126900261816) m_ct = -0.967753847661 m_st = -0.251897777555 m_n = (0,-1.85862429802e-06,5.70977576331e-09) } Event 80000 ( 9m 41s elapsed / 3h 52m 36s left ) -> ETA: Thu Aug 17 20:45 XS = 19615962.9439 pb +- ( 2188792.55038 pb = 11.15 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.2289091232,-7.02780712711,-4.17526716077,37.344699274) p_j = (0.00161051525326,-0.000311629995062,-0.00015800033676,0.00157215839556) p_k = (2.57361092704e-08,2.45702404335e-08,-7.65478166631e-09,2.34543533099e-10) p_ij -> (38.2305215332,-7.02811928108,-4.17542533901,37.3462734326) p_k -> (-1.86898659393e-06,5.48550108004e-07,1.70241603037e-07,-1.99997837669e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.6422124371,-20.6519421417,-15.9331584479,14.0816371853) p_j = (15.957192441,-11.2045331672,-8.55748322444,7.47394861951) p_k = (2.88035804689e-10,2.05076930001e-10,1.78806425591e-10,-9.45472237957e-11) p_ij -> (45.5994808395,-31.8568079565,-24.4909119569,21.5557804635) p_k -> (-7.59610460754e-05,0.000332647759448,0.000270284729114,-0.000194658748434) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00511831613444,0.00164215806849,-0.00307673888821,-0.00374621872662) p_j = (18.7061311953,6.00573839743,-11.2380833134,-13.6951062077) p_k = (2.79809200781e-09,-2.59969596422e-09,7.87562527877e-10,-6.71299102521e-10) p_ij -> (18.7112529434,6.00738165786,-11.2411621145,-13.6988549391) p_k -> (-3.42910284878e-06,-1.10495566563e-06,2.06293787475e-06,2.5120915419e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.98422644261,1.49213975686,-0.602300697254,3.64483376329) p_j = (31.0182098646,11.6225451641,-4.69592662732,28.3724172432) p_k = (3.55271667391e-07,2.41509490771e-07,7.11722324803e-08,2.50650427117e-07) p_ij -> (35.002437211,13.1146848559,-5.29822792672,32.01725211) p_k -> (-5.48551078339e-07,3.06564730046e-07,6.73325273759e-07,-8.52884902258e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.4988868409,14.0178081856,16.2956884456,0.39208054397) p_j = (0.0659966400545,0.0431505414015,0.0499267508658,0.000952272663669) p_k = (2.88430936391e-08,-5.3561690101e-09,1.06075525831e-08,-2.62814602394e-08) p_ij -> (21.5648843826,14.0609599544,16.3456161778,0.393033542525) p_k -> (-8.7283192407e-07,-1.23274864272e-06,-9.7069831817e-07,-7.52172744645e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (36.7917978302,23.4024562902,7.04638307849,27.5010892998) p_j = (4.71208562033,2.99774495782,0.902148049214,3.52184681077) p_k = (3.73769708246e-08,8.58543151101e-10,-4.59851970087e-09,3.70830745812e-08) p_ij -> (41.5038883202,26.4002044431,7.94853211037,31.0229397116) p_k -> (-4.83226612147e-06,-3.19424978024e-06,-9.87257593454e-07,-3.56389395328e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.4744954788,17.2377499911,3.27557336779,5.78252345903) p_j = (10.4181581943,9.72073160979,1.84715953702,3.26088926168) p_k = (9.70050244514e-06,9.01675544766e-06,1.81354962354e-06,3.08365151212e-06) p_ij -> (28.8927044303,26.9585289602,5.12274190402,9.04342860765) p_k -> (-4.10566838411e-05,-3.83426310542e-05,-7.18565600799e-06,-1.28032889126e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.703520512316,-0.0078808546565,0.0309788763299,-0.702793933241) p_j = (41.9591880262,-0.475626976608,1.83564711739,-41.9163170908) p_k = (3.90760417194e-09,-2.25856821944e-10,-1.63724061682e-09,3.54087603472e-09) p_ij -> (42.6627198375,-0.483507958486,1.86662649637,-42.6191223456) p_k -> (-1.12950597533e-05,1.26996172273e-07,-5.0428953946e-07,1.13250812461e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.195612942216,-0.0924788992361,-0.00821109278428,0.172176230397) p_j = (41.9300117499,-19.8273352333,-1.76195402558,36.9039046837) p_k = (4.59176870532e-07,-1.85797651856e-07,-3.78147971686e-07,1.82556134824e-07) p_ij -> (42.1256252413,-19.9198143925,-1.7701651386,37.0760813992) p_k -> (-9.00259209402e-08,7.41505559176e-08,-3.57914623494e-07,-3.02570974497e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.3162250381,1.26932602371,8.75121568187,19.3955274589) p_j = (24.2799587696,1.42627202352,10.0670892658,22.0484888299) p_k = (2.89812103632e-10,-6.40246921576e-12,-9.48043619261e-11,-2.73785764487e-10) p_ij -> (45.5963543372,2.69561287917,18.818418605,41.4442797176) p_k -> (-0.000170529264107,-1.48319489237e-05,-0.000113657384022,-0.000263429101786) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0143998624358,-0.00565913675816,-0.0106822017471,0.00782437059166) p_j = (14.4920380068,-5.69026729627,-10.7383492004,7.89480082949) p_k = (7.7200035323e-09,2.47911271754e-11,7.54856866926e-09,1.6176996547e-09) p_ij -> (14.5064381707,-5.69592655636,-10.749031647,7.90262536851) p_k -> (-2.93750002989e-07,1.23355284209e-07,2.52463614459e-07,-1.66812370139e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.05127718406,2.13255628824,3.43518194327,-0.254117130858) p_j = (27.7911496908,14.6304895863,23.5636101828,-1.74729813014) p_k = (1.8848875587e-08,8.11162744617e-09,-1.51812975252e-08,7.68178335454e-09) p_ij -> (31.8424276784,16.7630463006,26.9987928595,-2.00141532633) p_k -> (-7.84685148858e-07,-4.17928788465e-07,-7.48623419256e-07,7.30205635957e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0322630807414,0.00940445841197,0.0102374221637,-0.029114562136) p_j = (34.2965383559,10.0089316271,10.8696778668,-30.9503462655) p_k = (9.09506778216e-09,-1.28407652629e-09,2.70611073116e-10,8.99990538854e-09) p_ij -> (34.3288039015,10.0183368057,10.8799160708,-30.9794630561) p_k -> (-2.45568376656e-06,-7.21537842807e-07,-7.81525291593e-07,2.23743106176e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.301045548917,0.103471265017,-0.0689121369163,0.274177382773) p_j = (45.2987600875,15.9182236149,-9.97647448269,41.2196285682) p_k = (5.39333469973e-10,-2.210133019e-10,9.36911514797e-11,-4.82971494963e-10) p_ij -> (45.5999480906,16.0217526321,-10.0454219876,41.4939538434) p_k -> (-0.000142453691755,-5.77524609877e-05,3.53680925347e-05,-0.000147892859935) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.17129670493,4.28349456199,-1.09362351905,2.68290356635) p_j = (2.77085221344,2.29523245683,-0.58582038287,1.4374784996) p_k = (4.3875846979e-08,3.59110668201e-08,-1.23186056094e-08,2.19940260937e-08) p_ij -> (7.94214983252,6.57872779133,-1.67944398783,4.12038256738) p_k -> (-8.70281406939e-07,-7.36596111217e-07,7.35845316902e-08,-4.794242634e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.2563562025,0.377321295168,-3.09435838679,27.077509639) p_j = (8.01101283506,0.112381679139,-0.90914515904,7.95846417856) p_k = (6.09129034523e-08,7.4984321316e-09,-1.83973818741e-08,5.75820427751e-08) p_ij -> (35.2673848968,0.489702706812,-4.00350450435,35.0359897876) p_k -> (-1.57983059843e-05,2.74993916805e-07,9.40121734683e-07,-1.59124696566e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.886815446,8.02930162501,-3.94823115041,-39.8957825279) p_j = (0.00110305798566,0.000216657076194,-0.000107134293457,-0.00107625223541) p_k = (9.64331612187e-08,-5.11036618802e-08,6.91727553224e-08,4.36222533516e-08) p_ij -> (40.8879187565,8.02951833176,-3.94833830918,-39.8968590267) p_k -> (-1.56093403092e-07,-1.00773589473e-07,9.36465707202e-08,2.90183454155e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.6805238137,-29.4386160549,-11.6447101298,-1.19339845749) p_j = (0.505498492655,-0.46991151878,-0.185355884673,-0.0188437419633) p_k = (1.75997272888e-09,1.20370494428e-09,1.07004678121e-09,-7.09635589298e-10) p_ij -> (32.1860232997,-29.9085287308,-11.8300665212,-1.21224218381) p_k -> (-9.91519922167e-07,1.15831813829e-06,5.0773328919e-07,-1.63505046169e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0286462368078,-0.000458404433316,0.0268183261167,-0.0100585353268) p_j = (29.5990373423,-0.470970385408,27.7922179949,-10.1722080894) p_k = (9.0990446683e-10,8.12468535922e-10,-3.45845097042e-10,2.19558480873e-10) p_ij -> (29.6276962066,-0.47142955738,27.819049,-10.1822713292) p_k -> (-1.26265738967e-05,7.6835090973e-07,-1.26793376527e-05,4.70466197644e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.7898428739,2.48030705135,-2.50602321812,-12.2942265027) p_j = (8.1624347582,1.58238914847,-1.60089033754,-7.8459247952) p_k = (2.7391206904e-08,8.9157691997e-09,-1.79991237767e-08,-1.86230722054e-08) p_ij -> (20.9522826893,4.06269709297,-4.10691424051,-20.1401563461) p_k -> (-5.02983580652e-06,-8.8423847977e-07,6.66848817055e-07,5.02955633941e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.3579546775,-13.2159370853,1.19760857379,-32.7733077311) p_j = (5.33195628599,-1.99057403518,0.180652399108,-4.94315056991) p_k = (9.69798077906e-09,6.58571986276e-09,-2.69247312188e-10,-7.11383365531e-09) p_ij -> (40.689917012,-15.206514364,1.37826123533,-37.7164640881) p_k -> (-6.03882985928e-06,3.25007578361e-06,-2.62699099363e-07,5.77998721951e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.8445295379,5.48286402576,25.9412210142,-4.19762081181) p_j = (16.2932712305,3.32698549455,15.7450080082,-2.5488385065) p_k = (1.13956723895e-08,3.02242148239e-09,1.06960064267e-08,2.5143118896e-09) p_ij -> (43.1379161612,8.80987305635,41.6863405459,-6.74647755127) p_k -> (-0.000115381384887,-2.35330106086e-05,-0.000111512870177,1.82354757889e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.335172380567,0.163073003639,-0.927936781677) b = (0,0,1) a' = (0.0401585057376,-0.172945153696,0.984112426621) -> rel. dev. (inf,-inf,-0.015887573379) m_ct = -0.927936781677 m_st = -0.37273761443 m_n = (0,-1.32436182284e-06,-2.327396269e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.6960638838,11.7299496399,6.38564625675,33.1034859211) p_j = (2.57873340978,0.846618835774,0.461412414218,2.39169419652) p_k = (1.40653377428e-09,-9.35785320724e-10,8.04955307345e-10,-6.74307800282e-10) p_ij -> (38.2748259823,12.576577979,6.8470637728,35.4952068314) p_k -> (-2.86873212723e-05,-9.5043440469e-06,-5.1010264337e-06,-2.67144988193e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.9478416818,-16.3736781249,-8.10660296652,35.5248604225) p_j = (5.62189093294,-2.30445587206,-1.14151103232,4.99920927335) p_k = (1.02360378966e-06,-4.00637000715e-07,-1.75037051696e-07,9.25535921721e-07) p_ij -> (45.5698336366,-18.678176356,-9.24813614623,40.5241587637) p_k -> (-9.99982521286e-05,4.19583319768e-05,2.19723601464e-05,-8.81422866073e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0437954818021,0.00678347975774,0.021796971018,0.0373754021128) p_j = (7.44732345012,1.15505930724,3.70660016513,6.35527967782) p_k = (6.03302026981e-09,1.29416067549e-09,1.96673377995e-09,5.55467726298e-09) p_ij -> (7.49112833326,1.16184424201,3.72840182423,6.39266309919) p_k -> (-9.39530522848e-06,-1.45371882065e-06,-4.68611467164e-06,-8.0137031242e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.2712142279,8.71635499069,-9.0353831953,-43.4956301697) p_j = (0.327252398406,0.0640914156889,-0.0648218450951,-0.314300097194) p_k = (4.07761741576e-08,4.03960784182e-08,-5.50558465009e-09,-7.36048043176e-10) p_ij -> (45.5984692129,8.78044464136,-9.10020573964,-43.8099354251) p_k -> (-2.54575996195e-06,1.80541816608e-06,6.93737828072e-07,5.15746988583e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.4571385,-17.7447175806,23.5952950679,24.6442396971) p_j = (1.20848182318,-0.556109179259,0.742039578872,0.774950424917) p_k = (6.88617794381e-09,6.93707682192e-10,-6.5810405043e-09,-1.90476259018e-09) p_ij -> (39.6656236764,-18.3008286646,24.3373377025,25.4191928546) p_k -> (-3.34639059218e-06,1.9054342264e-06,-3.06236984393e-06,-2.73447778198e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.63183049825,-4.12869245245,-0.447114353825,-5.17060568456) p_j = (28.4534170789,-17.7153624568,-1.91368917215,-22.1833421792) p_k = (7.21382131448e-09,-3.29890170582e-09,-6.76504869653e-10,6.37956332454e-09) p_ij -> (35.0852476589,-21.8440549697,-2.36080352995,-27.3539480233) p_k -> (-7.46054098499e-08,5.71528051552e-08,3.3046156922e-09,1.65914983086e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.315396157028,0.183698560779,-0.0136181390242,-0.25601586069) p_j = (37.3578641531,21.7531537359,-1.62586577931,-30.3276586154) p_k = (5.20870166542e-08,-2.35205087492e-08,-2.33228821394e-08,4.01980826204e-08) p_ij -> (37.6732606623,21.9368525144,-1.63948392869,-30.5836747815) p_k -> (-3.00064517234e-07,-2.41278689472e-07,-1.29648070057e-08,3.45536898649e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.547235915375,0.517846813013,-0.0760160905576,0.159760380897) p_j = (34.9071915572,33.0325582349,-4.84991985096,10.190210808) p_k = (1.14462830653e-08,3.99025151786e-11,-1.14437412448e-08,-2.37933104398e-10) p_ij -> (35.4544370931,33.5504141521,-4.92593727787,10.3499739974) p_k -> (-9.60908500147e-06,-9.10416506983e-06,1.32490502702e-06,-2.8088035755e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0250426648907,-0.00374010113667,0.0161327390118,0.0187851388148) p_j = (41.074125621,-6.14265295116,26.4951327566,30.7792064625) p_k = (1.40095553463e-07,-6.38626579318e-08,-1.23032465258e-07,2.02814969042e-08) p_ij -> (41.0991690454,-6.14639316217,26.511266004,30.7979921778) p_k -> (-6.19479994413e-07,4.60188771534e-08,-6.31467411694e-07,-5.56241849026e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.5160540399,-1.63028184137,-14.7202650605,-9.35243961719) p_j = (28.0158771621,-2.6370656561,-23.5171139203,-14.9960198301) p_k = (3.49177027661e-10,1.02736577572e-12,2.90243096994e-10,1.94126241799e-10) p_ij -> (45.5320472251,-4.26735936903,-38.237493662,-24.348532748) p_k -> (-0.000116022865114,1.18715647459e-05,0.000114681452157,7.33009567195e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.34457021277,4.59882120703,-2.40887769342,-1.26987500298) p_j = (40.2531876775,34.5132714784,-18.2419779456,-9.81750735609) p_k = (3.37647972897e-10,7.07400811715e-12,3.31213359258e-10,-6.52315763448e-11) p_ij -> (45.5980273412,39.1124026066,-20.6511126839,-11.0874525823) p_k -> (-0.000269450635166,-0.000309921114344,0.000257045168103,7.02231820249e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.1731959396,-7.4787130837,21.7500629414,17.9465588342) p_j = (0.0113036351276,-0.00191038711595,0.00859160053311,0.00709274195535) p_k = (1.49032740599e-10,-1.13397637077e-11,1.02530700094e-10,1.07567129884e-10) p_ij -> (29.1872488052,-7.48167371368,21.760814643,17.9551384777) p_k -> (-0.00274923033354,0.0010502428511,-0.00216010102733,-0.00148690143995) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.7499796902,11.1465160943,8.77218033553,-4.04548291078) p_j = (8.64822023606,6.53541381922,5.14332984954,-2.37196912328) p_k = (1.60021181784e-07,1.04585869126e-07,1.07557273988e-07,-5.56777101679e-08) p_ij -> (23.3982104507,17.6819378672,13.915516444,-6.41745492034) p_k -> (-1.03644384613e-05,-7.84907558504e-06,-6.15133032511e-06,2.83061307549e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.4495094797,-5.97182639446,13.1275653619,0.890304097952) p_j = (6.0880200451,-2.51643965197,5.53087392475,0.375437313046) p_k = (8.41991495096e-09,6.54032839725e-09,5.29628659654e-09,2.61580598774e-10) p_ij -> (20.5375339799,-8.48826790993,18.6584433393,1.26574168614) p_k -> (-4.4466408422e-06,1.87004518892e-06,-4.04736162807e-06,-2.74877020701e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.1646552785,-10.3354224414,2.5921965769,9.33257836949) p_j = (0.0226689810699,-0.0165432023504,0.00414438461911,0.0149341633473) p_k = (3.17268317644e-06,-2.32930892513e-06,6.89704282026e-07,2.04072204691e-06) p_ij -> (14.1873277851,-10.3519682127,2.59634157958,9.34751486803) p_k -> (-3.52847239427e-07,2.39579774686e-07,7.16415453628e-08,-2.94465406725e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.00224671809,-1.08073535456,0.674169705965,-2.7186378312) p_j = (35.8594337583,-12.9092955199,8.0524875232,-32.4716264349) p_k = (3.20667522101e-09,2.83641945085e-09,-1.49474390263e-09,-5.68176728097e-11) p_ij -> (38.8616927542,-13.9900352952,8.72665998662,-35.1902753845) p_k -> (-1.22746257354e-05,4.42348209262e-06,-2.7589442757e-06,1.11183261566e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.9384017728,-7.85996055336,-5.26418126668,10.2366234507) p_j = (0.0613398955755,-0.0345956418079,-0.0231532654043,0.0450516443455) p_k = (3.43423122572e-09,-1.9871163459e-09,-2.51986284734e-09,1.22294921622e-09) p_ij -> (13.9997441804,-7.89455761155,-5.28733547625,10.2816769448) p_k -> (-2.50863651097e-06,1.41439875412e-06,9.41646820518e-07,-1.84855155627e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.148684892699,0.0244153273395,-0.0907413605728,-0.115226275602) p_j = (10.5603730316,1.73112460569,-6.43617458591,-8.19147989469) p_k = (6.83809071995e-09,3.68751707009e-09,3.74627364647e-09,-4.3734566283e-09) p_ij -> (10.7090585593,1.75553999043,-6.52691647748,-8.30670667978) p_k -> (-6.28164733563e-07,-5.37156220615e-08,5.34743271885e-07,5.05111184879e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.7060936744,-0.657213156391,13.1006546521,10.3457471654) p_j = (16.4967510523,-0.649624962926,12.9359605791,10.2167365918) p_k = (1.61814673228e-08,-4.56690027748e-09,1.54312628481e-08,1.69098621771e-09) p_ij -> (33.2028524855,-1.30683840162,26.0366212993,20.5624886112) p_k -> (-7.7426944074e-06,2.77733753329e-07,-6.05272597376e-06,-4.85229872815e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0109979112755,0.0028685833622,0.0100732453889,-0.00335484861859) p_j = (7.12548724256,1.86958754881,6.52289443631,-2.17463997343) p_k = (6.69364913724e-08,2.52745132304e-08,5.76439253901e-08,-2.27787340273e-08) p_ij -> (7.1364859252,1.87245614114,6.53296847892,-2.17799499851) p_k -> (-7.04428993803e-07,1.63081227411e-08,-7.39581061282e-07,1.53687453874e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.81618468953,2.38359365827,-0.115341322579,1.49535074718) p_j = (8.96765475965,7.58570227509,-0.374827233356,4.76817128753) p_k = (2.29909271288e-09,-6.68537107363e-10,-2.18432083113e-09,2.60057308876e-10) p_ij -> (11.783840486,9.96929837852,-0.490167345992,6.26352316295) p_k -> (-1.0345385526e-06,-2.44583407483e-06,-1.2121270099e-06,-1.12798528473e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.48210339797,-0.633991067356,1.51524598002,-1.86089285687) p_j = (25.3728168755,-6.50382494163,15.4431956449,-19.0522388605) p_k = (1.92223286089e-10,2.55849567911e-11,-1.50231372691e-10,1.17158094734e-10) p_ij -> (27.8549526003,-7.13782551995,16.9584656883,-20.9131602756) p_k -> (-3.23266516364e-05,9.51098914648e-06,-2.40635250019e-05,2.85582639226e-05) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00801818900793,-0.471935018443,-0.8815968733) b = (0,0,1) a' = (0.47905676541,0.414270289114,0.773876439151) -> rel. dev. (inf,inf,-0.226123560849) m_ct = -0.8815968733 m_st = -0.472003128155 m_n = (0,-1.04650143381e-06,5.60211462207e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00801819007364,-0.471935018404,-0.881596873311) b = (0,0,1) a' = (0.479056766324,0.414270288847,0.773876438728) -> rel. dev. (inf,inf,-0.226123561272) m_ct = -0.881596873311 m_st = -0.472003128133 m_n = (0,-1.04650143373e-06,5.60211462108e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0080181915715,-0.471935017739,-0.881596873654) b = (0,0,1) a' = (0.479056767002,0.414270288093,0.773876438712) -> rel. dev. (inf,inf,-0.226123561288) m_ct = -0.881596873654 m_st = -0.472003127494 m_n = (0,-1.04650143395e-06,5.6021146122e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0080181915715,-0.471935017739,-0.881596873654) b = (0,0,1) a' = (0.479056767002,0.414270288093,0.773876438712) -> rel. dev. (inf,inf,-0.226123561288) m_ct = -0.881596873654 m_st = -0.472003127494 m_n = (0,-1.04650143395e-06,5.6021146122e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00801819007364,-0.471935018404,-0.881596873311) b = (0,0,1) a' = (0.479056766324,0.414270288847,0.773876438728) -> rel. dev. (inf,inf,-0.226123561272) m_ct = -0.881596873311 m_st = -0.472003128133 m_n = (0,-1.04650143373e-06,5.60211462108e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00801819007364,-0.471935018404,-0.881596873311) b = (0,0,1) a' = (0.479056766324,0.414270288847,0.773876438728) -> rel. dev. (inf,inf,-0.226123561272) m_ct = -0.881596873311 m_st = -0.472003128133 m_n = (0,-1.04650143373e-06,5.60211462108e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0080181915715,-0.471935017739,-0.881596873654) b = (0,0,1) a' = (0.479056767002,0.414270288093,0.773876438712) -> rel. dev. (inf,inf,-0.226123561288) m_ct = -0.881596873654 m_st = -0.472003127494 m_n = (0,-1.04650143395e-06,5.6021146122e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0080181915715,-0.471935017739,-0.881596873654) b = (0,0,1) a' = (0.479056767002,0.414270288093,0.773876438712) -> rel. dev. (inf,inf,-0.226123561288) m_ct = -0.881596873654 m_st = -0.472003127494 m_n = (0,-1.04650143395e-06,5.6021146122e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0080181915715,-0.471935017739,-0.881596873654) b = (0,0,1) a' = (0.479056767002,0.414270288093,0.773876438712) -> rel. dev. (inf,inf,-0.226123561288) m_ct = -0.881596873654 m_st = -0.472003127494 m_n = (0,-1.04650143395e-06,5.6021146122e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00801819007364,-0.471935018404,-0.881596873311) b = (0,0,1) a' = (0.479056766324,0.414270288847,0.773876438728) -> rel. dev. (inf,inf,-0.226123561272) m_ct = -0.881596873311 m_st = -0.472003128133 m_n = (0,-1.04650143373e-06,5.60211462108e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00801819007364,-0.471935018404,-0.881596873311) b = (0,0,1) a' = (0.479056766324,0.414270288847,0.773876438728) -> rel. dev. (inf,inf,-0.226123561272) m_ct = -0.881596873311 m_st = -0.472003128133 m_n = (0,-1.04650143373e-06,5.60211462108e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00144864460999,-0.00011690923859,0.000784497238224,-0.00121221595403) p_j = (36.3799692707,-5.42741680319,20.9285387312,-29.2581882139) p_k = (3.6030160086e-09,-1.38810928771e-09,1.49522460222e-09,-2.96971043032e-09) p_ij -> (36.3816818022,-5.42754429072,20.9294945822,-29.2596102207) p_k -> (-0.000263883237832,1.05769035921e-05,-0.00017135224533,0.000209787844449) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.47194803312,0.144957252668,1.46407429993,-0.0458786594315) p_j = (35.5371092643,3.49427921885,35.3478982168,-1.09646671498) p_k = (2.36985905239e-08,-6.73899075291e-09,2.23265300276e-08,4.2113247336e-09) p_ij -> (37.0090810598,3.63923915263,36.8119961999,-1.14234629562) p_k -> (-2.37386377577e-05,-2.68784491086e-06,-2.3660787555e-05,9.25410766017e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.0938567179,25.0713441685,-18.9451194958,6.52117994714) p_j = (1.91855029741,1.49875647913,-1.13250977618,0.389853647924) p_k = (4.37020735066e-06,3.3884768955e-06,-2.61070031549e-06,8.9508685562e-07) p_ij -> (34.0127038567,26.5703325641,-20.0778044652,6.91109390311) p_k -> (-0.000292471204713,-0.000228527975162,0.000172582466828,-5.94129572269e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.5000877719,-0.211438949778,36.3299063492,-20.0586760107) p_j = (2.34620909002,-0.0120956111203,2.05393452489,-1.13397696527) p_k = (1.23308038424e-05,-5.16565239393e-09,1.08203044074e-05,-5.9135191931e-06) p_ij -> (43.8463717439,-0.223535983946,38.3839059634,-21.1926900076) p_k -> (-6.25511747216e-05,1.41788146595e-06,-5.42689993033e-05,3.11181402761e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.8076020792,-22.396329597,0.249582306313,-4.30451412547) p_j = (18.1150012804,-17.7884108167,0.198341319252,-3.41853371008) p_k = (7.6197775888e-09,-2.18316866803e-09,-6.45990587846e-09,3.40064435357e-09) p_ij -> (40.9226084483,-40.1847454123,0.44792368339,-7.72304879747) p_k -> (-5.08105474495e-06,4.99646188956e-06,-6.42859942501e-08,9.65325117619e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (36.8130657313,-16.1834241602,11.3983045467,31.0383189695) p_j = (2.01653671743,-0.886546877674,0.624350630393,1.70018859447) p_k = (7.67281792078e-07,-3.02280159264e-07,2.50778291051e-07,6.59134510178e-07) p_ij -> (38.8296105179,-17.0699746179,12.0226576632,32.7385143559) p_k -> (-7.30187695197e-06,3.27769573261e-06,-2.23532219135e-06,-6.13284310091e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.5009655096,11.106232673,-11.4538911158,7.19331411018) p_j = (16.1936793673,10.2708498202,-10.5995098082,6.66297885695) p_k = (5.9739976328e-09,4.0284272441e-09,-1.3254165723e-09,4.20757572294e-09) p_ij -> (33.6946615787,21.3770927,-22.0534160792,13.8562969742) p_k -> (-1.66958432324e-05,-1.0202752561e-05,1.51539073237e-05,-4.00281550927e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.7604268823,1.87862161161,-4.82037823634,-12.7508463438) p_j = (27.3085880752,3.72489091819,-9.5649642269,-25.3060393908) p_k = (1.42075720347e-08,1.22249332988e-08,-6.53704111556e-09,-3.11017763947e-09) p_ij -> (41.0690217767,5.60351333592,-14.385344833,-38.0568921751) p_k -> (-6.80497801753e-06,-7.93893249806e-07,2.36317819979e-06,6.43744376916e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00315974127953,0.000273831247178,-0.00131683026591,0.00285918510286) p_j = (44.9128902983,5.06069016215,-16.2088096885,41.5792209946) p_k = (7.761715027e-09,-6.94114268446e-09,3.14205077658e-10,-3.45919418502e-09) p_ij -> (44.916052273,5.06096865252,-16.2101290817,41.5820882502) p_k -> (-2.22566028185e-06,-4.66606682448e-06,2.563202532e-06,-8.07396431313e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.155857046783,-0.0829568627939,0.0296559734496,0.128569441106) p_j = (31.2032797794,-16.595856051,5.91328776189,25.7537426167) p_k = (7.62046171312e-09,-7.31957474779e-09,2.10968287469e-09,2.10965680398e-10) p_ij -> (31.3591434298,-16.6788163507,5.94294497145,25.8823176485) p_k -> (-6.59605337461e-06,3.42951233279e-06,-1.23400058483e-06,-5.5905037506e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.6940362444,-3.10364838881,-32.0962537225,12.8013286259) p_j = (0.00114639171968,-4.00775889402e-05,-0.00111474592401,0.000264479274653) p_k = (3.91854192283e-09,-3.04973605881e-09,1.06572367749e-09,-2.21772651188e-09) p_ij -> (34.6951835396,-3.10368164221,-32.0973813043,12.8016028105) p_k -> (-8.9960272831e-07,-6.82723557155e-06,1.28369618402e-05,-9.7076114578e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.6522588216,-7.77964937253,16.2229320492,-36.454076297) p_j = (4.60691735092,-0.891179562449,1.83404774243,-4.13107193646) p_k = (3.35278122773e-10,-2.28782641807e-10,-1.78919771019e-10,-1.67501573307e-10) p_ij -> (45.2596645458,-8.67091414472,18.0571905111,-40.5855929309) p_k -> (-0.0004883729851,8.52095105008e-05,-0.000210719691383,0.000444697292146) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.228320885302,-0.116690397436,-0.196179469125,-0.0052338996285) p_j = (31.6696234656,-16.204137796,-27.2005865563,-0.720458002764) p_k = (7.32227520765e-11,-4.93758778582e-11,1.93985122803e-11,-5.04707023301e-11) p_ij -> (31.8986940029,-16.3212117483,-27.3974099638,-0.725708915062) p_k -> (-0.000749651901726,0.000383554833482,0.000643938417587,1.70126193886e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0571442299083,-0.00795184527685,-0.0359854503694,0.0436724000969) p_j = (29.8294016403,-4.15684867901,-18.7116668316,22.8557943564) p_k = (1.68462296139e-09,-1.30210459404e-09,-9.18086069331e-10,-5.4735167625e-10) p_ij -> (29.8865604265,-4.16480232962,-18.747661442,22.8994782941) p_k -> (-1.45546138075e-05,1.80402959327e-06,9.15915152966e-06,-1.15380605443e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.3058017019,10.7335430609,-5.02814861317,-3.30779842321) p_j = (33.2936537907,29.0666112613,-13.5660042665,-8.91981057889) p_k = (1.4780485396e-09,-8.55578740905e-10,1.19795785266e-09,-1.32314303072e-10) p_ij -> (45.5994681686,39.800175173,-18.5941662619,-12.2276136055) p_k -> (-1.26745136697e-05,-2.08515969682e-05,1.33834026492e-05,4.60326820662e-06) } Event 90000 ( 10m 53s elapsed / 3h 51m 6s left ) -> ETA: Thu Aug 17 20:44 XS = 21479979.3526 pb +- ( 2725486.46382 pb = 12.68 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.65060334262,-3.81281096808,3.32604165022,2.5157976068) p_j = (39.9479112321,-26.8488947752,23.5639648177,17.8804928127) p_k = (3.89273240664e-09,2.52231002344e-09,-2.30190278668e-09,-1.86884033611e-09) p_ij -> (45.5985176733,-30.6617311584,26.8900291646,20.3963081927) p_k -> (-3.09465793435e-06,2.54176513668e-05,-2.26990269656e-05,-1.77750766088e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.9726493637,2.44802350992,12.3533289369,-3.11321001295) p_j = (15.9930959778,3.01769722873,15.2295595341,-3.83837710349) p_k = (2.55623167794e-09,-2.44674283898e-09,1.98773244675e-10,-7.1292351748e-10) p_ij -> (28.9657629345,5.46572406131,27.5829052263,-6.95159133853) p_k -> (-1.75903829085e-05,-3.32510500289e-06,-1.67550782102e-05,4.22137615708e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.4567093276,-7.33679297946,13.5731533822,18.975552882) p_j = (0.137738013391,-0.0411732420104,0.077003885293,0.106521951377) p_k = (3.87908775243e-10,-2.77962434246e-11,-2.61121624846e-10,2.85508637635e-10) p_ij -> (24.5944936205,-7.37798058644,13.6501855447,19.0821108242) p_k -> (-4.62790572158e-05,1.43649371838e-05,-2.82774986031e-05,-3.59906024325e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.2202117015,-5.8443062191,-7.42825288313,14.3944723754) p_j = (8.52433252897,-2.89299728545,-3.67696672404,7.12563874198) p_k = (1.43977538153e-07,-4.67678774936e-08,-8.29064512872e-08,1.08022300759e-07) p_ij -> (25.744559674,-8.73730874735,-11.1052262538,21.5201240357) p_k -> (-1.52994938158e-05,5.19602933569e-06,6.56373768759e-06,-1.28102645611e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.8673080235,4.01721999683,15.6654757941,23.9118440143) p_j = (0.0034020008476,0.000464186432668,0.00180378942168,0.00284683762182) p_k = (1.12151180651e-08,-1.08556603209e-08,-3.57030999571e-10,2.79394116138e-09) p_ij -> (28.870710537,4.01768472139,15.667280104,23.9146915208) p_k -> (-5.01428889521e-07,-5.48981946125e-07,-5.20779930291e-07,-6.66060126164e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.79912765685,-2.28840013741,5.23213195645,5.31172403362) p_j = (37.6786753608,-11.0608140866,25.278260113,25.6583423928) p_k = (1.32496571255e-09,7.3588246837e-11,-2.9732712504e-10,-1.2890747106e-09) p_ij -> (45.4778787367,-13.3492364672,30.5104429126,30.9701180723) p_k -> (-7.57177666806e-05,2.22433472903e-05,-5.08433891948e-05,-5.1647229224e-05) } MlPMom : 0.75 8.31744e-09 nan nan 0.160777448573 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5990560857,0,0,45.5990560857) (4.54747350886e-13) p_1 = (45.5987316622,0,0,-45.5987316622) (-9.09494701773e-13) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (7.2880820346e-07,-6.05136336089e-08,-1.19095092053e-07,-7.16460645553e-07) (-3.02922587605e-28) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1977877479,0,0,0.000324423535588) (8317.03649) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.01948391737e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.01948391737e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.7563673567,-4.19133303756,21.254155053,25.8879500439) p_j = (0.119915092295,-0.0145638275762,0.0750536652598,0.092382204009) p_k = (2.11556450187e-08,1.07235386223e-08,-3.82143900779e-09,-1.78315343359e-08) p_ij -> (33.8762827229,-4.20589759329,21.329209782,25.9803342287) p_k -> (-2.52732100137e-07,7.38868197736e-07,-1.06753926588e-06,-1.99863534789e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.0734182903,5.12112739927,-24.5830432819,-37.4307503736) p_j = (0.524961958404,0.0595789383697,-0.286373577196,-0.435919238114) p_k = (2.26101550231e-06,4.23044971389e-07,-1.22012428873e-06,-1.85594201795e-06) p_ij -> (45.598394411,5.18070772736,-24.8694246004,-37.8666814013) p_k -> (-1.19012764159e-05,-9.66682110803e-07,6.52121735278e-06,9.93361256008e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.0027101473,-5.2283571783,12.8715807473,-23.1545469742) p_j = (14.5707032955,-2.81954322964,6.94384905508,-12.4955404366) p_k = (1.15171300998e-09,-7.08387487117e-10,9.04423900102e-10,-8.1538751186e-11) p_ij -> (41.5736474282,-8.04794554822,19.8155412148,-35.6502883481) p_k -> (-0.000233984284179,4.51395697185e-05,-0.000111411509584,0.000200937270929) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0283163229711,-0.00706337987654,-0.00263219938127,-0.0272945844021) p_j = (25.9219914031,-6.48597667286,-2.42215795383,-24.9802901454) p_k = (3.01453645277e-09,1.42295410971e-10,1.15267421203e-09,2.7818160891e-09) p_ij -> (25.9503124175,-6.49304122849,-2.42479059463,-25.0075892629) p_k -> (-4.68837946777e-06,1.17589024962e-06,4.42573910187e-07,4.53587328586e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.6960485075,9.4209281742,11.8402290971,-19.5179378815) p_j = (14.9450503751,5.70251809187,7.16642403696,-11.8100882574) p_k = (5.14766616472e-08,4.55908519444e-08,-8.96213084872e-10,2.38855140067e-08) p_ij -> (39.6411008446,15.1234469623,19.0066541264,-31.3280278197) p_k -> (-1.91062562394e-06,-6.50665455737e-07,-9.93211546785e-07,1.70464731575e-06) } Poincare::Poincare(): Inaccurate rotation { a = (-0.25840085344,0.0989186259892,-0.960959991037) b = (0,0,1) a' = (0.515603326525,-0.0877358955468,0.852323660536) -> rel. dev. (inf,-inf,-0.147676339464) m_ct = -0.960959991037 m_st = -0.2766873608 m_n = (0,-1.42657138547e-06,-1.46847405347e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.258400853161,0.0989186259969,-0.960959991111) b = (0,0,1) a' = (0.515603326048,-0.0877358955763,0.852323660821) -> rel. dev. (inf,-inf,-0.147676339179) m_ct = -0.960959991111 m_st = -0.276687360542 m_n = (0,-1.42657138547e-06,-1.46847405347e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.25840085344,0.0989186259892,-0.960959991037) b = (0,0,1) a' = (0.515603326525,-0.0877358955468,0.852323660536) -> rel. dev. (inf,-inf,-0.147676339464) m_ct = -0.960959991037 m_st = -0.2766873608 m_n = (0,-1.42657138547e-06,-1.46847405347e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.258400853161,0.0989186259969,-0.960959991111) b = (0,0,1) a' = (0.515603326048,-0.0877358955763,0.852323660821) -> rel. dev. (inf,-inf,-0.147676339179) m_ct = -0.960959991111 m_st = -0.276687360542 m_n = (0,-1.42657138547e-06,-1.46847405347e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.7854947669,22.8215853086,2.01501366797,34.944849933) p_j = (2.34677606038,1.27879798646,0.114921955234,1.96438960789) p_k = (1.53640296912e-08,-1.17024267176e-08,1.70874865961e-10,-9.95376366661e-09) p_ij -> (44.1322723408,24.1003861213,2.12993575304,36.9092430762) p_k -> (-1.49816830586e-06,-2.83797417922e-06,-1.29668809468e-07,-3.54528120639e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0910479539348,-0.00975694073795,0.00191069814533,0.0905034875336) p_j = (28.6148221687,-3.28712357768,0.585757691757,28.4193552752) p_k = (1.70993303933e-09,-2.42122881587e-10,9.45358656969e-10,1.40411636927e-09) p_ij -> (28.7060062196,-3.29689568134,0.587661863528,28.5099969393) p_k -> (-0.000136095268045,1.51626837439e-05,6.5273193075e-06,-0.00013817521473) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.93828840614,0.193975033418,-3.89793902777,0.527788397162) p_j = (34.0046630263,1.66905462428,-33.653885532,4.57682780868) p_k = (2.6987320041e-09,-1.28760392168e-09,1.86687382992e-09,1.46287901847e-09) p_ij -> (37.9429657348,1.86303056996,-37.5518393858,5.10461796736) p_k -> (-1.42997331309e-05,-9.13556018056e-07,1.48279161678e-05,-1.76005982899e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00835358456478,0.00593994816782,-0.00274593058494,0.00519223034481) p_j = (37.9261577006,27.1379554559,-10.9872790252,24.1081834908) p_k = (1.51914564058e-08,-4.87612469389e-09,1.38985289641e-08,3.71949576718e-09) p_ij -> (37.9345144258,27.1439032784,-10.9900324051,24.1133798392) p_k -> (-3.12537454761e-06,-7.87914308376e-06,7.46325254841e-06,-4.11425855873e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.7191765281,-0.0323672886445,-23.0415770309,18.7700328661) p_j = (0.285619043339,-0.000330710107731,-0.221450525113,0.180382353561) p_k = (7.61378388156e-11,2.14268257301e-11,5.26767348001e-11,-5.06226787237e-11) p_ij -> (30.0048054125,-0.0326980096059,-23.2630351865,18.9504214357) p_k -> (-9.84096102385e-06,1.08750835663e-08,7.63058179487e-06,-6.21604177375e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.7072100488,7.50432019392,19.3048236812,25.3134460365) p_j = (4.07200658484,0.934643022524,2.40353084511,3.15130441628) p_k = (2.84863993219e-06,6.66311289348e-07,1.5907002585e-06,2.26725636322e-06) p_ij -> (36.7792464752,8.43896994857,21.7083729613,28.4647729811) p_k -> (-2.6992969115e-05,-6.06581457152e-06,-1.68443320927e-05,-2.02610991789e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.2009439519,-5.31518696717,-5.51707480803,-9.49598369756) p_j = (8.47310314767,-3.69161436324,-3.83172943183,-6.59418758494) p_k = (6.68703716324e-07,-2.83841164835e-07,-2.81893996679e-07,-5.3584944528e-07) p_ij -> (20.6740689709,-9.00681108097,-9.34881473835,-16.0901878471) p_k -> (-2.12026571376e-05,9.46671915791e-06,1.02165896374e-05,1.60287525937e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.072926668603,0.0350782596625,-0.0296108334492,0.0566658030476) p_j = (40.8308682969,19.6485557975,-16.5788748528,31.7212069374) p_k = (1.93426893938e-07,-6.02467883818e-08,1.80398946716e-07,-3.52208487603e-08) p_ij -> (40.9037952436,19.6836341921,-16.608485801,31.7778729578) p_k -> (-8.47127594739e-08,-1.95160286154e-07,2.95137349227e-07,-2.5259734393e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.1154891879,-6.70382466717,-2.23753000012,8.57941106465) p_j = (29.7595634293,-17.9533155423,-5.97884589582,22.9687500378) p_k = (2.36464451195e-08,-3.26335519881e-09,-2.91467837415e-09,2.32381052414e-08) p_ij -> (40.8750545565,-24.6571439946,-8.21637672286,31.5481614136) p_k -> (-1.91568938845e-06,3.78189324124e-06,8.23997107879e-07,-2.8792821638e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.219224405006,0.166887090524,0.135076009268,0.0443002312256) p_j = (22.369453445,17.0283255304,13.7834039424,4.52176434836) p_k = (4.10192483564e-09,-2.8022226668e-09,-2.54400543664e-09,-1.58157119573e-09) p_ij -> (22.5886783258,17.1952129835,13.9184802452,4.56606467593) p_k -> (-4.71724584727e-07,-3.65425767868e-07,-2.9608479224e-07,-9.79315086802e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.34087793766,-0.390669213549,2.82581123358,-4.5152126841) p_j = (40.1598338437,-2.91642170897,21.2518268646,-33.9509439292) p_k = (2.52339761487e-09,1.13835002674e-09,-1.45789209713e-09,-1.71646236836e-09) p_ij -> (45.5007423464,-3.30709360585,24.0776552482,-38.4661825985) p_k -> (-3.05625487265e-05,2.68446594087e-06,-1.71514754062e-05,2.59835219367e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.87685755781,2.35534058172,-0.0450240096938,-1.65125800244) p_j = (0.250467508046,0.204980689825,-0.0041305781654,-0.143874346948) p_k = (7.65725603307e-11,-5.9167773636e-11,7.04221155408e-12,4.8083540535e-11) p_ij -> (3.12732608,2.56032219477,-0.0491546100897,-1.79513300173) p_k -> (-1.0140612825e-06,-9.23288848709e-07,2.22374887185e-08,6.52391385136e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.7850499254,-1.30159980722,2.50445862292,-40.6872685538) p_j = (4.81281718708,-0.146528850256,0.295056022085,-4.80152897691) p_k = (4.78471216379e-09,3.71873931187e-09,-7.95060986787e-10,-2.9038466118e-09) p_ij -> (45.5979200242,-1.44813912867,2.79952036639,-45.4888545615) p_k -> (-5.29068926376e-05,1.04749101997e-05,-5.72218375505e-06,5.70278741812e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0801268343684,-0.0269567317861,-0.0697398744854,-0.0288096182563) p_j = (16.6044023734,-5.55892690582,-14.4434405419,-6.01594008834) p_k = (7.87197224169e-09,6.5724608078e-09,-3.38552307723e-09,2.70350728949e-09) p_ij -> (16.6845300195,-5.58588438788,-14.5131813024,-6.04475028938) p_k -> (-8.03846928576e-07,7.56850026651e-07,8.82607231745e-07,5.85494612348e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.987800826,4.46016198565,16.5052607192,8.2595341188) p_j = (0.135063681924,0.031673169887,0.117335492284,0.0589185092708) p_k = (2.92940050687e-08,1.3968644439e-08,2.22127533028e-08,1.30234131606e-08) p_ij -> (19.1228708061,4.49183574559,16.6226020942,8.31845533262) p_k -> (-6.26897530509e-06,-5.76079860259e-07,-5.86053057994e-06,-2.69152691601e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.32228192,0.789595517235,-0.414501931836,-2.14422955479) p_j = (2.08071557883,0.707440076613,-0.372035310533,-1.9210662627) p_k = (3.30260568921e-09,1.30363504398e-09,-1.21381590528e-09,2.78107328644e-09) p_ij -> (4.4029976571,1.49703564574,-0.786537264005,-4.06529602565) p_k -> (-1.54964664212e-07,-5.05851345256e-08,2.04219773869e-08,2.10933572387e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.1519766696,2.06524088564,9.23545433043,-13.0892136407) p_j = (4.40186193028,0.566443415395,2.51824754221,-3.56566398116) p_k = (1.15218934963e-08,-2.93632058782e-09,-9.57253528969e-09,5.70075622079e-09) p_ij -> (20.5538388682,2.63168464098,11.7537031456,-16.6548788809) p_k -> (-2.56779516761e-07,-3.42883455184e-07,-1.28251351672e-06,1.26473676332e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.9765287655,-17.2760013015,6.35820616208,4.60669484779) p_j = (26.6222737501,-24.2451530181,8.92685629133,6.42100081809) p_k = (8.56988369645e-10,6.91817902143e-10,-2.86567886454e-10,4.16771327358e-10) p_ij -> (45.5988200508,-41.5211847599,15.2850739728,11.0276978468) p_k -> (-1.75342955941e-05,3.04409974241e-05,-1.15197151329e-05,-2.18052166101e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.65180807171,1.43120481088,-4.9855786561,5.62546220497) p_j = (33.6977064912,6.30250077567,-21.9558105211,24.7741052533) p_k = (6.03446430126e-09,-3.68434892317e-09,4.74590805134e-09,-5.62757680398e-10) p_ij -> (41.3495229972,7.73370716428,-26.941394673,30.3995736593) p_k -> (-8.42824162106e-06,-1.58141062867e-06,5.50055790249e-06,-6.2015724307e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.9711442139,-4.48451094123,-25.5489352787,29.0842078985) p_j = (6.62868388232,-0.770417503408,-4.3473981785,4.94429327202) p_k = (2.03639473913e-10,-3.38847073168e-11,1.06342348707e-10,-1.70319399146e-10) p_ij -> (45.5998541292,-5.25493132849,-29.8963532001,34.0285241918) p_k -> (-2.6032719795e-05,2.88382016889e-06,1.97429619622e-05,-2.30214146981e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.89230282551,-0.131318969439,2.2401901474,-3.1803026141) p_j = (28.4684717306,-0.959156137908,16.3842614341,-23.2613387285) p_k = (1.2989907248e-08,6.6707991971e-09,8.87548176133e-09,-6.74269736252e-09) p_ij -> (32.3607826072,-1.09047539192,18.6244562125,-26.4416479282) p_k -> (-8.03803434479e-06,2.91242534201e-07,-4.62208139673e-06,6.57889099465e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.9403754137,-23.1876078626,-4.86993113191,-27.0246035541) p_j = (0.0164588742106,-0.0105953858543,-0.00220887963769,-0.012399725385) p_k = (8.02404160774e-09,1.16311035944e-09,6.53736353035e-09,-4.50502971057e-09) p_ij -> (35.9568407762,-23.1982074826,-4.87214094855,-27.0370081698) p_k -> (-6.48023909733e-06,4.235285056e-06,9.43543105869e-07,4.88580784364e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.05489383385,1.56398442798,3.60197013945,-1.01090446004) p_j = (22.7264265911,8.76236471954,20.1884850317,-5.66890661815) p_k = (4.99807083522e-09,-1.47915806435e-09,-4.63216803772e-09,1.15577582463e-09) p_ij -> (26.7813223521,10.3263499142,23.7904569459,-6.67981157548) p_k -> (-1.92217706996e-06,-7.68120103523e-07,-1.7793337026e-06,4.98449297393e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.79347192475,-0.961134888346,6.30150020028,2.34916490368) p_j = (0.472529530041,-0.066817671428,0.43831345725,0.163404004663) p_k = (9.35138881732e-08,1.97387616609e-08,7.70014876177e-08,4.92544363158e-08) p_ij -> (7.26600180728,-1.027952615,6.73981398607,2.51256902749) p_k -> (-2.58979141687e-07,7.49639087472e-08,-2.51547296326e-07,-6.98883484418e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.6337587349,-4.88281094109,-10.4968224907,-19.4489565114) p_j = (0.0552600320648,-0.0119067156221,-0.0256205139415,-0.04749200493) p_k = (1.7180148167e-09,-1.29805035106e-09,-1.09463077769e-09,2.6157701331e-10) p_ij -> (22.6890188647,-4.89471767544,-10.5224430492,-19.4964486047) p_k -> (-9.60214165957e-08,1.74292056343e-08,4.34764091395e-08,8.86669013767e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.5574388116,-11.1106013793,17.5965624607,-40.5264821768) p_j = (0.0102793611006,-0.00250626042727,0.00397048678994,-0.0091443511502) p_k = (5.02143837102e-07,-2.46756226864e-08,4.19665181438e-07,-2.7462826114e-07) p_ij -> (45.5677198539,-11.1131080498,17.6005335968,-40.5356280236) p_k -> (-1.1790986818e-06,3.85373975398e-07,-2.29654254724e-07,1.22099901745e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.870156479,0.115522263021,4.23674815569,11.0877064585) p_j = (33.6995952187,0.32818013157,12.0281054355,31.4782416176) p_k = (2.50298131917e-07,-1.90384752326e-08,1.07267155251e-07,2.253451768e-07) p_ij -> (45.5697628586,0.443702505978,16.2648575725,42.5659585023) p_k -> (-1.09105717847e-05,-1.30425848621e-07,-3.8740264543e-06,-1.02009074041e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.7187880151,9.41916402728,14.9615440822,1.17770812428) p_j = (26.4182936157,14.0284133641,22.3145806528,1.78587411075) p_k = (5.5105756136e-10,-2.20659203046e-10,2.84844053727e-10,4.16937810439e-10) p_ij -> (44.137201967,23.4476528786,37.2762304306,2.96358176079) p_k -> (-0.000120335713035,-7.54874114133e-05,-0.00010569525011,4.74654173521e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0390219696489,-0.0981216502368,0.994409084653) b = (0,0,1) a' = (0.0667120423661,-0.0979776861451,0.992950087578) -> rel. dev. (inf,-inf,-0.00704991242208) m_ct = 0.994409084653 m_st = -0.10559627058 m_n = (-0,1.23137739294e-06,1.21504101003e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0390219695933,-0.0981216500969,0.994409084669) b = (0,0,1) a' = (0.0667120422705,-0.0979776860058,0.992950087598) -> rel. dev. (inf,-inf,-0.00704991240191) m_ct = 0.994409084669 m_st = -0.10559627043 m_n = (-0,1.23137739472e-06,1.21504101003e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0390219696489,-0.0981216502368,0.994409084653) b = (0,0,1) a' = (0.0667120423661,-0.0979776861451,0.992950087578) -> rel. dev. (inf,-inf,-0.00704991242208) m_ct = 0.994409084653 m_st = -0.10559627058 m_n = (-0,1.23137739294e-06,1.21504101003e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0390219695933,-0.0981216500969,0.994409084669) b = (0,0,1) a' = (0.0667120422705,-0.0979776860058,0.992950087598) -> rel. dev. (inf,-inf,-0.00704991240191) m_ct = 0.994409084669 m_st = -0.10559627043 m_n = (-0,1.23137739472e-06,1.21504101003e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.63394365117,2.30194317228,-4.70098487112,-5.55687812916) p_j = (37.9468210832,11.4381990828,-23.2660709587,-27.7095430169) p_k = (1.51670222981e-09,5.86052765975e-10,8.76249005236e-10,1.09047301152e-09) p_ij -> (45.5807759293,13.7401437176,-27.9670895128,-33.2664619267) p_k -> (-1.11933823455e-05,-1.46192542694e-06,3.36838829682e-05,4.07816628183e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.84466504534,-4.06262296839,-4.68064004535,6.30989723742) p_j = (6.07294676376,-2.78900258688,-3.21672985857,4.33068077591) p_k = (2.63365556058e-10,9.72312102323e-11,1.69296626802e-10,-1.76764100436e-10) p_ij -> (14.917614908,-6.8516272227,-7.89737188985,10.6405806317) p_k -> (-3.09866020221e-06,1.66751692809e-06,1.98609971402e-06,-2.61850222039e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0561669959951,0.0556189744935,0.00662989762872,0.00415999673462) p_j = (15.3241051299,15.1741901481,1.81015397724,1.13819767984) p_k = (1.52396365509e-09,1.2887318656e-09,-8.05776153775e-10,-1.11176156494e-10) p_ij -> (15.3802801768,15.2298170957,1.81678482998,1.14235827549) p_k -> (-8.04944144228e-06,-7.971830982e-06,-9.55917780487e-07,-5.99022892511e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00789829195995,-0.00502614245569,-0.0049107573777,0.00360629586653) p_j = (35.4074193111,-22.4790844985,-21.6576210842,16.7129755386) p_k = (5.91355199469e-09,-2.00789865146e-09,-4.95806294613e-09,2.52112034094e-09) p_ij -> (35.4154937248,-22.4842281201,-21.6626352208,16.716665843) p_k -> (-0.00017611583003,0.000117477164142,0.000103374202514,-8.40060171399e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.4025274467,25.3627866157,5.61388345532,-28.2836963979) p_j = (0.114861881548,0.0758251392124,0.0168592281754,-0.0846142217446) p_k = (1.195871686e-08,-3.19618170126e-09,4.77518067199e-09,1.04877530617e-08) p_ij -> (38.5173919293,25.4386134869,5.63074305989,-28.3683125599) p_k -> (-2.58908813322e-06,-1.73513288182e-06,-3.71620155093e-07,1.95067927855e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0903471079859,0.044483940372,-0.0599216178282,0.0509232627317) p_j = (29.7519925045,14.8006325372,-19.7738021594,16.5867140402) p_k = (3.02966138603e-09,2.8177966587e-09,-1.1102221692e-09,7.92355864372e-11) p_ij -> (29.8423594108,14.8451217462,-19.8337400921,16.6376539663) p_k -> (-1.97952920882e-05,-5.26579071281e-06,1.63138494109e-05,-1.66633536658e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.85761714441,0.756013241018,-0.917055632407,-3.66996770822) p_j = (32.7456116111,6.41760978873,-7.78340394716,-31.1529771832) p_k = (1.88858349815e-10,-4.59907629437e-11,1.83159524909e-10,-2.18391178887e-12) p_ij -> (36.603259282,7.17362901314,-8.70046683752,-34.8229739347) p_k -> (-3.05263819378e-05,-5.98343664304e-06,7.25814182623e-06,2.90433155783e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0359284809115,0.00349647805206,-0.0197462599817,-0.0298113333915) p_j = (5.66441421649,0.549461887213,-3.11543623208,-4.69869525873) p_k = (2.10701476176e-08,-1.47780810079e-09,-4.30869333847e-09,2.05718857839e-08) p_ij -> (5.70034274678,0.552958370605,-3.13518252035,-4.72850663902) p_k -> (-2.83077636887e-08,-6.81765083277e-09,2.39859672124e-08,6.74735498585e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.6405129177,8.92335852968,-8.77203222613,-1.79100251181) p_j = (0.0966435917197,0.068258748074,-0.0670300824998,-0.0137001887552) p_k = (8.92981765035e-09,3.03774008209e-10,-8.92464831514e-09,-4.8714927744e-12) p_ij -> (12.7371612962,8.9916206889,-8.83906561586,-1.80470338552) p_k -> (-4.77779586383e-06,-3.41084412714e-06,3.29830654611e-06,6.84944232443e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.9171689855,2.46600322323,15.8347775647,19.0799360017) p_j = (0.0183736090561,0.0015261171897,0.0116735773641,0.0141063130404) p_k = (6.63961744789e-09,-1.21202701883e-09,-5.98499156052e-09,-2.6067981994e-09) p_ij -> (24.9355440222,2.467529833,15.8464539674,19.0940448535) p_k -> (-1.4210669832e-06,-4.93787374545e-07,-2.83124105405e-06,-2.54139615308e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.532071031,0.145465979163,10.7156546494,-4.25937170793) p_j = (34.0623319711,0.437575241105,31.6332049561,-12.6250279773) p_k = (8.96257461992e-09,7.82736812039e-09,1.20050232779e-09,-4.19747504049e-09) p_ij -> (45.5944045269,0.583030512821,42.34887093,-16.8843990281) p_k -> (-1.51579629915e-06,1.07152747593e-05,-1.13232433492e-05,-6.61344490283e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.4449473427,1.77695745925,12.9782261785,-19.4441153913) p_j = (7.83947947944,0.593345797519,4.33979459893,-6.50165841246) p_k = (1.06530815166e-09,-6.97354996638e-10,8.05318734916e-10,-6.27337551584e-12) p_ij -> (31.2844308628,2.37030360278,17.3180230031,-25.9457771998) p_k -> (-4.0396284593e-06,-3.46705219867e-07,-2.22494375279e-06,3.39608772748e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.0611265785,5.91383659616,16.8885689785,-2.45093203811) p_j = (0.112088603275,0.0366699959538,0.104818740541,-0.0152380448952) p_k = (2.85434809948e-07,1.16316971424e-07,2.48230338628e-07,-7.95304462487e-08) p_ij -> (18.1732227424,5.95050902652,16.9933948225,-2.46617103551) p_k -> (-7.27514753152e-06,-2.31809236739e-06,-6.85514848975e-06,8.72977764743e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.7417348204,-31.9534258026,5.68518858185,-4.32185253279) p_j = (0.591184904438,-0.576950838487,0.102688201179,-0.0779900925999) p_k = (1.19760163289e-08,-7.4398051359e-09,5.33590111837e-09,7.72026361889e-09) p_ij -> (33.3329292905,-32.5303859789,5.7878784421,-4.39984389346) p_k -> (-9.55371399769e-06,9.3304201485e-06,-1.65373525496e-06,1.27579015219e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.2782177114,13.5839844187,-25.3519630894,33.6647278099) p_j = (0.0100906983218,0.00292170115838,-0.00580781947747,0.00771719430099) p_k = (1.30799066738e-08,4.67024929442e-09,7.96188615568e-10,1.21917518759e-08) p_ij -> (44.288361751,13.586922102,-25.3578062645,33.6724842539) p_k -> (-5.33282044053e-05,-1.59774423354e-05,3.53563624067e-05,-3.9237496086e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.211698140164,0.02607370645,0.205979047488,0.0413387998985) p_j = (19.2178492166,2.33271903996,18.7057707722,3.73875516865) p_k = (4.47298829611e-09,-2.16617533918e-10,4.441534972e-09,-4.83185429176e-10) p_ij -> (19.4295944755,2.35879959682,18.9117955522,3.7801051491) p_k -> (-4.71142771925e-05,-6.85062923145e-06,-4.57280503898e-05,-1.11810276604e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0636783530966,0.0311175295076,-0.00854280321277,0.0548967441995) p_j = (40.2826051657,19.631027957,-5.47256846752,34.7471151991) p_k = (3.74238196892e-08,2.72189988389e-08,3.5778750826e-09,2.54335839656e-08) p_ij -> (40.3463283111,19.6621667977,-5.48111785504,34.8020509749) p_k -> (-4.47548134233e-05,-2.12839891294e-05,6.58789352848e-06,-3.90062264408e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.3646422378,15.6963082075,29.1911828969,3.83407112503) p_j = (8.46157291314,3.97069779697,7.40827430205,0.974293095093) p_k = (2.52733054356e-09,2.41841198823e-09,6.30401207207e-10,3.75868797922e-10) p_ij -> (41.8262412469,19.6670087547,36.5994922712,4.80836655973) p_k -> (-2.60934249745e-05,-2.74785912247e-06,-3.50716600153e-05,-2.33922914594e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.2400457981,1.51638707117,-7.07945814478,0.0102851999778) p_j = (2.74070301515,0.574077474543,-2.67990152387,0.00398658267948) p_k = (1.26736482196e-07,4.66942993024e-09,-1.2295550135e-07,3.03690143209e-08) p_ij -> (9.98074898216,2.09046458719,-9.75935983407,0.0142717744755) p_k -> (-4.21666266348e-08,-3.68111947591e-08,4.2471656414e-08,3.85508043387e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.0970650465,-3.96731487285,-10.1658109086,-25.8913453782) p_j = (13.5460925712,-1.91611108941,-4.89918681406,-12.4829127531) p_k = (5.3039473831e-08,-3.35223246429e-08,4.07706824902e-08,5.2144911066e-09) p_ij -> (41.6431588031,-5.88342598328,-15.0649984889,-38.3742595281) p_k -> (-1.1324145639e-06,-1.25020767072e-08,8.07009074677e-07,1.40197775877e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.3588732332,-14.6506225881,-6.84229296213,-2.48093092641) p_j = (26.4479041185,-23.686204685,-11.0620255845,-4.01085151138) p_k = (2.53105405194e-10,-2.77667355982e-11,-2.14440843527e-10,1.31555385158e-10) p_ij -> (42.8075992667,-38.3375633629,-17.9046623198,-6.49190708412) p_k -> (-0.000821914711068,0.000736089700919,0.00034377287259,0.000124646462804) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0131421486798,-0.000496679342761,0.00756899985172,-0.0107321769832) p_j = (25.6043949317,-0.98186727228,14.7449505025,-20.9095052825) p_k = (9.68108484838e-08,-2.96968475117e-08,-1.92429370181e-08,-9.01118583717e-08) p_ij -> (25.617537983,-0.982363984635,14.7525200268,-20.9202381959) p_k -> (-8.0582045392e-07,3.31496807782e-09,-5.43669079534e-07,6.46329297638e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.2977891169,0.834147476013,23.1186806037,-26.6601710737) p_j = (10.2999445852,0.24188096007,6.74675091331,-7.77892692941) p_k = (1.52893590831e-08,6.87460400872e-09,-1.36373340838e-08,-7.26273251376e-10) p_ij -> (45.5977341342,1.07602841403,29.8654319171,-34.439098383) p_k -> (-4.16778220824e-07,2.89255914776e-08,-4.13719785541e-07,3.79178679566e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.3386400027,31.6887817658,9.79190065662,-3.37708586859) p_j = (1.76697783725,1.68010530616,0.517462615671,-0.178014827821) p_k = (1.33625936647e-08,-1.61004210088e-09,-1.27221120101e-08,3.75693220322e-09) p_ij -> (35.1056192507,33.3688891363,10.309364528,-3.55510109759) p_k -> (-1.397381304e-06,-2.06598528152e-06,-1.26844886505e-06,4.04929464848e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.3408583504,-9.80631298446,10.0291659614,34.6062387166) p_j = (0.00152069520979,-0.000291426903558,0.000373488827193,0.0014450226216) p_k = (3.9453613281e-09,8.01253018875e-10,-5.12169402709e-10,-3.82904192889e-09) p_ij -> (37.342383405,-9.80660664582,10.0295415533,34.6076922185) p_k -> (-4.35550001399e-06,2.23525873277e-06,-2.10352839769e-06,-8.48313401391e-06) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226627734,0.0412973554542,-0.998879307474) b = (0,0,1) a' = (0.0704140971413,-0.0412058660823,0.996666409349) -> rel. dev. (inf,-inf,-0.00333359065122) m_ct = -0.998879307474 m_st = -0.047330002126 m_n = (0,-2.88997921061e-06,-1.1948240175e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226633104,0.0412973554537,-0.998879307461) b = (0,0,1) a' = (0.0704140979385,-0.0412058660799,0.996666409293) -> rel. dev. (inf,-inf,-0.00333359070745) m_ct = -0.998879307461 m_st = -0.0473300023878 m_n = (0,-2.88997921061e-06,-1.1948240175e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226639237,0.0412973557595,-0.998879307434) b = (0,0,1) a' = (0.0704140991163,-0.0412058663823,0.996666409197) -> rel. dev. (inf,-inf,-0.00333359080316) m_ct = -0.998879307434 m_st = -0.0473300029544 m_n = (0,-2.88997921061e-06,-1.19482402638e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226639243,0.0412973551466,-0.99887930746) b = (0,0,1) a' = (0.0704140985831,-0.0412058657723,0.99666640926) -> rel. dev. (inf,-inf,-0.00333359074027) m_ct = -0.99887930746 m_st = -0.0473300024198 m_n = (0,-2.88997921061e-06,-1.19482400862e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226633104,0.0412973554537,-0.998879307461) b = (0,0,1) a' = (0.0704140979385,-0.0412058660799,0.996666409293) -> rel. dev. (inf,-inf,-0.00333359070745) m_ct = -0.998879307461 m_st = -0.0473300023878 m_n = (0,-2.88997921061e-06,-1.1948240175e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226633104,0.0412973554537,-0.998879307461) b = (0,0,1) a' = (0.0704140979385,-0.0412058660799,0.996666409293) -> rel. dev. (inf,-inf,-0.00333359070745) m_ct = -0.998879307461 m_st = -0.0473300023878 m_n = (0,-2.88997921061e-06,-1.1948240175e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226639237,0.0412973557595,-0.998879307434) b = (0,0,1) a' = (0.0704140991163,-0.0412058663823,0.996666409197) -> rel. dev. (inf,-inf,-0.00333359080316) m_ct = -0.998879307434 m_st = -0.0473300029544 m_n = (0,-2.88997921061e-06,-1.19482402638e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226639237,0.0412973557595,-0.998879307434) b = (0,0,1) a' = (0.0704140991163,-0.0412058663823,0.996666409197) -> rel. dev. (inf,-inf,-0.00333359080316) m_ct = -0.998879307434 m_st = -0.0473300029544 m_n = (0,-2.88997921061e-06,-1.19482402638e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226639237,0.0412973557595,-0.998879307434) b = (0,0,1) a' = (0.0704140991163,-0.0412058663823,0.996666409197) -> rel. dev. (inf,-inf,-0.00333359080316) m_ct = -0.998879307434 m_st = -0.0473300029544 m_n = (0,-2.88997921061e-06,-1.19482402638e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226633104,0.0412973554537,-0.998879307461) b = (0,0,1) a' = (0.0704140979385,-0.0412058660799,0.996666409293) -> rel. dev. (inf,-inf,-0.00333359070745) m_ct = -0.998879307461 m_st = -0.0473300023878 m_n = (0,-2.88997921061e-06,-1.1948240175e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0231226633104,0.0412973554537,-0.998879307461) b = (0,0,1) a' = (0.0704140979385,-0.0412058660799,0.996666409293) -> rel. dev. (inf,-inf,-0.00333359070745) m_ct = -0.998879307461 m_st = -0.0473300023878 m_n = (0,-2.88997921061e-06,-1.1948240175e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.6699239822,0.592867189188,-40.6904304862,8.96213925539) p_j = (0.499066090709,0.00708425971147,-0.487402415107,0.107031125883) p_k = (3.86357788286e-08,-5.32725766737e-10,-3.82577414291e-08,5.36514956915e-09) p_ij -> (42.169052719,0.599953142001,-41.1778936822,9.06918603532) p_k -> (-6.26073676386e-05,-1.69363479047e-06,6.0742624953e-05,-1.56486776834e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.7980129235,-3.23117166446,14.2219275749,17.5227195089) p_j = (22.6880813521,-3.21535120472,14.1532021322,17.4383893027) p_k = (2.85103304568e-08,-5.35300304814e-09,1.45115191589e-08,2.39499501958e-08) p_ij -> (45.4865378945,-6.44658573584,28.3754064587,34.9614497737) p_k -> (-0.000443590426823,6.2861309432e-05,-0.000276736998943,-0.000340938198313) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.895038926,-3.72861556344,8.67649736863,21.9496857532) p_j = (4.65967061207,-0.725752642329,1.68870204508,4.28183356963) p_k = (3.51278956727e-10,2.09065243717e-10,1.92196363864e-10,-2.0675458396e-10) p_ij -> (28.5547552087,-4.45437602509,10.3652158216,26.2315626723) p_k -> (-4.56703437308e-05,7.81952583973e-06,-1.64076507518e-05,-4.33496287791e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950612299,-0.285810663338,0.83401132143) b = (0,0,1) a' = (0.880046386682,-0.153952053672,0.449240606421) -> rel. dev. (inf,-inf,-0.550759393579) m_ct = 0.83401132143 m_st = -0.551747329606 m_n = (-0,1.09887217903e-06,3.76576886119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950612746,-0.285810664691,0.834011320713) b = (0,0,1) a' = (0.880046387539,-0.153952053927,0.449240604655) -> rel. dev. (inf,-inf,-0.550759395345) m_ct = 0.834011320713 m_st = -0.551747330688 m_n = (-0,1.09887217548e-06,3.76576887007e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950611775,-0.285810663429,0.834011321695) b = (0,0,1) a' = (0.880046386172,-0.153952053978,0.449240607316) -> rel. dev. (inf,-inf,-0.550759392684) m_ct = 0.834011321695 m_st = -0.551747329205 m_n = (-0,1.09887217903e-06,3.76576886119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950613794,-0.285810664509,0.834011320183) b = (0,0,1) a' = (0.88004638856,-0.153952053314,0.449240602865) -> rel. dev. (inf,-inf,-0.550759397135) m_ct = 0.834011320183 m_st = -0.551747331491 m_n = (-0,1.09887217548e-06,3.76576887007e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950613884,-0.28581066389,0.834011320343) b = (0,0,1) a' = (0.880046388471,-0.153952053042,0.449240603133) -> rel. dev. (inf,-inf,-0.550759396867) m_ct = 0.834011320343 m_st = -0.551747331248 m_n = (-0,1.09887217548e-06,3.76576886119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950612746,-0.285810664691,0.834011320713) b = (0,0,1) a' = (0.880046387539,-0.153952053927,0.449240604655) -> rel. dev. (inf,-inf,-0.550759395345) m_ct = 0.834011320713 m_st = -0.551747330688 m_n = (-0,1.09887217548e-06,3.76576887007e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950611775,-0.285810663429,0.834011321695) b = (0,0,1) a' = (0.880046386172,-0.153952053978,0.449240607316) -> rel. dev. (inf,-inf,-0.550759392684) m_ct = 0.834011321695 m_st = -0.551747329205 m_n = (-0,1.09887217903e-06,3.76576886119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950611775,-0.285810663429,0.834011321695) b = (0,0,1) a' = (0.880046386172,-0.153952053978,0.449240607316) -> rel. dev. (inf,-inf,-0.550759392684) m_ct = 0.834011321695 m_st = -0.551747329205 m_n = (-0,1.09887217903e-06,3.76576886119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950611775,-0.285810663429,0.834011321695) b = (0,0,1) a' = (0.880046386172,-0.153952053978,0.449240607316) -> rel. dev. (inf,-inf,-0.550759392684) m_ct = 0.834011321695 m_st = -0.551747329205 m_n = (-0,1.09887217903e-06,3.76576886119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950612746,-0.285810664691,0.834011320713) b = (0,0,1) a' = (0.880046387539,-0.153952053927,0.449240604655) -> rel. dev. (inf,-inf,-0.550759395345) m_ct = 0.834011320713 m_st = -0.551747330688 m_n = (-0,1.09887217548e-06,3.76576887007e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.471950612746,-0.285810664691,0.834011320713) b = (0,0,1) a' = (0.880046387539,-0.153952053927,0.449240604655) -> rel. dev. (inf,-inf,-0.550759395345) m_ct = 0.834011320713 m_st = -0.551747330688 m_n = (-0,1.09887217548e-06,3.76576887007e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.109664460845,-0.0997583299653,0.0416007041865,0.0185459156179) p_j = (11.8671679858,-10.789618865,4.51278760401,2.01210059172) p_k = (4.1439692886e-09,1.29886072054e-09,-2.90423809103e-09,-2.65534647041e-09) p_ij -> (11.9768335081,-10.8893782111,4.55438875697,2.03064672113) p_k -> (-1.05731896927e-06,1.017423787e-06,-4.51673782376e-07,-2.1645112569e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.373883317,29.9340898245,-7.99102460229,22.6417471282) p_j = (1.32041765799,1.02986069412,-0.274935868107,0.779294559629) p_k = (3.48829949619e-09,-3.02208877366e-09,3.58446795223e-10,-1.7049134767e-09) p_ij -> (39.6943039627,30.9639528694,-8.26596109637,23.4210434639) p_k -> (-2.98413955591e-06,-2.35380264257e-06,6.2632872222e-07,-1.77777988952e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.54409156258,4.94690168872,1.29344797449,6.84519222879) p_j = (35.452998712,20.5268665482,5.36724575433,28.403442404) p_k = (1.80668212854e-08,-1.70947552657e-08,-5.24637240537e-09,-2.57971868489e-09) p_ij -> (43.9970919763,25.4737692223,6.66069398649,35.2486359962) p_k -> (-1.68364520903e-06,-1.00251496171e-06,-2.62911036497e-07,-1.36601335754e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.6934647047,9.73720454845,12.884674346,-18.6799147135) p_j = (14.5204230075,5.72103911541,7.57505355927,-10.9877640733) p_k = (9.44729917991e-10,-2.49118689128e-10,-9.02759511697e-10,1.24434175255e-10) p_ij -> (39.213921676,15.458257357,20.4597463094,-29.6677048935) p_k -> (-3.39628424371e-05,-1.36933576105e-05,-1.84051047594e-05,2.61068743441e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00432636354667,-0.00115422281049,-0.000921856296986,-0.00406637088931) p_j = (42.6550966625,-0.346731125273,-5.73025689101,-42.2670226628) p_k = (4.3768731444e-10,-3.6703964847e-10,-8.42474862642e-11,2.23064162354e-10) p_ij -> (42.6594639935,-0.347793321786,-5.73117778532,-42.2712965174) p_k -> (-4.09669674113e-05,-9.20266645663e-05,-9.62072928434e-07,0.000207483880782) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.50965448509,0.186743963072,1.42926159851,0.448770141225) p_j = (32.8249664297,4.06008841409,31.0769173433,9.75803830804) p_k = (1.32639858017e-08,4.20908432215e-09,-3.00411890813e-09,-1.2214426143e-08) p_ij -> (34.334621243,4.24683241773,32.5061792526,10.2068085469) p_k -> (-3.14884182728e-07,-3.63617584931e-08,-3.13784109807e-07,-1.09875505139e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.44710665178,4.59540034399,-0.31297167328,4.51104517708) p_j = (24.5107514343,17.4709635975,-1.19013597222,17.1501003851) p_k = (8.68068708228e-08,-7.56343408293e-09,-2.03477668943e-08,8.40487704877e-08) p_ij -> (30.9578602448,22.066365481,-1.50310775013,21.6611470723) p_k -> (-2.07187400214e-06,-1.54704223654e-06,8.42778309362e-08,-1.42610736553e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.4123283904,-8.58747129667,11.4867427029,5.64357557066) p_j = (24.1863596787,-13.4765591576,18.0257281345,8.85638035548) p_k = (2.79189931529e-06,-1.5827268199e-06,2.05482779824e-06,1.03313131782e-06) p_ij -> (39.5990558932,-22.0642352462,29.5127451223,14.5000905509) p_k -> (-0.000365032161199,0.000203209159555,-0.000272230087846,-0.000133591596239) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401648117,-0.238633499296,-0.96927658785) b = (0,0,1) a' = (0.187727702377,0.234808834226,0.953741642758) -> rel. dev. (inf,inf,-0.0462583572425) m_ct = -0.96927658785 m_st = -0.24597336491 m_n = (0,-1.56271866908e-06,3.8473747235e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401649905,-0.238633501219,-0.969276587366) b = (0,0,1) a' = (0.187727704135,0.23480883604,0.953741641965) -> rel. dev. (inf,inf,-0.0462583580352) m_ct = -0.969276587366 m_st = -0.245973366819 m_n = (0,-1.56271866913e-06,3.84737475656e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401650259,-0.238633499157,-0.969276587872) b = (0,0,1) a' = (0.187727702081,0.234808834105,0.953741642845) -> rel. dev. (inf,inf,-0.0462583571546) m_ct = -0.969276587872 m_st = -0.245973364827 m_n = (0,-1.56271866902e-06,3.84737472103e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401650259,-0.238633499157,-0.969276587872) b = (0,0,1) a' = (0.187727702081,0.234808834105,0.953741642845) -> rel. dev. (inf,inf,-0.0462583571546) m_ct = -0.969276587872 m_st = -0.245973364827 m_n = (0,-1.56271866902e-06,3.84737472103e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401649905,-0.238633501219,-0.969276587366) b = (0,0,1) a' = (0.187727704135,0.23480883604,0.953741641965) -> rel. dev. (inf,inf,-0.0462583580352) m_ct = -0.969276587366 m_st = -0.245973366819 m_n = (0,-1.56271866913e-06,3.84737475656e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401649905,-0.238633501219,-0.969276587366) b = (0,0,1) a' = (0.187727704135,0.23480883604,0.953741641965) -> rel. dev. (inf,inf,-0.0462583580352) m_ct = -0.969276587366 m_st = -0.245973366819 m_n = (0,-1.56271866913e-06,3.84737475656e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401650259,-0.238633499157,-0.969276587872) b = (0,0,1) a' = (0.187727702081,0.234808834105,0.953741642845) -> rel. dev. (inf,inf,-0.0462583571546) m_ct = -0.969276587872 m_st = -0.245973364827 m_n = (0,-1.56271866902e-06,3.84737472103e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401650259,-0.238633499157,-0.969276587872) b = (0,0,1) a' = (0.187727702081,0.234808834105,0.953741642845) -> rel. dev. (inf,inf,-0.0462583571546) m_ct = -0.969276587872 m_st = -0.245973364827 m_n = (0,-1.56271866902e-06,3.84737472103e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401650259,-0.238633499157,-0.969276587872) b = (0,0,1) a' = (0.187727702081,0.234808834105,0.953741642845) -> rel. dev. (inf,inf,-0.0462583571546) m_ct = -0.969276587872 m_st = -0.245973364827 m_n = (0,-1.56271866902e-06,3.84737472103e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401649905,-0.238633501219,-0.969276587366) b = (0,0,1) a' = (0.187727704135,0.23480883604,0.953741641965) -> rel. dev. (inf,inf,-0.0462583580352) m_ct = -0.969276587366 m_st = -0.245973366819 m_n = (0,-1.56271866913e-06,3.84737475656e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0596401649905,-0.238633501219,-0.969276587366) b = (0,0,1) a' = (0.187727704135,0.23480883604,0.953741641965) -> rel. dev. (inf,inf,-0.0462583580352) m_ct = -0.969276587366 m_st = -0.245973366819 m_n = (0,-1.56271866913e-06,3.84737475656e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.4033607315,-24.3405421137,-12.5813527512,-0.437894899215) p_j = (17.914681897,-15.911449966,-8.2271727368,-0.274255736534) p_k = (4.23481408867e-09,1.57123428411e-09,-3.92152684114e-09,2.94105959954e-10) p_ij -> (45.3180569135,-40.2520082937,-20.80853074,-0.712151098691) p_k -> (-1.4280857549e-05,1.62155983148e-05,5.24812895364e-06,4.6323521391e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.1442071124,-12.2685402642,-4.7454613559,-9.35943051657) p_j = (12.1846474349,-9.26007798335,-3.58281819466,-7.06257762008) p_k = (4.28753310537e-09,-3.00236875411e-09,2.4723192075e-09,-1.80453840812e-09) p_ij -> (28.3288697769,-21.5286298342,-8.3282842155,-16.4220169993) p_k -> (-1.52252889283e-05,1.15836384289e-05,4.66740681127e-06,8.86088880669e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.829878682,1.38814440694,-7.33619499211,6.39373232517) p_j = (35.7699752451,4.86065016881,-26.6502775305,23.3586796827) p_k = (8.67203142746e-10,4.39863044535e-10,7.20223631837e-10,1.99602499558e-10) p_ij -> (45.5999013251,6.24876362289,-33.9866672612,29.7524856535) p_k -> (-4.73971882258e-05,3.09532938849e-05,0.000194739375118,-7.36454477988e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.06451474936,7.90164093571,1.4516482092,-4.19788228052) p_j = (25.1657852791,21.927638245,4.00926801945,-11.6799486154) p_k = (1.48873854682e-09,1.08120497024e-09,9.86310269737e-10,-2.73003064931e-10) p_ij -> (34.2303315963,29.8293117829,5.46090361923,-15.8778553784) p_k -> (-3.15663511721e-05,-3.26010410081e-05,1.26104148204e-05,2.44822025124e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.3970844685,4.77916603336,6.22919972517,14.3951735619) p_j = (25.9498549314,7.56287851843,9.85984111726,22.7811626705) p_k = (1.31163872131e-08,-1.22597669791e-08,-2.77456368442e-09,3.74693137055e-09) p_ij -> (42.3469476237,12.342046974,16.0890439791,37.1763434642) p_k -> (-8.21061549772e-06,-2.43442829539e-06,-3.13948105202e-06,-7.2281063126e-06) } Event 100000 ( 12m 4s elapsed / 3h 49m 34s left ) -> ETA: Thu Aug 17 20:44 XS = 20891938.7636 pb +- ( 2461512.7141 pb = 11.78 % )  Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.0119291958,-4.41456306541,8.03074510402,-14.3326376141) p_j = (8.93340508741,-2.3180091912,4.21801204883,-7.52601715392) p_k = (2.53581649601e-08,-1.23974196891e-08,1.24468880485e-08,-1.82870307032e-08) p_ij -> (25.9453350184,-6.73257221004,12.2487574805,-21.858655513) p_k -> (-7.09834484525e-07,-5.89730797529e-08,-3.15242252746e-07,7.26648524463e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.2565939327,-7.02343182626,-5.91074794872,33.0037678445) p_j = (0.223042026876,-0.0456663979313,-0.0383016499304,0.214930941155) p_k = (3.79182260177e-10,-9.25582156395e-11,-2.50442452124e-10,-2.6924220775e-10) p_ij -> (34.4797645513,-7.06912458612,-5.94907175742,33.2188227714) p_k -> (-0.00012859133227,2.63618324592e-05,2.21585172322e-05,-0.000123986026157) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.0482250778,-2.32478969828,29.4599447439,-31.3026626806) p_j = (2.42403775953,-0.130211136148,1.65822819213,-1.76331601889) p_k = (2.47600429748e-08,2.41768966785e-08,3.84196522096e-09,3.7116999361e-09) p_ij -> (45.4722659957,-2.45500126492,31.1181752309,-33.0659812174) p_k -> (-3.13360110127e-06,4.54674552675e-07,-2.29103822846e-06,2.5216586117e-06) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0303374456799,0.1700369475,-0.984970596452) b = (0,0,1) a' = (0.20252409122,-0.166589998648,0.965003505085) -> rel. dev. (inf,-inf,-0.0349964949153) m_ct = -0.984970596452 m_st = -0.17272210086 m_n = (0,-2.4386163183e-06,-4.20981982996e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445717,0.170036948451,-0.984970596286) b = (0,0,1) a' = (0.202524092194,-0.166589999546,0.965003504725) -> rel. dev. (inf,-inf,-0.0349964952745) m_ct = -0.984970596286 m_st = -0.172722101803 m_n = (0,-2.43861631744e-06,-4.20981985272e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445706,0.170036947671,-0.984970596421) b = (0,0,1) a' = (0.202524091418,-0.166589998809,0.965003505015) -> rel. dev. (inf,-inf,-0.0349964949847) m_ct = -0.984970596421 m_st = -0.172722101033 m_n = (0,-2.43861631866e-06,-4.20981983495e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445706,0.170036947671,-0.984970596421) b = (0,0,1) a' = (0.202524091418,-0.166589998809,0.965003505015) -> rel. dev. (inf,-inf,-0.0349964949847) m_ct = -0.984970596421 m_st = -0.172722101033 m_n = (0,-2.43861631866e-06,-4.20981983495e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445717,0.170036948451,-0.984970596286) b = (0,0,1) a' = (0.202524092194,-0.166589999546,0.965003504725) -> rel. dev. (inf,-inf,-0.0349964952745) m_ct = -0.984970596286 m_st = -0.172722101803 m_n = (0,-2.43861631744e-06,-4.20981985272e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445717,0.170036948451,-0.984970596286) b = (0,0,1) a' = (0.202524092194,-0.166589999546,0.965003504725) -> rel. dev. (inf,-inf,-0.0349964952745) m_ct = -0.984970596286 m_st = -0.172722101803 m_n = (0,-2.43861631744e-06,-4.20981985272e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445706,0.170036947671,-0.984970596421) b = (0,0,1) a' = (0.202524091418,-0.166589998809,0.965003505015) -> rel. dev. (inf,-inf,-0.0349964949847) m_ct = -0.984970596421 m_st = -0.172722101033 m_n = (0,-2.43861631866e-06,-4.20981983495e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445706,0.170036947671,-0.984970596421) b = (0,0,1) a' = (0.202524091418,-0.166589998809,0.965003505015) -> rel. dev. (inf,-inf,-0.0349964949847) m_ct = -0.984970596421 m_st = -0.172722101033 m_n = (0,-2.43861631866e-06,-4.20981983495e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445706,0.170036947671,-0.984970596421) b = (0,0,1) a' = (0.202524091418,-0.166589998809,0.965003505015) -> rel. dev. (inf,-inf,-0.0349964949847) m_ct = -0.984970596421 m_st = -0.172722101033 m_n = (0,-2.43861631866e-06,-4.20981983495e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445717,0.170036948451,-0.984970596286) b = (0,0,1) a' = (0.202524092194,-0.166589999546,0.965003504725) -> rel. dev. (inf,-inf,-0.0349964952745) m_ct = -0.984970596286 m_st = -0.172722101803 m_n = (0,-2.43861631744e-06,-4.20981985272e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.030337445717,0.170036948451,-0.984970596286) b = (0,0,1) a' = (0.202524092194,-0.166589999546,0.965003504725) -> rel. dev. (inf,-inf,-0.0349964952745) m_ct = -0.984970596286 m_st = -0.172722101803 m_n = (0,-2.43861631744e-06,-4.20981985272e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.1403759349,2.49415170053,11.8581382803,31.9175348797) p_j = (4.93046290172,0.360728077298,1.71325216011,4.60913296786) p_k = (1.58601580804e-09,1.39844294488e-09,-7.42984730802e-10,8.81880582482e-11) p_ij -> (39.0708612882,2.85488135583,13.5713983021,36.5266889052) p_k -> (-2.24499723025e-05,-1.57661014155e-06,-7.86243335771e-06,-2.10574651369e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.3792786414,-13.5874540646,-22.9458549596,-6.20433164282) p_j = (0.163342803585,-0.081055205179,-0.136900303747,-0.0370031354142) p_k = (1.22770539224e-06,-6.93232594979e-07,-9.34993585363e-07,-3.90481875121e-07) p_ij -> (27.5426242435,-13.6685106537,-23.0827576143,-6.24133540582) p_k -> (-1.57081914409e-06,6.90665665104e-07,1.41587877245e-06,2.37104422318e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.7884333912,-20.780159492,5.96711759347,39.2247657068) p_j = (0.798125495252,-0.370337433618,0.106298158137,0.698967233145) p_k = (1.83255424668e-07,1.4551010542e-07,-6.52440958064e-08,9.0291569867e-08) p_ij -> (45.5865598829,-21.1504973901,6.07341588522,39.9237338132) p_k -> (-8.13159914514e-07,6.10028379811e-07,-1.98857343925e-07,-7.83023057949e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.8970581487,-13.2898910953,-10.0904722293,-10.8376237172) p_j = (0.237269710936,-0.157951488331,-0.120246212395,-0.12995803733) p_k = (3.77295521957e-09,1.69247767539e-10,3.6592283015e-09,-9.03658519002e-10) p_ij -> (20.1343316441,-13.4478459709,-10.2107221421,-10.9675841841) p_k -> (-3.78067656648e-06,3.38737534289e-06,3.70401969541e-06,2.42862893884e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0658502060758,-0.0255571258147,0.00461935547039,-0.060512350106) p_j = (41.6590815262,-12.5608073136,-0.533070239298,-39.7167600561) p_k = (1.27452485895e-10,3.03182832032e-11,8.09496973619e-11,9.3665784837e-11) p_ij -> (41.7251969081,-12.5865994861,-0.52864041468,-39.7780103861) p_k -> (-0.00026517575791,0.000235046727423,0.000189530934155,0.000737979967937) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.1173474424,9.24239832559,16.9030171017,25.6980562064) p_j = (12.3287331921,3.55145046891,6.48899343294,9.86295219071) p_k = (1.578021139e-07,-9.68126291591e-08,-9.53142790553e-08,8.02745950729e-08) p_ij -> (44.4460808657,12.7938492501,23.3920111441,35.5610087078) p_k -> (-7.33717868684e-08,-5.52374285867e-07,-7.04814178576e-07,-2.30447042782e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.79868767247,3.54111463145,0.735512237699,5.75688135911) p_j = (31.3281107991,16.3175421499,3.38924896169,26.5273695624) p_k = (7.59948085115e-08,-3.46463020002e-08,-1.07004221268e-08,-6.67858174246e-08) p_ij -> (38.126799311,19.8586572187,4.12476129023,32.2842516324) p_k -> (-7.63435515694e-07,-4.71960037274e-07,-1.01537315e-07,-7.77740094549e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (36.4488530887,-11.5444565931,-34.541383174,-1.46193771513) p_j = (8.95210423799,-2.83189722907,-8.48482000807,-0.358270571572) p_k = (1.00367211629e-08,-9.04320908477e-09,-3.60518525257e-09,-2.44106133402e-09) p_ij -> (45.4009680303,-14.3763561788,-43.0262143658,-1.82020835688) p_k -> (-1.06935558009e-05,2.34762126361e-06,1.11800910823e-05,6.77363550805e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.15197397122,4.63088139365,-6.67659647573,0.657781609311) p_j = (12.2937329474,6.98542878195,-10.0672474001,0.995080046164) p_k = (1.30416826624e-09,-8.50060488581e-11,1.24597740045e-09,3.75721269027e-10) p_ij -> (20.4457124903,11.6163134267,-16.7438486782,1.65286207792) p_k -> (-5.57036808502e-06,-3.25113956912e-06,4.80361713784e-06,-4.22072128248e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.541254735965,0.19467802679,0.126192263114,-0.489011930141) p_j = (21.8638397156,7.87114921973,5.10018838573,-19.7499512784) p_k = (1.85456191972e-07,7.32193925564e-08,3.51122599761e-08,-1.66733466627e-07) p_ij -> (22.4052323729,8.06587602883,5.22641391878,-20.2390879024) p_k -> (-0.000137735849153,-4.87090832664e-05,-3.32348271384e-05,0.000124527060603) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.5747409424,8.4287084493,10.0300320599,-11.7143864519) p_j = (28.0213235759,13.4378361742,15.9922023001,-18.6780245072) p_k = (5.44630042786e-09,4.130160144e-09,-3.12918861611e-09,-1.67694497435e-09) p_ij -> (45.5960674152,21.8665460096,26.0222360263,-30.3924128942) p_k -> (-2.89146013088e-06,-1.38198577204e-06,-1.66939505419e-06,1.93333890941e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.44682429679,1.30792577916,1.95548472149,0.672576240699) p_j = (24.1059890193,12.8858108622,19.2652653113,6.62601973326) p_k = (7.54373355692e-06,3.98023436396e-06,6.12028422474e-06,1.89941343422e-06) p_ij -> (26.5528269534,14.1937439337,21.2207609271,7.29859973095) p_k -> (-6.09355851644e-06,-3.31209306381e-06,-4.77404800847e-06,-1.85757621063e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.8434988762,25.8095320191,23.0439185687,4.11281994347) p_j = (10.4345170888,7.71171310888,6.91573443485,1.25747565754) p_k = (2.13178682012e-10,-1.45343812175e-10,-1.16313910348e-10,-1.03872433481e-10) p_ij -> (45.2780953425,33.5213363217,29.9597330548,5.37031883047) p_k -> (-7.93772847878e-05,-9.11939053658e-05,-8.00513402162e-05,-2.3229574817e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.9291072782,15.0186176273,28.5852949633,6.45353721337) p_j = (12.6633054687,5.77444090391,10.9936076342,2.48107412734) p_k = (2.32094019095e-09,1.53155065862e-09,-1.39414329405e-09,-1.04760544316e-09) p_ij -> (45.5924696032,20.7930844505,39.578952033,8.93462251719) p_k -> (-5.68539621e-05,-2.59177029669e-05,-4.94368257229e-05,-1.11775295784e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.9780248322,0.903225395137,-8.38237456363,44.1807955832) p_j = (0.548309713139,0.00958358049086,-0.10214057905,0.538626956826) p_k = (2.27645916978e-08,-2.13858421188e-09,-1.73771040105e-08,1.45495502126e-08) p_ij -> (45.5263559794,0.912810309354,-8.48451456181,44.7194463153) p_k -> (-2.14112216881e-05,-1.33586535889e-06,-5.98254907835e-07,-2.37606910503e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.8349895352,9.10085402517,-0.255988952797,37.7526864987) p_j = (0.0133102972023,0.00310058499818,-9.27580029394e-05,0.0129437931162) p_k = (2.40355471359e-09,1.84680413875e-09,-1.52800214132e-09,1.77744520946e-10) p_ij -> (38.8483015012,9.10395499067,-0.256081709337,37.7656319319) p_k -> (-1.6663936222e-06,-3.78650807598e-07,-2.9906095933e-09,-1.63990426216e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0106087883815,0.00259449120244,-0.000344918110434,0.0102808578349) p_j = (3.22114500171,0.784726824606,-0.106349034971,3.12228583181) p_k = (6.44676708769e-10,-6.31659033801e-10,-1.03717114709e-10,-7.65280823791e-11) p_ij -> (3.23175422475,0.787321427416,-0.106693966834,3.13256711605) p_k -> (-4.34013661899e-07,-1.12239627703e-07,1.36487582e-08,-4.26478201643e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.07509609054,-3.54111823406,3.64851446079,-6.27343612012) p_j = (0.932621748803,-0.408270749801,0.421891958828,-0.724641632998) p_k = (8.97146497668e-09,-7.62522032871e-09,-4.93578048213e-10,-4.70101873765e-09) p_ij -> (9.00771802067,-3.94938844202,4.07040726695,-6.99807827586) p_k -> (-1.72354888583e-07,-5.4946573802e-07,-8.47823152128e-07,5.1804109491e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.9154709927,2.4036124627,13.7025779073,-14.2508943819) p_j = (0.111062884553,0.0107358787585,0.0776675303841,-0.0786604090797) p_k = (1.52397721472e-10,-9.51018075297e-12,-2.44642162908e-11,1.50116054663e-10) p_ij -> (20.0265585042,2.41435551151,13.7802818694,-14.3296114598) p_k -> (-2.46267658053e-05,-7.17005902362e-06,-3.64316942516e-05,5.66689990711e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.5167020844,-35.8586010088,-18.1295755278,19.1628805075) p_j = (0.00677138037741,-0.00545355565309,-0.00275855265023,0.00291559774836) p_k = (1.39175785462e-07,-1.1411476183e-07,-7.86363834352e-08,1.28077921106e-08) p_ij -> (44.5234776167,-35.8640579088,-18.132335771,19.1657978932) p_k -> (-4.01272614781e-06,3.23024750415e-06,1.61189256254e-06,-1.77518512068e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.5337821031,-8.82399990551,8.06476422356,3.76726658114) p_j = (33.0638919899,-23.2772108211,21.2751104239,9.93791156929) p_k = (3.35514365645e-06,-2.38951097158e-06,2.12602045001e-06,1.01353999343e-06) p_ij -> (45.597847475,-32.1013326706,29.3399863524,13.7052302414) p_k -> (-0.000170026947135,0.000119554525533,-0.000109578849846,-5.10774688243e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.34069137442,-0.210312625185,-0.261910875998,-0.0569377320009) p_j = (27.0137845718,-16.6764009703,-20.7683993843,-4.50730458111) p_k = (1.4231723844e-08,6.84088704005e-10,-1.32634547611e-08,-5.11417176128e-09) p_ij -> (27.3544884695,-16.8867213601,-21.0303198799,-4.56424439291) p_k -> (-1.25089654315e-05,7.76536041691e-06,9.60638336345e-06,2.07468756219e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.6335986762,-15.5289233921,10.2962874023,21.7421704795) p_j = (8.44135140922,-4.57920899166,3.03397878256,6.40954221233) p_k = (7.40839239461e-08,5.93776088621e-08,-1.66703544722e-08,-4.1046639355e-08) p_ij -> (37.0749503767,-20.1081326525,13.3302663378,28.1517130212) p_k -> (-2.17210303077e-07,3.28083082479e-07,-1.69566539476e-07,-3.70438488773e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.3996253526,-1.52888074654,1.8406750846,0.180667453205) p_j = (43.125800463,-27.4945089197,33.0700169223,3.20322112733) p_k = (2.19572868843e-09,1.49208492997e-09,-1.6075801537e-09,1.02923508579e-10) p_ij -> (45.5254379996,-29.0233983757,34.910702422,3.38388950581) p_k -> (-1.21818757464e-05,8.71087211785e-06,-1.04167036099e-05,-9.25167045418e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0179887045098,-0.00331965458661,-0.999832679204) b = (0,0,1) a' = (0.036275181161,0.00331800660563,0.999336330804) -> rel. dev. (inf,inf,-0.000663669196451) m_ct = -0.999832679204 m_st = -0.0182924464333 m_n = (0,-1.54851918399e-06,5.14140907626e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0179887045098,-0.00331965458661,-0.999832679204) b = (0,0,1) a' = (0.036275181161,0.00331800660563,0.999336330804) -> rel. dev. (inf,inf,-0.000663669196451) m_ct = -0.999832679204 m_st = -0.0182924464333 m_n = (0,-1.54851918399e-06,5.14140907626e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0179887045098,-0.00331965458661,-0.999832679204) b = (0,0,1) a' = (0.036275181161,0.00331800660563,0.999336330804) -> rel. dev. (inf,inf,-0.000663669196451) m_ct = -0.999832679204 m_st = -0.0182924464333 m_n = (0,-1.54851918399e-06,5.14140907626e-09) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0179887045098,-0.00331965458661,-0.999832679204) b = (0,0,1) a' = (0.036275181161,0.00331800660563,0.999336330804) -> rel. dev. (inf,inf,-0.000663669196451) m_ct = -0.999832679204 m_st = -0.0182924464333 m_n = (0,-1.54851918399e-06,5.14140907626e-09) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.3215983171,-2.89113073789,14.0078178246,0.728410054657) p_j = (8.89474261559,-1.79566185752,8.69984741828,0.452437387632) p_k = (4.01128462236e-09,-2.23042500886e-09,-3.06706639834e-09,1.30717053746e-09) p_ij -> (23.2163420623,-4.6867928234,22.7076663479,1.18084749971) p_k -> (-1.12555268394e-06,2.25755792282e-07,-1.10809952858e-06,-5.61112578623e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.2324345132,-10.7918895205,4.78653216412,-27.8320737103) p_j = (4.40028166988,-1.57076105961,0.69638013086,-4.0509558355) p_k = (7.34100691756e-10,3.20752975062e-10,-6.54153432491e-10,9.00291312021e-11) p_ij -> (34.6327497346,-12.3626625617,5.48291761317,-31.8830604399) p_k -> (-3.35507702331e-05,1.19818965931e-05,-5.3188433129e-06,3.08941632952e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.8903764024,-10.0053975469,1.08892829915,13.5643308018) p_j = (27.5161412434,-16.2972968007,1.76981721743,22.0998618306) p_k = (5.2935676836e-08,2.33064045177e-08,-3.53866839616e-08,-3.17297923761e-08) p_ij -> (44.4065180414,-26.3026946955,2.8587456226,35.6641931043) p_k -> (-3.42671235387e-07,3.71120821185e-07,-1.41401697906e-07,-5.0360264936e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.1540761069,0.0954123602234,0.983441424183) b = (0,0,1) a' = (0.330587081596,0.0911361051316,0.939364887476) -> rel. dev. (inf,inf,-0.0606351125238) m_ct = 0.983441424183 m_st = -0.181226281761 m_n = (0,1.52932682392e-06,-1.48373536273e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.154076106919,0.0954123610091,0.983441424104) b = (0,0,1) a' = (0.330587082027,0.0911361058678,0.939364887253) -> rel. dev. (inf,inf,-0.060635112747) m_ct = 0.983441424104 m_st = -0.181226282191 m_n = (0,1.5293268234e-06,-1.48373537456e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.29144609509,-0.252772841637,0.834166488239,-0.952945526751) p_j = (28.4492420396,-5.56870039666,18.374655615,-20.9933556048) p_k = (1.99768054172e-07,1.48653566231e-07,3.52274581058e-08,-1.28718369382e-07) p_ij -> (29.7406884271,-5.82147329865,19.2088222937,-21.9463013477) p_k -> (-9.26956449376e-08,2.090125788e-07,-1.55222679155e-07,8.74068071255e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00525141983065,-0.0039235327638,0.00343291023934,0.000631211674278) p_j = (11.466105777,-8.56417848615,7.49724492438,1.38482745903) p_k = (7.41373478494e-10,6.15974690515e-10,4.08313643315e-10,-5.90551702128e-11) p_ij -> (11.4713633897,-8.56810664578,7.50068188399,1.38545941882) p_k -> (-6.19213736464e-06,4.62748166719e-06,-4.04896279615e-06,-7.4817541873e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.24488099863,-1.00997037526,4.1143292827,0.26696270743) p_j = (24.6654344427,-5.86886446721,23.9067654365,1.55133893049) p_k = (9.91831996708e-09,9.10151870405e-09,3.21505245359e-09,-2.28010015464e-09) p_ij -> (28.9103163369,-6.87883505597,28.0210955875,1.81830169435) p_k -> (-8.85640289994e-07,2.22601156619e-07,-8.6502864427e-07,-5.87105247751e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.08113291256,2.18427467787,-6.84555856449,3.69756422827) p_j = (4.23034871742,1.14345561951,-3.58350972626,1.93566979596) p_k = (1.90485764035e-08,-9.53415635065e-09,-6.84965618361e-09,-1.50010100952e-08) p_ij -> (12.3114817569,3.3277303319,-10.4290683984,5.63323408266) p_k -> (-1.07869171373e-07,-4.40582330619e-08,1.00800916059e-07,-7.34269378633e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.105148770532,0.0253179702388,-0.0626497148108,-0.0805622589147) p_j = (25.3010822342,6.09575552848,-15.005616062,-19.4375413404) p_k = (6.08465610503e-08,3.61484193092e-08,-2.81923585044e-08,-4.00098326652e-08) p_ij -> (25.4062360469,6.12107187073,-15.0682698118,-19.5181083639) p_k -> (-4.9813473133e-06,1.66413894576e-06,4.00678931367e-06,4.72459413636e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.474493119915,-0.219015921969,0.36076028604,0.216858854529) p_j = (44.7602795942,-20.7449495346,33.9114571476,20.5704344213) p_k = (6.60947819951e-09,-2.85150519203e-09,-3.21807058939e-09,5.01977565125e-09) p_ij -> (45.2347790193,-20.9639685364,34.2722283393,20.7872946964) p_k -> (-6.29862007173e-06,3.07697579593e-06,-1.09088155753e-05,-1.41552411215e-06) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0415963062633,0.956186738731,-0.289787280569) b = (0,0,1) a' = (0.968316795517,-0.238990595017,0.0724298212956) -> rel. dev. (inf,-inf,-0.927570178704) m_ct = -0.289787280569 m_st = -0.957091078226 m_n = (0,-2.50407126146e-07,-8.26247352315e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.041596308365,0.956186739789,-0.289787276778) b = (0,0,1) a' = (0.968316797031,-0.238990589683,0.0724298186512) -> rel. dev. (inf,-inf,-0.927570181349) m_ct = -0.289787276778 m_st = -0.957091079374 m_n = (0,-2.50407122593e-07,-8.26247352315e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0415963062633,0.956186738731,-0.289787280569) b = (0,0,1) a' = (0.968316795517,-0.238990595017,0.0724298212956) -> rel. dev. (inf,-inf,-0.927570178704) m_ct = -0.289787280569 m_st = -0.957091078226 m_n = (0,-2.50407126146e-07,-8.26247352315e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.041596308365,0.956186739789,-0.289787276778) b = (0,0,1) a' = (0.968316797031,-0.238990589683,0.0724298186512) -> rel. dev. (inf,-inf,-0.927570181349) m_ct = -0.289787276778 m_st = -0.957091079374 m_n = (0,-2.50407122593e-07,-8.26247352315e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.6221166598,-11.2459612094,-24.9658767743,-8.33420154874) p_j = (11.7120936657,-4.6015826613,-10.2159791877,-3.41062227197) p_k = (1.99421180841e-10,1.5830617301e-10,-1.20814585107e-10,-1.05740729034e-11) p_ij -> (40.3344471026,-15.8476369082,-35.1820624943,-11.7448927686) p_k -> (-0.0002367768531,9.30377254207e-05,0.000206532123833,6.89478463247e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.1408800491,15.9462104273,5.55882764308,-18.6247592705) p_j = (3.70772457306,2.35198171588,0.818832229475,-2.74680128474) p_k = (3.96180010138e-08,3.12224660272e-08,6.21201026477e-09,-2.35829291656e-08) p_ij -> (28.8486404174,18.2982140943,6.37766810068,-21.3715877858) p_k -> (-3.57556033386e-05,-2.19199140989e-05,-8.22191827377e-06,2.72069612048e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.1836551767,-26.5785361661,8.47707634033,30.2954459565) p_j = (2.78761968694,-1.79886950642,0.574264778179,2.05063696992) p_k = (1.16581477186e-07,7.73757381118e-08,-8.0432541561e-08,-3.36874204045e-08) p_ij -> (43.9712754784,-28.3774061002,9.05134126622,32.3460834028) p_k -> (-4.98122222581e-07,5.05028859621e-07,-2.28143408165e-07,-5.10095976125e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.9325186706,8.64967531685,14.2678201279,17.1574437382) p_j = (21.6587124531,7.82783613211,12.9121743687,15.527413168) p_k = (5.85372400915e-05,2.1241890504e-05,3.47418932978e-05,4.2052246259e-05) p_ij -> (45.591291977,16.4775333994,27.180030854,32.6849004891) p_k -> (-2.31597863376e-06,-7.08553489659e-07,-1.61539685983e-06,-1.53066411812e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.41392602828,-0.474700073867,-2.17025827927,2.59220557975) p_j = (39.6031785333,-5.50670030853,-25.1753849329,30.0713816632) p_k = (1.75930688788e-05,-2.66748860847e-06,-1.11169663198e-05,1.3372121632e-05) p_ij -> (43.0171357798,-5.98140461635,-27.3456630896,32.6636109409) p_k -> (-1.36250785268e-05,1.56646804639e-06,8.76043549702e-06,-1.03258455724e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.39435911278,0.161729321612,-0.0520900892132,1.38396805763) p_j = (12.0604726723,1.40019826186,-0.450125105234,11.9704566871) p_k = (2.54458393011e-08,7.42541825245e-09,2.27686884276e-08,8.59887257253e-09) p_ij -> (13.4548322079,1.56192763032,-0.502215222024,13.3544251726) p_k -> (-3.97323913326e-07,-3.94285837313e-08,5.0345720648e-08,-4.19300583587e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.56928634517,-0.287708382297,-2.55300213354,0.0252253119653) p_j = (21.3184611693,-2.3869933523,-21.1833939482,0.207051201152) p_k = (1.42623552425e-09,1.31558016623e-09,5.19429308663e-10,1.8327672107e-10) p_ij -> (23.88775942,-2.67470307681,-23.7364079239,0.23227662783) p_k -> (-1.19040785957e-05,1.34353730341e-06,1.18426253959e-05,-1.14529229156e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.6460559401,-11.4409472975,-7.26424207767,-41.4887178773) p_j = (1.07487801062,-0.281730954385,-0.178866639012,-1.02176177875) p_k = (5.09160977753e-07,-2.84843627946e-07,1.44999963591e-07,-3.96338264337e-07) p_ij -> (44.7209352319,-11.7226785862,-7.44310893227,-42.5104808747) p_k -> (-7.71973894587e-07,4.94260641304e-08,3.60582956827e-07,8.22372644649e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.5955795008,21.087189326,3.32621023884,-25.9408892247) p_j = (1.63518326664,1.03859488504,0.158483646383,-1.25300754751) p_k = (4.34570702653e-10,-2.41948915782e-10,1.88713401813e-11,3.60493020779e-10) p_ij -> (35.2308022786,22.1258531018,3.48469985749,-27.1939868468) p_k -> (-3.95107691027e-05,-6.88909885618e-05,-5.97224847643e-06,9.0075006602e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.1229958646,-11.1177170571,35.3242536301,2.59042368671) p_j = (0.10492397623,-0.0313459017852,0.0998730444657,0.00720070956616) p_k = (1.7624620101e-09,9.50824016379e-10,-1.35938409522e-09,-5.95193095362e-10) p_ij -> (37.2279564783,-11.1490739761,35.4241616291,2.59762697453) p_k -> (-3.66356895434e-05,1.1018116381e-05,-3.49559067416e-05,-2.57884442711e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.8893438514,21.5936989094,22.4920783506,-6.68945664104) p_j = (2.2986231278,1.55704497206,1.62111418224,-0.480903365331) p_k = (4.97452361995e-10,-3.45099383322e-10,1.13970925056e-10,-3.39676081009e-10) p_ij -> (34.1880277419,23.1507854949,24.1132355519,-7.17037258904) p_k -> (-6.07622063562e-05,-4.16138532149e-05,-4.30189256111e-05,1.2582330899e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.8975672053,-7.0052561015,4.17729485849,-30.8371754257) p_j = (13.6982445792,-3.00897534339,1.79373559964,-13.242752151) p_k = (2.02793979898e-10,3.55982517834e-11,-3.17645926449e-12,1.99618301712e-10) p_ij -> (45.5958603238,-10.0142421077,5.9710368154,-44.0799745125) p_k -> (-4.8539094756e-05,1.06628292098e-05,-6.357272619e-06,4.69360374034e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0120352468634,-0.00630111086423,-0.00468295934554,-0.00912211930967) p_j = (11.1879152445,-5.86220444052,-4.34856517933,-8.4790322264) p_k = (8.02305688801e-09,-5.51685733698e-09,3.04786931619e-09,-4.9642949356e-09) p_ij -> (11.1999506047,-5.86850560969,-4.35324818797,-8.48815443259) p_k -> (-1.05366691372e-07,5.27852828114e-08,5.23402241548e-08,8.19156698029e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.4426522551,-1.22757250431,2.91315900335,42.3247599026) p_j = (3.1192057755,-0.0901943288386,0.214107605702,3.11054136545) p_k = (1.72180865204e-08,4.17192757378e-10,1.80973538262e-09,-1.71176219541e-08) p_ij -> (45.5618628552,-1.3177669727,3.1272669402,45.4353060793) p_k -> (-4.80738952291e-06,1.39960072532e-07,-3.29338931015e-07,-4.82842673577e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.4872622604,9.78288593469,8.39591916547,21.9864554143) p_j = (6.30722392729,2.42100721189,2.07771746421,5.44085359919) p_k = (6.36725012348e-10,1.7383749117e-10,-1.8832754641e-10,-5.82865780151e-10) p_ij -> (31.7945141274,12.2039038709,10.4736458337,27.4273331161) p_k -> (-2.79391016331e-05,-1.07241569216e-05,-9.20418470507e-06,-2.41031255133e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.6274656439,0.778607411784,-1.21432521363,6.46857678589) p_j = (38.9313247202,4.57435418825,-7.13324973875,37.9978956838) p_k = (1.42156485852e-10,-9.16394008937e-11,-7.43462884215e-12,-1.08423360773e-10) p_ij -> (45.5588832351,5.35297251229,-8.34759196885,44.4665631147) p_k -> (-9.28708387526e-05,-1.09123461085e-05,1.70164657369e-05,-9.06451310527e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.39098886405,2.67576800083,1.01058589024,-3.33163097722) p_j = (17.5945078369,10.7197474951,4.04316859271,-13.3531459737) p_k = (1.30712621123e-09,-1.03821995656e-09,7.6003926998e-10,2.30261448843e-10) p_ij -> (21.9855033732,13.3955198518,5.05375594389,-16.6847822081) p_k -> (-6.67094980322e-06,-4.35696468504e-06,-1.46018235858e-06,5.25739625523e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.0039628753,7.78873872754,0.35218830784,-7.76522449063) p_j = (34.5923728572,24.4669056504,1.099173395,-24.4293799682) p_k = (1.53248097394e-08,-2.74459594035e-09,-7.66130118151e-09,1.29854314868e-08) p_ij -> (45.5963359119,32.2556457945,1.45136248207,-32.1946068452) p_k -> (-1.6411786774e-07,-1.41923359109e-06,-7.86885495319e-07,2.39934679058e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.0329132438,-0.210917418684,28.249909177,-29.7590005646) p_j = (4.51209199263,-0.0241605953876,3.10309293669,-3.27554646461) p_k = (2.09515261268e-08,9.82939760935e-09,-4.43442670563e-09,1.79634406811e-08) p_ij -> (45.5450055326,-0.235078607923,31.3530034415,-33.0345492205) p_k -> (-2.75211586853e-07,6.03681388781e-07,-1.33229898225e-06,2.2092611367e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00116972232111,-0.000649869962738,-0.000456164950996,0.000858971988788) p_j = (38.8249233682,-21.4102340743,-15.0748494558,28.6657542254) p_k = (1.14356387e-07,-1.1040699042e-07,2.4155081471e-08,1.74416672475e-08) p_ij -> (38.8260937513,-21.4108842888,-15.0753059061,28.6666137134) p_k -> (-5.46436407234e-07,2.34138887834e-07,3.09473295879e-07,-4.98534557636e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.571016939487,0.241142088136,0.279272964837,0.435795192288) p_j = (44.7955313178,18.9177055565,21.9087606271,34.1872234951) p_k = (1.05062499656e-08,-4.49512797437e-09,-4.89041511584e-09,8.13996068981e-09) p_ij -> (45.3665619808,19.1588534403,22.188040304,34.623029161) p_k -> (-1.37130581237e-05,-5.80017099416e-06,-6.71691304888e-06,-1.04654626156e-05) } Poincare::Poincare(): Inaccurate rotation { a = (-0.237652876373,0.377336903343,0.895063110472) b = (0,0,1) a' = (0.220449066438,0.37890954712,0.898793504765) -> rel. dev. (inf,inf,-0.101206495235) m_ct = 0.895063110472 m_st = -0.445939489475 m_n = (0,1.2936043241e-06,-5.45352214942e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.237652876373,0.377336903343,0.895063110472) b = (0,0,1) a' = (0.220449066438,0.37890954712,0.898793504765) -> rel. dev. (inf,inf,-0.101206495235) m_ct = 0.895063110472 m_st = -0.445939489475 m_n = (0,1.2936043241e-06,-5.45352214942e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.237652876373,0.377336903343,0.895063110472) b = (0,0,1) a' = (0.220449066438,0.37890954712,0.898793504765) -> rel. dev. (inf,inf,-0.101206495235) m_ct = 0.895063110472 m_st = -0.445939489475 m_n = (0,1.2936043241e-06,-5.45352214942e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.237652876373,0.377336903343,0.895063110472) b = (0,0,1) a' = (0.220449066438,0.37890954712,0.898793504765) -> rel. dev. (inf,inf,-0.101206495235) m_ct = 0.895063110472 m_st = -0.445939489475 m_n = (0,1.2936043241e-06,-5.45352214942e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.4109023741,3.99978947523,13.6109182287,-17.349153707) p_j = (7.29711503159,1.30240751473,4.43175449319,-5.64899765993) p_k = (6.1522712015e-09,8.96907552624e-10,-6.07050519033e-09,4.41550414004e-10) p_ij -> (29.7080213161,5.30219768788,18.042675097,-22.9981543942) p_k -> (-3.90422990115e-06,-6.9702091432e-07,-2.38120326124e-06,3.02774345151e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.8973069902,10.5038563065,-3.7726830998,12.686798195) p_j = (18.0286025654,11.2074081966,-4.02539530384,13.5359042781) p_k = (4.88736170863e-08,3.99253216638e-08,-1.12695732689e-08,2.58378763314e-08) p_ij -> (34.9259365261,21.7112812574,-7.79808442504,26.222722736) p_k -> (-2.69216510276e-05,-1.67143588108e-05,6.01013640011e-06,-2.02370971429e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0636240258162,0.0441386671211,-0.0427942228122,-0.0163844200302) p_j = (32.8004429071,22.7487610169,-22.0693280052,-8.44438798807) p_k = (5.11872331576e-07,3.75645266682e-07,-3.20814862917e-07,-1.34096014794e-07) p_ij -> (32.8641068971,22.7929273383,-22.1121491893,-8.46078268973) p_k -> (-3.94523526346e-05,-2.7278647563e-05,2.66404874605e-05,1.01475327527e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.1140906215,3.78812518651,-14.5658369958,-24.9222144461) p_j = (3.79503495363,0.493870490776,-1.89861194207,-3.24863893516) p_k = (3.03789632812e-06,2.87474937792e-07,-1.50257752709e-06,-2.62458244977e-06) p_ij -> (32.9091426099,4.28199795761,-16.4644574706,-28.1708679491) p_k -> (-1.39968703401e-05,-1.99284612723e-06,7.03015646941e-06,1.19432501418e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.42484553993,3.99355542696,-1.04172433627,-4.9239177157) p_j = (38.1334264119,23.7069480465,-6.18809008811,-29.2206496384) p_k = (4.47012295716e-09,-3.54060782032e-09,5.76550359748e-11,2.72814552375e-09) p_ij -> (44.5582830248,27.70051044,-7.22981623127,-34.1445759198) p_k -> (-1.1068471288e-05,-6.97000503891e-06,1.80695402863e-06,8.56839922037e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.41619308412,-0.266366840116,1.43417497752,1.92618271721) p_j = (28.6593730403,-3.16255462724,17.0082883169,22.8489833433) p_k = (3.44843459966e-08,6.70555166837e-09,-2.79257040403e-08,-1.90882384038e-08) p_ij -> (31.0755662295,-3.42892148359,18.4424633781,24.7751661648) p_k -> (-7.06487170987e-08,2.29298771082e-08,-1.11607301179e-07,-1.23397970953e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.2265401332,-8.86840640479,7.69243744225,12.6068020924) p_j = (0.827805978361,-0.4261048468,0.369839749782,0.605735880418) p_k = (1.01857354538e-10,4.85137520983e-11,8.24136820125e-11,3.50595118335e-11) p_ij -> (18.054724886,-9.29470628681,8.06244632166,13.212815183) p_k -> (-0.000378774342728,0.000195035265991,-0.000169129545897,-0.000277210193187) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.51775316896,5.03155416635,-0.695931539946,-4.08414597368) p_j = (0.951447868502,0.73434174472,-0.10128814092,-0.596436049337) p_k = (1.10523654008e-08,9.58888600193e-09,-3.65794957251e-09,-4.10212763688e-09) p_ij -> (7.46920306583,5.765897355,-0.797219611598,-4.68058361971) p_k -> (-2.01731705252e-06,-1.43434992861e-06,-7.29258704535e-08,1.59258808408e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.136505978,2.68033812085,-24.7491490648,-10.802100019) p_j = (0.0431824119571,0.00426221030235,-0.0393844799581,-0.0171876992121) p_k = (7.7553833164e-08,6.26680174175e-08,-3.14124561536e-08,3.31749064363e-08) p_ij -> (27.1796886819,2.68460035984,-24.7885338111,-10.8192878346) p_k -> (-2.14344927585e-07,3.39870316335e-08,2.34913871466e-07,1.49544900907e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00412893748727,-0.000180387684341,-0.00266206714581,-0.00315102896526) p_j = (19.0905495459,-0.826689329959,-12.3316439566,-14.5497843298) p_k = (2.11937231685e-07,-4.94536707825e-08,-1.22974776182e-07,-1.6537511628e-07) p_ij -> (19.0946843808,-0.826869921743,-12.3343098509,-14.5529398485) p_k -> (-5.68540159307e-06,1.54646516759e-07,3.70417262374e-06,4.32435992259e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.553598628,-13.4895628468,20.3335101179,-29.8489535438) p_j = (0.00102303017917,-0.000363370198253,0.000538082594429,-0.000790582043873) p_k = (5.05360247485e-08,4.88224503577e-08,2.09767337088e-09,1.28785767101e-08) p_ij -> (38.554621822,-13.4899262886,20.3340482921,-29.8497442638) p_k -> (-1.13209509323e-07,1.20441614015e-07,-8.95527669798e-08,1.50856100944e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0401496559062,0.0240858428234,-0.0132404201946,0.0292670175776) p_j = (26.5787181629,15.9445546572,-8.75063273259,19.3810697008) p_k = (3.13955988384e-06,1.88571521024e-06,-1.06171275742e-06,2.27457258201e-06) p_ij -> (26.6188711972,15.9686424253,-8.76387302535,19.4103398348) p_k -> (-2.38872528868e-07,-3.95853119173e-08,-1.18914066949e-06,-8.41897257686e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.7320853765,3.91080758617,-18.6398298403,10.4664159271) p_j = (12.0567033193,2.17205411593,-10.3402549888,5.8073576275) p_k = (3.800027492e-09,1.74904737858e-09,-1.77256629957e-09,2.87037417779e-09) p_ij -> (33.7889853563,6.0828967643,-28.9802539788,16.2738679388) p_k -> (-0.000196656819785,-3.50604513648e-05,0.000169147980717,-9.43813695322e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.3473352822,-8.82395930529,26.4746113703,35.7437198983) p_j = (0.232432231477,-0.0451959553959,0.135709857857,0.183207266029) p_k = (1.02772897416e-07,-1.6173688598e-08,-6.20405098181e-08,-8.03221957742e-08) p_ij -> (45.5797679606,-8.8691553477,26.6103214906,35.9269275186) p_k -> (-3.44152311982e-07,7.08393841364e-08,-3.24494619619e-07,-4.34621629353e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.6180840855,-3.11366390729,28.115647324,-34.5049112458) p_j = (0.428227650086,-0.0299081372507,0.269876811352,-0.331135818539) p_k = (6.79335933097e-08,-7.02849045046e-09,6.61834508729e-08,1.36133892192e-08) p_ij -> (45.0463142463,-3.14357221957,28.3855257156,-34.8360490114) p_k -> (-2.44279570083e-06,1.6799609126e-07,-1.51401386539e-06,1.96067878022e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.9809634358,-6.97166681434,13.7888003076,19.629400961) p_j = (3.51126117118,-0.979904620411,1.93852583298,2.7587786323) p_k = (5.38226812238e-07,-1.34897611516e-07,2.86689700506e-07,4.35085912718e-07) p_ij -> (28.492264884,-7.95158370014,15.7273490695,22.3882104271) p_k -> (-3.97388077538e-05,1.21304894494e-05,-2.26422079113e-05,-3.03987023678e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.50096197002,-1.17371724843,2.7229920502,4.63338803802) p_j = (40.0871547424,-8.55092436256,19.8434886687,33.7653317079) p_k = (1.23316080744e-07,-3.80493697243e-08,1.54014697965e-08,1.16283687227e-07) p_ij -> (45.588129371,-9.72464430104,22.5664870246,38.3987303974) p_k -> (-1.25351948128e-05,2.65199367178e-06,-6.29034363087e-06,-1.05351442379e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.8753323458,7.50542630285,9.16678209169,5.04111744666) p_j = (0.974334611069,0.567895826402,0.693383351014,0.382154148503) p_k = (1.4039840231e-08,4.90407360035e-09,1.30853976372e-08,1.35629838587e-09) p_ij -> (13.8496673332,8.0733229932,9.86016510339,5.42327255637) p_k -> (-3.62246911578e-07,-8.59040977019e-07,3.52398348724e-07,-9.59856136351e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.7713322117,12.5624405176,1.24845891919,9.45311368282) p_j = (13.8860456758,11.0607321953,1.09913652995,8.32312241301) p_k = (3.54929004001e-08,2.77986343282e-08,7.20067494004e-09,2.08598223537e-08) p_ij -> (29.6574524019,23.6232320666,2.34760134521,17.776280759) p_k -> (-7.44789570017e-05,-5.93258971993e-05,-5.88887976449e-06,-4.46423206206e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.173622433694,0.0935714341618,-0.112882028973,-0.0929880837831) p_j = (8.73430480789,4.70281324114,-5.68705903135,-4.67215021911) p_k = (4.98602443117e-09,-1.41176335797e-09,2.21789893397e-09,4.23654384467e-09) p_ij -> (8.90792752766,4.79638488864,-5.79994132569,-4.76513855586) p_k -> (-2.81089314491e-07,-2.14746381122e-07,2.67582544122e-07,2.57206146603e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.6710489319,7.79501535967,-6.44364050911,-3.40419121649) p_j = (34.8918926114,25.4894007137,-21.067513778,-11.1307899308) p_k = (1.89630991692e-10,-1.51275047623e-10,1.142174037e-10,-5.57025724118e-12) p_ij -> (45.5632713794,33.2846570372,-27.5113534547,-14.5350863705) p_k -> (-0.000329835846021,-0.000240964031587,0.000199167720918,0.000105223198517) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00966276706843,0.00172391284436,-0.00592915744335,0.00743251531689) p_j = (42.8509639197,8.44154745504,-26.3120080552,32.7509330786) p_k = (6.69053816745e-10,-3.81374403053e-10,-3.09110344352e-10,4.54571754859e-10) p_ij -> (42.8608432,8.44331844796,-26.3180710371,32.758531565) p_k -> (-0.000216512588558,-4.70804605275e-05,0.000133824179501,-0.000165970594566) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.86985154817,-0.848286934189,1.66626920067,0.0173505158632) p_j = (29.8454135131,-13.5402426935,26.5957430127,0.277469227041) p_k = (1.47871049102e-09,8.99958557147e-10,-7.00809634982e-10,9.41022363507e-10) p_ij -> (31.7152755221,-14.3885343739,28.2620215356,0.294819839964) p_k -> (-1.04593946109e-05,4.74708031906e-06,-9.32295933431e-06,-9.61194074334e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.6289814118,-17.2931653382,7.09367122762,25.5150686115) p_j = (4.13435054493,-2.26008121211,0.927545950356,3.33534793583) p_k = (1.98546605933e-08,2.8773878897e-10,-1.96889365393e-08,2.54373809783e-09) p_ij -> (35.7633334959,-19.5532474059,8.02121755368,28.850417806) p_k -> (-1.51930724712e-06,8.55882268169e-07,-3.95391494656e-07,-1.25611976998e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.48639221879,-0.132021856106,0.0838386739328,5.48416273324) p_j = (0.611643281595,-0.0147188760898,0.00943209812229,0.611393403736) p_k = (4.69719787793e-08,-1.46037921789e-08,-1.59627959612e-08,4.16927477031e-08) p_ij -> (6.09803573521,-0.146740723897,0.0932707929171,6.09555637715) p_k -> (-1.87854180211e-07,-2.2902278074e-08,-3.68248010349e-08,-1.98483812941e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.9699027443,-2.60909563942,-8.13962112565,14.6600404852) p_j = (10.0252221135,-1.54129545628,-4.80862706909,8.66063464483) p_k = (9.9146276975e-10,3.87500101384e-10,-5.85928610749e-10,-6.99664781926e-10) p_ij -> (26.9951277228,-4.15039153624,-12.9482495689,23.3206776052) p_k -> (-2.86395826343e-06,4.40924200262e-07,1.37357835595e-06,-2.47586539359e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.85784129101,2.80421143792,4.2993493021,-8.41599837861) p_j = (4.36425706027,1.24120287816,1.90344126289,-3.72599872009) p_k = (1.15721740134e-09,-5.48234094626e-10,5.10699529146e-10,-8.81907064371e-10) p_ij -> (14.2221041135,4.04541597221,6.202793078,-12.1420020202) p_k -> (-5.76106996864e-06,-1.65667180996e-06,-2.51249602279e-06,4.92063613322e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.3503309257,5.20260430975,2.59765539994,-30.8063036401) p_j = (7.6842091721,1.27541978065,0.636699458594,-7.55082702643) p_k = (1.64426671136e-06,2.23673594504e-07,1.29117802138e-07,-1.62385705479e-06) p_ij -> (39.0345483598,6.47802562911,3.23435556738,-38.3571387575) p_k -> (-6.61774142685e-06,-1.31503312817e-06,-5.79725765171e-07,6.46709868946e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (36.0312453006,-19.0688051045,-10.327345474,-28.7745937461) p_j = (2.38393425006,-1.26057163506,-0.683604130368,-1.90441252213) p_k = (2.9878054316e-08,-1.23394427239e-08,-2.7209901576e-08,2.39565349076e-10) p_ij -> (38.4151834265,-20.329378861,-11.0109503378,-30.6790098516) p_k -> (-3.84597700176e-06,2.10907700371e-06,7.06157157637e-07,3.58358754404e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.48474460787,-1.06832844303,-0.604340692028,-7.38341712967) p_j = (0.295785254728,-0.0422281109858,-0.0238158126945,-0.291785041808) p_k = (3.94535780554e-09,-1.31746778835e-09,4.05397835887e-10,-3.69672546218e-09) p_ij -> (7.78053335582,-1.11055701357,-0.628156824234,-7.67520562753) p_k -> (-3.48928413274e-06,4.58228006317e-07,3.19916721947e-07,3.45235308519e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.7298836541,10.2540465265,5.04489055515,33.8530381953) p_j = (7.36517905651,2.1136200695,1.03521356476,6.979026122) p_k = (1.38716972936e-09,-8.36600772255e-10,-7.65998997866e-10,7.98486885832e-10) p_ij -> (43.0950711589,12.3676706375,6.08010657129,40.8320729975) p_k -> (-8.44689527213e-06,-4.04231778361e-06,-2.45214061279e-06,-8.67938695848e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.561844157712,0.193360197338,-0.0727598022644,0.522481294225) p_j = (43.437557267,14.8950635604,-5.62473018851,40.4143646883) p_k = (2.54515054031e-09,7.04767371031e-10,-2.1030823418e-09,-1.24824622996e-09) p_ij -> (43.9994143262,15.0884282077,-5.69749138966,40.9368585401) p_k -> (-1.28989611738e-05,-4.44926799226e-06,1.39677962796e-06,-1.25588291695e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00890166521077,0.00838233070044,-0.0015639957315,0.00255540464602) p_j = (38.4773398687,36.228383413,-6.71112785907,11.0892146479) p_k = (6.35523260763e-08,4.8385796719e-08,-1.53338540223e-08,3.82437674783e-08) p_ij -> (38.4862417107,36.2367659449,-6.71269187276,11.0917700431) p_k -> (-1.13258646905e-07,-1.52791169938e-07,2.62977906118e-09,4.76699071328e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.22641753278,3.27393324019,-1.54443175338,6.25437463349) p_j = (0.308419574781,0.139553373577,-0.0658288208702,0.267046917926) p_k = (4.08631499473e-09,1.74153794804e-09,1.9335425617e-09,-3.15062329919e-09) p_ij -> (7.53483711725,3.41348661952,-1.61026061124,6.521421643) p_k -> (-5.6027311679e-09,-4.01230337843e-09,3.89234374731e-08,-9.47326785905e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.462134253785,0.119324448744,-0.164332486322,0.41511995663) p_j = (36.9334306611,9.60241086533,-13.1071818502,33.1673603098) p_k = (4.39050359547e-08,1.80340693905e-08,-3.8500915029e-08,1.09592330338e-08) p_ij -> (37.3955681012,9.72173578095,-13.2715142159,33.5824846823) p_k -> (-3.14237849963e-06,-4.48841044332e-07,-1.59121763765e-07,-4.40487273679e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.1777474283,26.3594496247,0.604045409907,31.6294392599) p_j = (3.52327442381,2.25536781931,0.0517842092659,2.70630690439) p_k = (4.027848242e-08,-2.76062164501e-08,1.10721185057e-08,2.71599180712e-08) p_ij -> (44.7010242353,28.6148189715,0.65582965375,34.335747995) p_k -> (-2.34285979417e-06,-1.55511494349e-06,-2.35049593678e-08,-1.80351565859e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0710450802321,0.0351301525335,-0.0585301332493,0.0196850021585) p_j = (40.739593963,20.1610979746,-33.5306806322,11.3550914161) p_k = (2.06738714511e-07,1.29220593494e-07,-1.01645069956e-07,1.25344382218e-07) p_ij -> (40.8106418795,20.1962293926,-33.5892134516,11.374776861) p_k -> (-2.62957960828e-06,-1.13622682285e-06,2.58458009128e-06,-3.17457296006e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.6119622933,1.6004023345,-9.9106392325,-13.2353781059) p_j = (28.9837435918,2.8206698642,-17.3502233191,-23.0449769991) p_k = (3.6028101705e-10,-1.85920281416e-10,2.91726164876e-10,1.00651225809e-10) p_ij -> (45.5957706143,4.42109272038,-27.2609339627,-36.2804315928) p_k -> (-6.47288957154e-05,-2.05218612881e-05,7.14114133391e-05,7.64879604489e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.1047979841,1.16783722567,0.622740210681,-5.95960646948) p_j = (39.494927383,7.5560539757,4.03630502608,-38.5546829716) p_k = (3.08209227328e-08,6.19184961398e-09,1.95470144775e-08,2.30109640129e-08) p_ij -> (45.5997262444,8.72389136864,4.65904529446,-44.5142904009) p_k -> (-8.46465852078e-07,-1.61070659033e-07,-3.8152131232e-08,9.82825795859e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.6342921843,12.9371122851,3.1178794575,-38.3934324427) p_j = (4.10317191413,1.30647675981,0.314852658814,-3.87685517349) p_k = (4.72574703715e-07,3.42947714068e-07,3.54340884034e-08,-3.23199848358e-07) p_ij -> (44.7374648654,14.2435892836,3.43273217519,-42.2702883444) p_k -> (-2.94397359824e-07,1.04293731873e-07,-2.34399120114e-08,4.05021758354e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0040364242748,-4.75805307817e-05,0.000851975664643,-0.00394519891592) p_j = (40.1544916678,-3.23768916193,6.63806471201,-39.4694396574) p_k = (2.44603923283e-09,1.11927945556e-09,-1.83661013625e-09,-1.16497940125e-09) p_ij -> (40.1585466933,-3.23774900173,6.63893807818,-39.4734132691) p_k -> (-1.8598766296e-05,1.22603836594e-05,-2.13923379762e-05,2.84116271736e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.81532393221,-1.87942833908,2.48753968795,3.6697738338) p_j = (39.8237795114,-15.5365687091,20.5764892078,30.3505607724) p_k = (4.09900540055e-07,-1.48782037593e-07,1.80015918551e-07,3.36862920333e-07) p_ij -> (44.6391410989,-17.416012179,23.0640496049,34.0203623386) p_k -> (-3.72454026092e-05,1.49820360562e-05,-2.05291049902e-05,-2.73955606076e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.91059469989,-0.988692316684,-1.62169234887,0.207300592776) p_j = (43.6874882352,-22.5948697607,-37.0902779688,4.73072605299) p_k = (1.06786262574e-07,-2.71195965269e-08,-9.61205509687e-08,-3.77977914369e-08) p_ij -> (45.5980882105,-23.5835650901,-38.7119747413,4.93802771615) p_k -> (-5.16871372724e-06,2.98560871848e-06,4.32747409818e-06,-1.10817939536e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.3890379084,-25.6075203168,-6.08013066183,-1.91526397444) p_j = (19.2009934384,-18.6369332475,-4.41169154417,-1.37107471334) p_k = (2.27260184778e-10,2.08212609698e-10,-2.04139698845e-11,-8.87436122751e-11) p_ij -> (45.5904519743,-44.2448722543,-10.4919197859,-3.28636724033) p_k -> (-0.000420627328772,0.000418690281315,9.7579905364e-05,2.85524598924e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.525851839,31.3919954217,-32.0250859879,-7.84472284895) p_j = (0.0596849426491,0.0411553596604,-0.0419850299874,-0.0102852324815) p_k = (3.28149431452e-10,-2.20846300424e-10,2.34779912466e-10,6.15133284738e-11) p_ij -> (45.5855796328,31.4331803291,-32.0671011615,-7.85501546527) p_k -> (-4.28508478869e-05,-2.95479177481e-05,3.01438275656e-05,7.38390289179e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.3897758887,29.5430851197,12.6498520656,-19.1097541935) p_j = (0.681902164043,0.53878859312,0.230632987508,-0.348576875772) p_k = (5.34165354491e-10,-6.07031597324e-11,5.29962753899e-10,-2.80704061151e-11) p_ij -> (38.0718922753,30.0820429859,12.8805575237,-19.4584405618) p_k -> (-0.000214222014627,-0.000169273125108,-7.2470078865e-05,0.000109492451154) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.0473070458,6.76103357516,-7.22145019606,-26.2448188141) p_j = (0.219100004772,0.053084550319,-0.0557485928975,-0.205131511472) p_k = (5.6242633857e-09,-3.13617159786e-09,1.26962778027e-09,4.49274718822e-09) p_ij -> (28.2664094728,6.81411919936,-7.27719970897,-26.4499536562) p_k -> (-2.41652801414e-06,-1.07701675933e-06,9.21283515254e-07,3.33511112238e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00176454286928,0.000662462353114,0.000948945128139,0.00133201287983) p_j = (39.9865102905,14.7065645557,21.0902035027,30.6241943632) p_k = (9.48833325123e-10,-6.79475310275e-10,-6.38756454283e-10,-1.74905266591e-10) p_ij -> (39.988311026,14.7072404848,21.0911717094,30.625554231) p_k -> (-3.61917156049e-05,-1.34674924173e-05,-1.92621809028e-05,-2.78551626653e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.2651132671,-23.6066200614,-21.4612449282,12.4996176986) p_j = (4.14345092887,-2.87372030028,-2.58208661517,1.49758003041) p_k = (1.14192222718e-09,3.26576950497e-10,1.09277960935e-09,5.62721876646e-11) p_ij -> (38.408585714,-26.480398341,-24.0434150288,13.9972195101) p_k -> (-2.15169360551e-05,5.79796379689e-05,8.34864747663e-05,-2.17811188579e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.1292037445,10.75272901,-16.1544919919,-32.8214470356) p_j = (0.00133851029824,0.000377528043206,-0.000656918249179,-0.00110342231509) p_k = (1.92435807755e-09,-9.84503087854e-10,1.31737939054e-09,9.99188378069e-10) p_ij -> (38.1305595914,10.753113073,-16.1551585539,-32.8225682434) p_k -> (-1.73346887529e-05,-6.53600422229e-06,9.64505198731e-06,1.77864602122e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.5098281078,-18.7905474373,-31.7746525506,26.6163715915) p_j = (0.0883443047175,-0.0364747986868,-0.0616982452974,0.0516491216189) p_k = (1.01070902318e-07,4.61623261458e-08,6.18749822813e-08,-6.52368987053e-08) p_ij -> (45.5981726234,-18.8270223246,-31.8363509455,26.6680208387) p_k -> (-1.09733363729e-07,1.34792394135e-07,2.11454752375e-07,-1.90776511033e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.096721575,-3.35076971618,9.12166725928,14.0664642798) p_j = (8.90014546803,-1.74336480843,4.74965171147,7.32216341777) p_k = (1.55725484681e-07,-5.24030826781e-08,-1.69987443877e-08,1.45655024342e-07) p_ij -> (25.9968673938,-5.09413453597,13.8713194202,21.3886279402) p_k -> (-1.95025442906e-07,-4.10372162918e-08,-4.66464699755e-07,-9.69696607456e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.10157583456,0.118931153906,0.594382519617,-0.919801130839) p_j = (4.00641372434,0.432136916866,2.16152864647,-3.3455048238) p_k = (8.77180333329e-10,-1.06409903628e-10,-8.66300873248e-10,8.73864407843e-11) p_ij -> (5.10799039853,0.551068162361,2.75591162581,-4.26530665987) p_k -> (-8.38759770971e-07,-9.16956719443e-08,-4.60579894668e-07,7.05309841642e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.642412385,19.0116323151,1.7218678249,-26.4786724407) p_j = (3.31871585564,1.9327425608,0.174979985075,-2.69216699501) p_k = (2.64999479547e-07,1.87097223126e-07,3.59463147796e-08,-1.84193419313e-07) p_ij -> (35.9611352387,20.9443789131,1.8968481532,-29.1708451487) p_k -> (-6.73306863419e-06,-3.85007279213e-06,-3.07278767764e-07,5.5287574483e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.7927305226,-6.77256278352,-19.501496382,-9.66087971571) p_j = (0.00932375488855,-0.00280743565828,-0.00797180562113,-0.0039371341589) p_k = (2.06997157541e-09,-1.17158148393e-09,5.7459233815e-10,1.60687340055e-09) p_ij -> (22.8020693626,-6.77537468483,-19.5094811648,-9.66482331833) p_k -> (-1.50829962156e-05,4.46448566649e-06,1.2977758411e-05,6.4700612219e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.25032373016,-2.61819448219,0.389860864204,4.53419953591) p_j = (40.3334501718,-20.1080633437,2.99526679374,34.8350594683) p_k = (1.38301023631e-09,-4.70373407094e-10,-1.23615490595e-09,-4.04213668803e-10) p_ij -> (45.583877886,-22.7263096751,3.38513542223,39.3693488624) p_k -> (-0.000103982645903,5.18487500436e-05,-7.76552316606e-06,-8.98585690656e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.1449662399,-33.3009503304,-0.747031055139,-18.5883592912) p_j = (7.45443161493,-6.5078033958,-0.145922483233,-3.63259580632) p_k = (4.46747871778e-07,-3.7780831821e-07,-1.36934768035e-07,-1.9517531837e-07) p_ij -> (45.5994061523,-39.8087609702,-0.8929536992,-22.2209591413) p_k -> (-7.85079352283e-06,6.86619049262e-06,2.38939577568e-08,3.84857513858e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.8830477333,8.65477588086,21.3313656335,6.36141994323) p_j = (9.76973256734,3.54022254639,8.72589827151,2.60253686132) p_k = (1.31197603627e-07,2.76563392083e-08,1.07983934382e-07,6.91910975633e-08) p_ij -> (33.6527874394,12.1950010271,30.057270287,8.96395868393) p_k -> (-7.00760239525e-06,-2.57215047128e-06,-6.27404637399e-06,-1.81018262779e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.8459712014,-0.418193413356,-2.54836844083,11.5610538561) p_j = (2.10669529597,-0.0745255415067,-0.452978465644,2.05606943545) p_k = (7.23027269982e-10,4.33258614512e-10,-2.80780506004e-11,-5.78154261281e-10) p_ij -> (13.9526707074,-0.49271910897,-3.0013478136,13.6171274156) p_k -> (-4.20932865541e-06,1.54540521241e-07,9.07102646774e-07,-4.12459236365e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155592239,-0.0194372719608,-0.999719721781) b = (0,0,1) a' = (0.0101604805757,0.0194380440862,0.999759434602) -> rel. dev. (inf,inf,-0.000240565397567) m_ct = -0.999719721781 m_st = -0.0236744140881 m_n = (0,-1.34427033237e-06,2.61362734673e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0135155586193,-0.0194372720776,-0.999719721787) b = (0,0,1) a' = (0.0101604809309,0.0194380442027,0.999759434597) -> rel. dev. (inf,inf,-0.000240565403442) m_ct = -0.999719721787 m_st = -0.0236744138388 m_n = (0,-1.34427033061e-06,2.61362735898e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.9968778282,-18.0664147939,-14.9973008621,36.0196769325) p_j = (2.54750560678,-1.07072384765,-0.887660913207,2.13433674986) p_k = (2.03864569349e-09,3.54753644292e-10,5.74578195804e-10,-1.92356054454e-09) p_ij -> (45.5444097816,-19.1371497666,-15.8849710224,38.1540359174) p_k -> (-2.63446447768e-05,1.1125448367e-05,9.24768184518e-06,-2.22369896967e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00194173399235,-0.000494645254352,-0.00104915877285,-0.00155721637506) p_j = (29.7690319861,-7.56663460684,-16.0818291288,-23.8812913802) p_k = (1.8493784105e-06,-3.75243136465e-07,-1.07658143914e-06,-1.4561474852e-06) p_ij -> (29.7709771351,-7.5671301286,-16.0828801255,-23.8828513387) p_k -> (-1.56571667098e-06,5.01263302422e-07,7.61403239125e-07,1.28595852544e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.4975223942,2.44014432726,1.90093222725,-6.82971407755) p_j = (36.1585550693,11.7705975187,9.16994339422,-32.9363974487) p_k = (1.10576943055e-08,-9.25371736341e-09,-5.0343360193e-09,3.36106904145e-09) p_ij -> (43.6560823151,14.2107434472,11.0708768652,-39.7661159685) p_k -> (-4.84059310324e-06,-1.61046953373e-06,-1.24875113627e-06,4.44562341784e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.5751579516,-10.9504055219,31.1974592083,5.83938261492) p_j = (0.0836027380988,-0.0272707172748,0.0776811668858,0.0145382979813) p_k = (6.62025065988e-06,-2.0844226358e-06,6.17204816802e-06,1.1784407014e-06) p_ij -> (33.6588560863,-10.9777073705,31.2752290111,5.85393749768) p_k -> (-8.87763491413e-05,2.9046954543e-05,-8.24638227286e-05,-1.54063409239e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.6218315297,2.62474482766,-0.0799063348751,-16.4130927302) p_j = (2.91596386559,0.460204638495,-0.0141086113644,-2.87938498697) p_k = (3.14180828904e-09,-2.05326513873e-09,2.17357148862e-09,-9.64703359162e-10) p_ij -> (19.5378042373,3.08495087321,-0.094014998173,-19.2924864573) p_k -> (-8.83883764047e-06,-1.40910385782e-06,5.41070702686e-08,8.73916179778e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.9535901292,-10.6779810563,-23.3842410281,-31.8803158166) p_j = (3.48017196579,-0.907406208722,-1.98713222913,-2.70915418309) p_k = (6.51915441797e-08,5.40724422137e-08,3.27308202585e-08,1.59625085794e-08) p_ij -> (44.4337626455,-11.5853874086,-25.3713735717,-34.5894704283) p_k -> (-4.85345459822e-07,1.97689440817e-07,3.47155868496e-07,4.44596988558e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.858072103166,-0.0307946190552,0.173614787383,-0.839760282027) p_j = (44.7327647726,-1.51477808326,9.04608220196,-43.7823490502) p_k = (4.59648702502e-08,7.13806515676e-09,-1.37697754226e-08,4.32690491227e-08) p_ij -> (45.590837646,-1.54557289364,9.21969758329,-44.6221117628) p_k -> (-7.24327893664e-07,1.98457543954e-07,-6.07716644119e-07,2.47383625762e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.2579319443,5.8954403607,-7.80239657378,-18.8750115552) p_j = (6.64170195873,1.84183535309,-2.43790151645,-5.8971589462) p_k = (1.1980566867e-08,4.2086919391e-09,-6.93865879664e-09,-8.81339364293e-09) p_ij -> (27.8996734358,7.73728667268,-10.2403125873,-24.772205612) p_k -> (-3.95208028561e-05,-1.09546799076e-05,1.44901368646e-05,3.51018413696e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00258343917315,0.00242395159091,0.000570057250153,-0.000688223348807) p_j = (31.2954757549,29.3261024536,6.91189395321,-8.46240152574) p_k = (3.7879226756e-09,-1.65463630532e-09,-3.20949890444e-09,-1.14437669786e-09) p_ij -> (31.2980593975,29.3285266164,6.91246407133,-8.46308980363) p_k -> (-1.99641643661e-07,-2.12792302889e-07,-6.40843387245e-08,5.33902388966e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.74141851287,-0.596833186087,1.71921143168,-2.05023844074) p_j = (37.5435101843,-8.17248990317,23.5440679474,-28.0785047719) p_k = (3.85389004049e-07,-7.49069664639e-08,2.32047752686e-07,-2.98441738518e-07) p_ij -> (40.2851806733,-8.76937798019,25.2634374401,-30.1289316178) p_k -> (-0.000251590767345,5.48160316596e-05,-0.000157829005019,0.000188106677827) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.0066450365,-2.11724280303,23.1413414483,-31.3291231267) p_j = (1.22451963431,-0.0664865051505,0.726441794461,-0.983519292498) p_k = (9.96342395378e-11,8.67880744568e-11,-4.76525228614e-11,-1.11467040263e-11) p_ij -> (40.2313833285,-2.18374117722,23.8679129654,-32.3128180397) p_k -> (-0.000218657603526,1.18691220383e-05,-0.000129722691559,0.000175620557965) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.0526424596,25.6444318977,9.51402131245,33.2472033991) p_j = (0.96831574816,0.57676815406,0.213960688544,0.747793225668) p_k = (4.06259916948e-08,-4.10330185612e-09,3.53225786256e-08,-1.96455983924e-08) p_ij -> (44.0209604643,26.2212013962,9.7279824994,33.9949983679) p_k -> (-2.2158938684e-06,-1.3484712138e-06,-4.6308749635e-07,-1.76271271712e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.248568653924,-0.113197414384,0.122416052463,-0.184355719168) p_j = (12.7020308022,-5.78552805335,6.25673162993,-9.41926541487) p_k = (6.18495812054e-09,1.69778720006e-09,6.1243797186e-10,-5.91575393545e-09) p_ij -> (12.9506001582,-5.8987257944,6.37914803192,-9.60362165258) p_k -> (-6.95824171615e-07,3.28372820935e-07,-3.48913329784e-07,5.12626050053e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.4271736105,-0.621928807521,0.245871534687,2.33322169592) p_j = (35.2421617946,-9.02949442054,3.57159017673,33.8780451336) p_k = (2.50737184368e-09,2.20472429487e-09,-1.32272515512e-10,1.18684784756e-09) p_ij -> (37.6693719841,-9.65143260433,3.81746541896,36.2113019945) p_k -> (-3.65764779069e-05,9.37846898985e-06,-3.70766697144e-06,-3.51637407725e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.7323242264,0.858880357634,-17.2415638968,33.5517375176) p_j = (7.85371963215,0.183816140988,-3.59256911238,6.98144475445) p_k = (9.11469526234e-09,2.45668992073e-09,-5.96738576841e-09,-6.43682255806e-09) p_ij -> (45.5860469526,1.04269612889,-20.8341340702,40.5331878723) p_k -> (-3.08499123491e-06,3.72188990183e-07,1.05510908455e-06,-5.60673004202e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.0570018769,-11.3818103591,-14.0924040121,-21.4255430837) p_j = (6.23207956649,-2.52800001104,-3.13022341656,-4.75917356583) p_k = (5.81594739223e-07,-2.50544860419e-07,-3.13020516942e-07,-4.21304960308e-07) p_ij -> (34.2890836091,-13.9098112195,-17.2226284747,-26.184718349) p_k -> (-1.58412425577e-06,5.98796412454e-07,7.32996678465e-07,1.27816726447e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.6326175779,-2.31258380439,-37.5535683451,-0.771599932039) p_j = (7.90585610051,-0.487398668563,-7.88911735782,-0.163800287811) p_k = (1.26934115654e-09,2.10423408214e-10,8.51816066736e-10,9.17255525494e-10) p_ij -> (45.5385254739,-2.7999856954,-45.4427376668,-0.93540140721) p_k -> (-5.17942811591e-05,3.22266192021e-06,5.19646535295e-05,1.18827639578e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.0294857089,-5.42282983639,13.4698610692,8.89714239806) p_j = (28.5330113422,-9.08570135758,22.5679893338,14.9086761493) p_k = (4.17302171583e-10,9.86477177797e-11,-3.38090986898e-10,-2.23835223743e-10) p_ij -> (45.5625788615,-14.5085572503,36.0379151266,23.8058613024) p_k -> (-8.18099460034e-05,2.60564145549e-05,-6.47239584985e-05,-4.27552483444e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.0963192135,-20.0054375004,-1.89059443671,-0.264894360803) p_j = (25.4821320954,-25.3680362496,-2.38829478045,-0.312795475808) p_k = (8.69796555975e-10,8.25674702305e-11,8.35064978261e-10,2.28903682329e-10) p_ij -> (45.5784742947,-45.3735015171,-4.27889609627,-0.577691363599) p_k -> (-2.29849810758e-05,2.77671771585e-05,6.87993716619e-06,1.52721738927e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.34348324405,1.21851372046,0.28602569486,-1.98124388456) p_j = (43.2526132023,22.489465069,5.27909005475,-36.5669757832) p_k = (4.87602706538e-07,2.47829265675e-07,9.44205332562e-08,-4.09172112196e-07) p_ij -> (45.5961002735,23.7079807795,5.56511621652,-38.5482229034) p_k -> (-3.33959101795e-06,-1.74217868931e-06,-3.72487505729e-07,2.82646332295e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.8152063961,8.28031549815,-19.6369163776,38.2831582026) p_j = (1.58055672654,0.298660308394,-0.708274025068,1.38105376123) p_k = (2.86342787676e-07,3.74608110326e-08,1.1515143472e-07,-2.59478379777e-07) p_ij -> (45.39576354,8.57897588552,-20.3451905914,39.6642123322) p_k -> (-1.3092732587e-07,-4.15164640444e-08,3.03927095047e-07,-6.27762009486e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.9453399642,-15.3983507974,-37.9124484641,1.43454137706) p_j = (2.50102679702,-0.943729216326,-2.31450533565,0.0870359518499) p_k = (2.30244127642e-08,-1.28880675964e-08,1.28760515519e-08,1.40793580287e-08) p_ij -> (43.446367375,-16.3420799225,-40.2269569733,1.52157633911) p_k -> (-5.90673376877e-07,-1.04153606628e-07,3.18640476493e-06,1.00387168744e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.397303215268,-0.259278970214,-0.0279705560919,0.299736398289) p_j = (18.9887069709,-12.3926582535,-1.33296665464,14.3253695846) p_k = (7.16971472338e-08,-5.73943529695e-08,-3.08989384363e-08,2.98600864685e-08) p_ij -> (19.3860107409,-12.6519375765,-1.36093722715,14.6251064226) p_k -> (-4.83101882054e-07,2.95452919019e-07,-1.44744416453e-08,-4.09787528355e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.0525041973,9.79028252617,19.7492073021,-0.65735863149) p_j = (0.149394598326,0.066278381335,0.133812982658,-0.00447301339429) p_k = (7.21192843804e-08,-2.40785153016e-08,-6.79808930918e-08,1.20132348324e-10) p_ij -> (22.2018988682,9.85656094359,19.8830203589,-0.661831647205) p_k -> (-4.7384318691e-10,-6.01714154058e-08,-1.42126127756e-07,2.44051595599e-09) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.5206550635,-1.35847936578,7.24500753816,11.3345715813) p_j = (32.0767823569,-3.2189345181,17.1371968161,26.9235011139) p_k = (8.78800318173e-10,5.25372015885e-10,5.10459958749e-10,-4.85492703455e-10) p_ij -> (45.5975953785,-4.5774396254,24.3822881657,38.2582249273) p_k -> (-0.00015795722722,2.57420534724e-05,-8.38109465437e-05,-0.00015223268317) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.0754034349,-4.14701297662,14.6776108098,5.07824968682) p_j = (16.4875946349,-4.25320704393,15.053981297,5.2085174277) p_k = (2.13001205331e-10,1.27003206025e-10,-1.56633904631e-10,6.85974782012e-11) p_ij -> (32.5631131483,-8.40024970732,29.7316971794,10.2868034682) p_k -> (-0.000115078324608,2.96869088201e-05,-0.000105072757982,-3.63536502324e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.988987282948,0.930460088611,0.32684069391,-0.0742632489103) p_j = (26.9630618383,25.3662742207,8.9139377322,-2.02498147218) p_k = (6.85575110117e-07,6.7197936284e-07,1.33378519528e-07,2.58290158649e-08) p_ij -> (27.9520505105,26.2967355981,9.24077894816,-2.09924487745) p_k -> (-7.03733562091e-07,-6.16885387217e-07,-3.88673455198e-07,1.82190375009e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.635537386,-18.6048568575,18.4929564414,8.69441142236) p_j = (0.507238662114,-0.341467078961,0.339436434462,0.159606394885) p_k = (7.24122395558e-09,4.78916826813e-09,-8.27726262115e-10,-5.36787275889e-09) p_ij -> (28.1427798565,-18.946326501,18.8323954247,8.85401901595) p_k -> (-3.80118376953e-06,2.5693769814e-06,-2.54971949687e-06,-1.20407225168e-06) } MlPMom : 0.75 8.31744e-09 nan nan 0.0304133386344 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5999537348,0,0,45.5999537348) (-1.36424205266e-12) p_1 = (45.5701869211,0,0,-45.5701869211) (2.27373675443e-12) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (5.44757056145e-07,-2.45095699872e-08,-3.21739488694e-07,-4.3891141773e-07) (0) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1701406559,0,0,0.0297668137426) (8311.99366115) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.7098326493,-5.64972592946,16.3179675136,-3.92972080596) p_j = (17.5695838266,-5.60469234567,16.1889068313,-3.89833235629) p_k = (2.82294965053e-10,2.25098503515e-10,1.46373594313e-10,8.71542340544e-11) p_ij -> (35.2795770878,-11.2544695151,32.5070223358,-7.82808880164) p_k -> (-0.000160611597511,5.12401902499e-05,-0.000147990807918,3.5639471923e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.554617369,0.718126072218,16.206706302,19.7450103738) p_j = (6.80576998416,0.195293025688,4.32014251371,5.25516263998) p_k = (9.99693738654e-10,-4.14750324588e-10,-8.68448614477e-10,-2.70498519824e-10) p_ij -> (32.3604005929,0.913420098286,20.5268593396,25.0001847175) p_k -> (-1.32387606264e-05,-1.00079429355e-06,-1.05248120743e-05,-1.17039862122e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.2623837108,-1.34042520254,-0.693246619628,20.2061095475) p_j = (21.5686458455,-1.42681855963,-0.737968032206,21.5087441658) p_k = (2.75062914533e-06,-1.73567624491e-07,6.4887037908e-08,2.74438055801e-06) p_ij -> (41.8310456462,-2.76724482659,-1.43121520284,41.7148697585) p_k -> (-1.33392771247e-05,8.90852669855e-07,6.15889988453e-07,-1.33008354126e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.43180551701,-0.0594598490216,-1.39899050533,-0.298926631311) p_j = (19.2550401389,-0.800111504406,-18.8137247141,-4.01996949172) p_k = (1.24002771073e-07,-3.06840433531e-10,-1.22420189379e-07,-1.97456404388e-08) p_ij -> (20.6868597638,-0.859571947929,-20.2127290017,-4.31889907892) p_k -> (-1.39838584712e-05,5.94195174231e-07,1.36599402989e-05,2.93614263214e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.9272893297,-4.94233091509,13.8513803631,-22.5564079102) p_j = (4.82052506089,-0.884052570421,2.48000774602,-4.03800377602) p_k = (1.11775587725e-08,-8.69762006571e-09,1.60830474076e-09,6.83393187449e-09) p_ij -> (31.7478157939,-5.82638371733,16.331388847,-26.5944129244) p_k -> (-1.39210853511e-06,2.23120447895e-07,-7.36279197611e-07,1.24499980103e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.4207815603,23.0609931924,-10.8574801246,-35.1520979407) p_j = (1.47473460941,0.780781050393,-0.374933086155,-1.19358631881) p_k = (2.077053167e-09,6.15183745697e-10,6.37320077198e-10,-1.87870246779e-09) p_ij -> (44.8955708302,23.8418214641,-11.2324700357,-36.345721156) p_k -> (-5.46584642329e-05,-4.72206776205e-05,5.68255767117e-05,3.68946333857e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0143701911755,0.00808446023518,-0.00872894153424,-0.00805912382442) p_j = (42.3577008221,23.8191575961,-25.7676060191,-23.724523818) p_k = (3.53288679476e-08,-1.1262554569e-08,2.92553026893e-08,1.62914413723e-08) p_ij -> (42.3720714171,23.827242288,-25.7763352138,-23.7325831733) p_k -> (-3.68551106078e-07,-2.42926153859e-07,2.82363538773e-07,2.4777601304e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.9997035677,-14.8144416416,-4.66762117071,-3.83876877523) p_j = (8.44551488521,-7.81981027096,-2.46379818143,-2.02657038458) p_k = (1.15543888667e-07,-8.0359756175e-09,-2.12796957735e-08,-1.13282776762e-07) p_ij -> (24.4452193754,-22.6342527704,-7.13141962172,-5.86533937798) p_k -> (-8.06943958764e-07,8.49771877753e-07,2.48298023031e-07,1.0489213631e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.0119220564,3.13451806774,-8.27082714348,-22.3235439769) p_j = (13.8229908052,1.8034799212,-4.76094979991,-12.8512992331) p_k = (3.16285074042e-07,6.28244062202e-08,1.33423562312e-07,-2.79799026257e-07) p_ij -> (37.8349135215,4.93799806912,-13.0317772375,-35.1748438274) p_k -> (-3.43594056318e-07,-1.73566130357e-08,4.27562116379e-07,3.37616068435e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.34828549734,-0.797448568584,0.282017871949,-1.04995975289) p_j = (6.12351186467,-3.62201753121,1.28063964906,-4.76847445727) p_k = (9.83743160309e-10,-1.56627630715e-10,6.07370649594e-10,-7.5783870024e-10) p_ij -> (7.47180787406,-4.41947232174,1.56265971553,-5.81844239619) p_k -> (-1.05110782465e-05,6.2217949921e-06,-2.19391675438e-06,8.18527108581e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.2242423662,5.42999465212,0.929544516028,41.863322234) p_j = (0.00334041307207,0.000409820357258,6.61929330984e-05,0.00331451734985) p_k = (1.9716041013e-08,-5.87532468871e-09,-1.12617995222e-08,-1.5078949051e-08) p_ij -> (42.2275846042,5.43040472309,0.929610771278,41.8666386262) p_k -> (-1.80520597226e-06,-2.56481161198e-07,-7.35791365059e-08,-1.88995820238e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.8972995246,8.48602411825,-18.7723644099,-28.1674855682) p_j = (10.2097795927,2.49219782526,-5.49589645995,-8.23551282144) p_k = (7.70668880217e-10,-1.82534115791e-10,3.27382459205e-10,6.73369036658e-10) p_ij -> (45.107087746,10.978225252,-24.268267935,-36.4030095827) p_k -> (-8.62792061085e-06,-3.30865495268e-06,7.06542530438e-06,1.1193680109e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.7229476623,-7.11816396746,-4.68716821413,-9.44645928811) p_j = (2.83866665824,-1.58840405401,-1.04521811739,-2.10772864593) p_k = (2.26616483953e-08,-1.10158141184e-08,-1.38239762767e-08,-1.41809671147e-08) p_ij -> (15.5616225762,-8.70657274273,-5.73238903575,-11.5541942264) p_k -> (-8.23297161023e-06,4.710239498e-06,2.69040613698e-06,6.2781633412e-06) } MlPMom : 0.001 8.31744e-09 nan nan 0.00166833736653 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5990647128,0,0,45.5990647128) (4.54747350886e-13) p_1 = (45.5962907935,0,0,-45.5962907935) (1.36424205266e-12) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (5.57158435456e-07,4.25800860704e-07,1.30961275888e-07,-3.34616636528e-07) (-1.00974195868e-28) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1953555064,0,0,0.00277391931565) (8316.59285824) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-1.00974195868e-28 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-1.00974195868e-28;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.5293741366,-16.7428909487,7.49500132022,26.8637439611) p_j = (0.337930760722,-0.173683085881,0.0779771096118,0.279196982608) p_k = (5.08844987235e-10,-3.30871057733e-10,2.18947000198e-10,-3.18603654989e-10) p_ij -> (32.8673145646,-16.9165789936,7.57298063265,27.1429491061) p_k -> (-9.66675695935e-06,4.95864509276e-06,-2.202599092e-06,-8.16275237625e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.4141727844,-27.4563528456,-32.9055454354,6.9400408189) p_j = (1.53060579178,-0.967513650238,-1.16077361958,0.2434666928) p_k = (1.25590370852e-10,8.56945045218e-11,-8.36507499579e-11,3.78310449416e-11) p_ij -> (44.9455724411,-28.4243695583,-34.0669208429,7.18363428641) p_k -> (-0.000793864859929,0.000503062493726,0.000601787849813,-0.000126774677707) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.73804759701,0.883968439956,-0.532237833602,4.62432889371) p_j = (34.7087728606,6.49290831883,-3.92233824428,33.8696961568) p_k = (1.29640776959e-09,3.66589844235e-10,6.6974329009e-10,-1.04772444671e-09) p_ij -> (39.4468567679,7.37688346731,-4.45458071591,38.4940620073) p_k -> (-3.63089186344e-05,-6.70815264936e-06,4.63868931488e-06,-3.6957840301e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.5600209741,9.83624675842,9.29893615449,21.6816214407) p_j = (9.33397764479,3.59246258173,3.39640046611,7.91718479929) p_k = (4.56617660973e-08,3.83076394372e-08,-7.58048505608e-09,2.36655424393e-08) p_ij -> (34.8940055002,13.4287119375,12.6953391836,29.598812114) p_k -> (-6.83570091908e-06,-2.55906844426e-06,-2.57054973929e-06,-5.85040768541e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.70103358423,-0.362224983791,1.56861134706,0.549333011625) p_j = (8.46311423894,-1.80291154032,7.80367214928,2.73432141231) p_k = (3.41807142476e-08,-9.12509513203e-10,-3.26187351406e-08,-1.01738641856e-08) p_ij -> (10.1641479623,-2.16513655604,9.37228364768,3.28365447651) p_k -> (-1.04967698533e-07,3.10157486361e-08,-1.83961131661e-07,-6.27473737413e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.9378829746,-12.3416461595,-2.89885174943,14.0685407974) p_j = (12.8805291802,-8.39717059159,-1.97157389831,9.56600514227) p_k = (3.54651319702e-10,1.18564526212e-10,-4.38013231929e-11,-3.31363337839e-10) p_ij -> (31.8185223258,-20.738888756,-4.87044251745,23.634628109) p_k -> (-0.000110170657871,7.20050212344e-05,1.68696717364e-05,-8.21696605477e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.7184334819,12.2401159078,-11.6774106621,41.3951197107) p_j = (0.558859682316,0.144466413767,-0.133719840616,0.523041684799) p_k = (2.86966577519e-10,-1.38902032776e-10,-3.9361192066e-11,-2.47995624704e-10) p_ij -> (45.2774186684,12.3847063588,-11.8111778901,41.9184895558) p_k -> (-0.000125503921431,-0.000124037333706,4.73873356048e-05,-0.000328160516109) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.53416956072,0.302934389684,0.638679342515,-2.43358476644) p_j = (5.61941785375,0.671463102515,1.41584258364,-5.3965159219) p_k = (4.34018942004e-09,-3.83719739865e-09,-1.77994551768e-10,-2.02026252343e-09) p_ij -> (8.15358838365,0.974397618867,2.05452217353,-7.83010162443) p_k -> (-9.64847570728e-07,-1.30505052043e-07,-2.47557598643e-07,9.34062946545e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.505564447,-3.04365054337,0.2448170687,-19.2650798173) p_j = (26.0924390454,-4.07072537011,0.327522390283,-25.7708614405) p_k = (2.56563017893e-08,6.1930842197e-09,-1.64535886077e-09,2.48431977278e-08) p_ij -> (45.5980061579,-7.11437633028,0.572339492619,-45.035943895) p_k -> (-2.63987180915e-06,4.23001768723e-07,-3.5280724231e-08,2.66205630339e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.107090235079,-0.0915495180824,0.0554228999611,-0.00391233282257) p_j = (9.96438776971,-8.53539141318,5.12520235852,-0.41038741833) p_k = (1.5321843764e-10,1.18949086128e-10,-9.59121197691e-11,-1.12125532356e-11) p_ij -> (10.0714977382,-8.62695934691,5.18063646539,-0.414300533225) p_k -> (-1.9733306118e-05,1.84157643464e-05,-1.12070054672e-05,7.82061387317e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.5069951656,15.0956985113,5.53000094803,-3.74431106723) p_j = (2.28459478481,2.08974215727,0.764536841939,-0.517527259423) p_k = (7.96928560735e-09,-1.13788075865e-09,-7.87404091345e-09,4.62836887956e-10) p_ij -> (18.7915932911,17.1854439141,6.29453914721,-4.26183913559) p_k -> (-3.33268327246e-06,-3.24664495821e-06,-1.3651078028e-06,8.09401923707e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.128995423,-11.4766424754,-1.56815686693,-3.59723386839) p_j = (12.1143853176,-11.4628115015,-1.56636821241,-3.59287833486) p_k = (7.81532361837e-09,-2.3736844974e-09,4.99000511381e-09,-5.52672981011e-09) p_ij -> (24.2433884431,-22.9394612653,-3.1345260755,-7.19011448748) p_k -> (-7.69459407657e-06,7.28600306132e-06,1.00115297252e-06,2.27870355207e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.27929128484,0.827153025798,1.94713817788,2.50563806624) p_j = (13.3882084971,3.3771956061,7.94908970645,10.2298900013) p_k = (1.64596688617e-10,-1.49592907663e-10,-2.0555558759e-12,-6.8626885316e-11) p_ij -> (16.6675045473,4.20434983541,9.89623071451,12.7355317102) p_k -> (-4.76522941106e-06,-1.20366091538e-06,-2.8301825461e-06,-3.64274878528e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00192328645425,-0.0013417925915,-0.00128071290412,0.000508328519503) p_j = (27.6412598834,-19.2580141617,-18.4634646057,7.22970353767) p_k = (1.33555790793e-09,8.32365864839e-10,9.48315863771e-10,-4.37706317617e-10) p_ij -> (27.6431948641,-19.2593641099,-18.4647531384,7.23021492847) p_k -> (-1.16928342031e-05,8.15640431107e-06,7.8207244254e-06,-3.06272020634e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.57077274976,-6.91770916426,-1.48550676564,-2.69354220247) p_j = (5.78398384835,-5.28502479584,-1.13501326297,-2.05784522213) p_k = (1.30364059175e-07,-1.13801105271e-07,-6.35876785051e-08,-8.38751609544e-10) p_ij -> (13.3547570991,-12.2027344181,-2.62052012535,-4.7513876047) p_k -> (-3.70610584888e-07,3.44176130262e-07,3.31556828659e-08,1.79268195843e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.81306182807,4.67510108484,-4.69296578308,1.59289468531) p_j = (28.1629160132,19.3254200036,-19.3990859748,6.58433317761) p_k = (2.06293666384e-07,1.52200093945e-07,6.17022916698e-08,1.24840038639e-07) p_ij -> (34.9759781376,24.0005212918,-24.0920519622,8.17722793211) p_k -> (-9.0047389989e-08,-5.11353004384e-08,2.66092902379e-07,5.56567441024e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.002329102561,0.00128790718625,-0.00193273954234,0.000174733170066) p_j = (17.056977267,9.61512715067,-14.0389699094,1.18200137409) p_k = (3.50490701634e-09,-2.37854975091e-09,-1.832226499e-09,-1.8082647991e-09) p_ij -> (17.0593068932,9.61641563684,-14.0409031485,1.18217627725) p_k -> (-5.20087736433e-07,-5.81370844799e-07,4.97729276461e-07,-1.71799381499e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.8857162717,-10.0485775316,-31.9400833662,29.8928869362) p_j = (0.660901752679,-0.147957930358,-0.470287347256,0.440147007884) p_k = (9.59006221635e-09,3.49114056918e-10,-9.58257532181e-09,1.47177299593e-10) p_ij -> (45.5467174316,-10.1965577163,-32.4104414503,30.3331001471) p_k -> (-9.93976184134e-05,2.22546762085e-05,7.07272665501e-05,-6.62028527962e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.3825799239,3.77909858191,5.99646157606,-13.6522755463) p_j = (2.01165876861,0.494320473585,0.783774755969,-1.78552944603) p_k = (3.00097505779e-07,-7.1414971467e-08,1.69894501281e-07,-2.36842296182e-07) p_ij -> (17.3942391628,4.27341933007,6.78023645735,-15.437805442) p_k -> (-1.70160053159e-07,-3.45981493233e-07,4.45706027641e-08,2.1284742413e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.2269655072,17.389853935,17.8458967998,8.18356079259) p_j = (19.3409674073,12.8235167021,13.1597798619,6.03743601436) p_k = (1.29743803925e-07,2.97324658242e-09,8.29507824535e-08,-9.97185147242e-08) p_ij -> (45.5679334812,30.2133710965,31.0056770526,14.2209971251) p_k -> (-4.36875183141e-07,-4.56438968399e-07,-3.07965793311e-07,-4.17889643778e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.285659671,6.84946376334,-4.99452602839,11.4986794086) p_j = (7.92724310263,3.80052369518,-2.77168544619,6.38082773924) p_k = (7.92419550853e-08,1.7961983135e-08,-2.31473761022e-08,7.3626446291e-08) p_ij -> (22.2129041888,10.6499881709,-7.76621197706,17.8795082703) p_k -> (-1.33591246332e-06,-6.94385851929e-07,4.79329994807e-07,-1.04881800311e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0109627044473,-0.00675609498692,-0.00126134746871,-0.0085407887093) p_j = (33.7352293764,-20.8150296626,-3.97769022817,-26.2483946494) p_k = (9.4505204984e-08,5.58039524726e-08,3.13408921299e-09,7.62058395248e-08) p_ij -> (33.7461924144,-20.8217859955,-3.97895161899,-26.2569357398) p_k -> (-2.39099076538e-07,2.93725191725e-07,4.64827718538e-08,3.77872707347e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.7372732687,-6.64960409594,0.0578255330753,1.081791418) p_j = (28.5934690047,-28.2204260507,0.245650926384,4.59713811648) p_k = (3.24900214471e-09,1.39161831357e-10,3.15240536961e-09,-7.7394623585e-10) p_ij -> (35.3307525743,-34.8700404294,0.303476439514,5.6789312352) p_k -> (-1.02977255487e-05,1.02828959676e-05,2.30984492366e-08,-1.7014938658e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.7703177303,12.9177352031,2.3432533598,-39.6535083467) p_j = (3.80583292144,1.17204745178,0.196592897211,-3.6155248899) p_k = (5.45845741726e-10,-1.37338260317e-10,-3.35780690735e-10,4.07846428376e-10) p_ij -> (45.5762180756,14.0898152415,2.53986406324,-43.2691327747) p_k -> (-6.74233148104e-05,-3.25867526705e-05,-1.78065609575e-05,9.95385648395e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.973113711819,0.345371633237,0.011837417917,-0.909685993419) p_j = (43.6547417353,15.4931138493,0.531143852661,-40.8095305711) p_k = (2.02759655996e-06,7.8547505071e-07,7.11340504558e-08,-1.86791774485e-06) p_ij -> (44.627925301,15.8385102704,0.542982118059,-41.7192818671) p_k -> (-6.78263642051e-05,-2.40023546283e-05,-7.76347725662e-07,6.34347174326e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.873458574738,0.547073694975,0.0329037697198,-0.680115869531) p_j = (43.4628703563,27.2167747033,1.68496469381,-33.8441895802) p_k = (3.51428076536e-08,-2.23800080676e-08,1.55759996949e-08,2.21707106873e-08) p_ij -> (44.3363303914,27.7638496653,1.71786840721,-34.5243069804) p_k -> (-1.42524828917e-06,-1.2894454855e-06,7.18925701193e-08,1.55281826864e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.43049673642,1.53904344041,-2.49718701025,3.32034691798) p_j = (41.1649301803,14.4824943538,-23.0278735665,30.8954021344) p_k = (1.35019601464e-09,-1.17716559861e-09,-1.11214349556e-10,-6.51875604808e-10) p_ij -> (45.5954279999,16.0215967216,-25.5250840349,34.2158088901) p_k -> (-1.08186766568e-06,-5.8928594532e-05,2.34580370186e-05,-5.98383931596e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.0651462664,0.453469900817,3.67371969994,10.4276368614) p_j = (16.8861933463,0.691994055059,5.60610983895,15.9133969481) p_k = (1.21048558355e-07,1.20228480141e-07,1.29172994214e-08,-5.56855346587e-09) p_ij -> (27.9513397961,1.14546396259,9.27982959997,26.3410339832) p_k -> (-6.23339211359e-08,1.13510245536e-07,-4.81541189146e-08,-1.79213323293e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.8971489403,-6.87370895482,-3.49245766869,-9.06074045232) p_j = (1.2381060049,-0.715407797591,-0.363646773065,-0.942793289616) p_k = (1.48387093779e-10,1.95642291076e-11,1.00393367895e-10,1.07503931435e-10) p_ij -> (13.1352931572,-7.58913883898,-3.8561156718,-10.0035628621) p_k -> (-3.82119105629e-05,2.20865822285e-05,1.12301409574e-05,2.9120237893e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.5766809764,11.2369932082,2.49585270444,-31.5419436355) p_j = (7.24741379537,2.42383053865,0.53887873699,-6.8087929876) p_k = (1.33459792764e-09,-1.24267380326e-10,3.04347940861e-10,-1.29347638301e-09) p_ij -> (40.8245743635,13.6609849396,3.03476683807,-38.3511871091) p_k -> (-0.000479590399792,-0.000161192903636,-3.53963337532e-05,0.000450484689647) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.0935343277,11.5655048448,-0.493595797102,-18.8180689754) p_j = (16.4558694897,8.61500046875,-0.364102864444,-14.0158780206) p_k = (1.10699565231e-07,-8.88136534766e-08,6.57823251841e-08,6.26211503279e-09) p_ij -> (38.5494042283,20.1805057333,-0.857698765865,-32.8339474863) p_k -> (-3.00187647184e-07,-5.08595734416e-07,1.70101959185e-07,4.96459588106e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.89279518927,-0.287175217166,7.10340487124,-5.34237549301) p_j = (16.2827538356,-0.527773427928,13.0045496637,-9.78423301661) p_k = (2.92674830005e-09,-5.89682409218e-10,-1.17601411958e-09,2.61440610204e-09) p_ij -> (25.1755571662,-0.81494889625,20.1079611254,-15.1266135107) p_k -> (-8.13843077196e-06,2.50565686866e-07,-6.59168343553e-06,5.00373987133e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.0203551542,0.69712324735,2.30225087915,-1.82652821631) p_j = (37.147578447,8.65798424686,28.207902521,-22.5675902264) p_k = (1.44247534738e-10,3.16947075945e-11,-9.9876097892e-11,-9.91368931942e-11) p_ij -> (40.1683633899,9.35520796088,30.5105205089,-24.3943772157) p_k -> (-0.000429788573712,-0.000100466641536,-0.000367108838184,0.000258772878809) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.03555945292,0.421973172306,-0.723509357748,-2.91772069316) p_j = (17.7260575827,2.43397146602,-4.2456704714,-17.0371119201) p_k = (2.7866203947e-09,-3.66064733934e-10,-4.81437111773e-10,2.72019687847e-09) p_ij -> (20.7616194835,2.85594575077,-4.96918060708,-19.9548405541) p_k -> (-2.44508771274e-06,-1.11280552884e-06,7.77446105271e-07,7.94363472245e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.5479406296,-27.6181920297,6.22356596605,33.089663473) p_j = (0.0223551081109,-0.0141779008993,0.00319305544013,0.0169865353059) p_k = (8.01599805311e-08,-4.21208727263e-08,-2.7980324285e-08,-6.21977161985e-08) p_ij -> (43.5702961258,-27.6323701768,6.22675907698,33.1066503033) p_k -> (-3.07957172652e-07,2.04029852569e-07,-8.34746058942e-08,-3.5719168423e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00335728999494,0.000135704455416,-0.00131767567147,-0.00308491673075) p_j = (39.7679555128,1.56771080641,-15.6100209519,-36.5425753659) p_k = (8.46789349823e-10,-3.32267035653e-10,4.26266530614e-11,7.77706072184e-10) p_ij -> (39.7713664026,1.56784862424,-15.6113596674,-36.5457095369) p_k -> (-5.35990222481e-05,-2.1137080416e-06,2.10398676108e-05,4.92550725433e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.040612301737,0.0297987888443,-0.998730530789) b = (0,0,1) a' = (0.0097695822237,-0.0298219704593,0.999507481383) -> rel. dev. (inf,-inf,-0.000492518616746) m_ct = -0.998730530789 m_st = -0.0503718856999 m_n = (0,-4.11676934142e-06,-1.2283067008e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.040612301737,0.0297987888443,-0.998730530789) b = (0,0,1) a' = (0.0097695822237,-0.0298219704593,0.999507481383) -> rel. dev. (inf,-inf,-0.000492518616746) m_ct = -0.998730530789 m_st = -0.0503718856999 m_n = (0,-4.11676934142e-06,-1.2283067008e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0406123017375,0.0297987884138,-0.998730530802) b = (0,0,1) a' = (0.00976958196858,-0.0298219700285,0.999507481399) -> rel. dev. (inf,-inf,-0.000492518601398) m_ct = -0.998730530802 m_st = -0.0503718854456 m_n = (0,-4.11676934142e-06,-1.22830668303e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.040612301737,0.0297987888443,-0.998730530789) b = (0,0,1) a' = (0.0097695822237,-0.0298219704593,0.999507481383) -> rel. dev. (inf,-inf,-0.000492518616746) m_ct = -0.998730530789 m_st = -0.0503718856999 m_n = (0,-4.11676934142e-06,-1.2283067008e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0406123016217,0.0297987879769,-0.99873053082) b = (0,0,1) a' = (0.00976958173225,-0.0298219695913,0.999507481414) -> rel. dev. (inf,-inf,-0.000492518586042) m_ct = -0.99873053082 m_st = -0.0503718850938 m_n = (0,-4.11676934231e-06,-1.22830666527e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.040612301737,0.0297987888443,-0.998730530789) b = (0,0,1) a' = (0.0097695822237,-0.0298219704593,0.999507481383) -> rel. dev. (inf,-inf,-0.000492518616746) m_ct = -0.998730530789 m_st = -0.0503718856999 m_n = (0,-4.11676934142e-06,-1.2283067008e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0406123017375,0.0297987884138,-0.998730530802) b = (0,0,1) a' = (0.00976958196858,-0.0298219700285,0.999507481399) -> rel. dev. (inf,-inf,-0.000492518601398) m_ct = -0.998730530802 m_st = -0.0503718854456 m_n = (0,-4.11676934142e-06,-1.22830668303e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0406123017375,0.0297987884138,-0.998730530802) b = (0,0,1) a' = (0.00976958196858,-0.0298219700285,0.999507481399) -> rel. dev. (inf,-inf,-0.000492518601398) m_ct = -0.998730530802 m_st = -0.0503718854456 m_n = (0,-4.11676934142e-06,-1.22830668303e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0406123017375,0.0297987884138,-0.998730530802) b = (0,0,1) a' = (0.00976958196858,-0.0298219700285,0.999507481399) -> rel. dev. (inf,-inf,-0.000492518601398) m_ct = -0.998730530802 m_st = -0.0503718854456 m_n = (0,-4.11676934142e-06,-1.22830668303e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.040612301737,0.0297987888443,-0.998730530789) b = (0,0,1) a' = (0.0097695822237,-0.0298219704593,0.999507481383) -> rel. dev. (inf,-inf,-0.000492518616746) m_ct = -0.998730530789 m_st = -0.0503718856999 m_n = (0,-4.11676934142e-06,-1.2283067008e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.040612301737,0.0297987888443,-0.998730530789) b = (0,0,1) a' = (0.0097695822237,-0.0298219704593,0.999507481383) -> rel. dev. (inf,-inf,-0.000492518616746) m_ct = -0.998730530789 m_st = -0.0503718856999 m_n = (0,-4.11676934142e-06,-1.2283067008e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.0512870413,11.3388282595,33.6336337614,-26.0907175773) p_j = (1.18140940901,0.305966973139,0.902269936616,-0.698585259304) p_k = (7.33832232418e-09,2.72596987481e-09,6.67202918882e-09,1.37989249323e-09) p_ij -> (45.23270964,11.644797917,34.5359128598,-26.7893155155) p_k -> (-1.3182336545e-05,-2.6815828722e-06,-9.15511741084e-06,1.26802221274e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.5493478613,-11.2243154234,19.8084160343,-6.0177389593) p_j = (20.2706022474,-9.66649604435,17.0497036138,-5.17337185795) p_k = (3.88161188615e-09,1.45098426528e-09,-1.25545622849e-09,3.37422636086e-09) p_ij -> (43.8199513343,-20.8908125072,36.8581213022,-11.1911117322) p_k -> (-1.22170822792e-06,1.04095979303e-06,-1.65541035457e-06,9.18305347319e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.00603279111,-0.409458543171,-1.19789336571,1.55613712275) p_j = (41.5230308859,-8.47429124754,-24.7968212511,32.2097211668) p_k = (9.21996413489e-08,2.00338224371e-09,5.56819557556e-08,-7.34593777861e-08) p_ij -> (43.5290639047,-8.88374983747,-25.9947147543,33.7658584682) p_k -> (-1.35538027024e-07,4.87592766163e-08,1.93158070871e-07,-2.5204917975e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00246780921959,9.25754145755e-05,0.00242406810116,0.000453217362717) p_j = (40.0210721704,2.13288067097,39.3424782395,7.0218547182) p_k = (7.36826377505e-08,-5.37952385232e-08,4.7241972123e-08,-1.74183663214e-08) p_ij -> (40.0235448883,2.13297418835,39.34490743,7.02230915451) p_k -> (-4.83503418636e-06,-9.95758632438e-07,-5.0751701437e-06,-1.23636339255e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.2828732609,5.18143141696,-10.9983129625,25.5364602155) p_j = (17.0737716864,3.12925917276,-6.63985826964,15.4153721586) p_k = (6.1542208429e-10,-4.2932408578e-10,1.88377681498e-10,3.98668292092e-10) p_ij -> (45.3568317279,8.310724866,-17.6382439083,40.9520010308) p_k -> (-0.000186779953832,-3.42767083987e-05,7.26763452121e-05,-0.000168656172985) } MlPMom : 0.75 8.31744e-09 nan nan 0.926079146124 MasslessPropMomenta produced a nan ! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5992994593,0,0,45.5992994593) (-1.81898940355e-12) p_1 = (45.5954493515,0,0,-45.5954493515) (-1.36424205266e-12) p_2 = (-nan,nan,nan,nan) (-nan) p_3 = (2.27880740146e-07,-1.2510716475e-07,1.85519959105e-07,-4.31297325671e-08) (-6.31088724177e-30) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_6 = (-nan,-nan,-nan,-nan) (-nan) p_in = (91.1947488108,0,0,0.00385010781335) (8316.48219584) p_out = (-nan,nan,nan,nan) (-nan) diff = (-nan,nan,nan,nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-2.52435489671e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 4.990464e-08 < -nan < nan sexp = 0.680272108844 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-2.52435489671e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.358159376193,0.192221155335,0.0719064478113,-0.293527901501) p_j = (40.2542705481,21.6018793369,8.07137407378,-32.9942120233) p_k = (6.02834395724e-09,3.28996429926e-09,-2.4809340858e-11,-5.05138105009e-09) p_ij -> (40.6129179355,21.7943623707,8.14337850944,-33.2881399082) p_k -> (-0.000488005221783,-0.000261875173344,-9.79878761536e-05,0.000399978372279) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.4303229928,17.3374641068,-15.049185919,-25.6589454754) p_j = (8.96078401691,4.51240381686,-3.91670229806,-6.67782188289) p_k = (8.93200812955e-09,5.41139086457e-09,-1.1325986401e-09,-7.01532881565e-09) p_ij -> (43.3912433172,21.8499365578,-18.9659478091,-32.3368689383) p_k -> (-0.000136298567863,-6.86287350842e-05,5.95909625822e-05,0.000101573005892) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00124479262358,0.000169740969837,0.000260252527246,-0.00120539010322) p_j = (35.1714197526,4.94925533167,7.6482330361,-33.9711373154) p_k = (5.51391477867e-07,-2.66218197354e-08,2.02795974204e-07,-5.12052373705e-07) p_ij -> (35.1726651994,4.94942554049,7.64849313197,-33.9723434113) p_k -> (-1.02794292189e-07,-4.94471260826e-07,3.59453843135e-07,1.9381135985e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.48995458329,-3.16962885715,2.94099854716,1.20982338115) p_j = (33.8038391968,-23.8360349065,22.1792820491,9.08968823253) p_k = (1.16342589036e-08,8.99282369347e-09,7.37965969866e-09,-1.60385575627e-10) p_ij -> (38.293798895,-27.0056729944,25.1202840341,10.2995140651) p_k -> (-5.10328629488e-06,9.23975565215e-06,-3.43044323969e-06,-2.45155018952e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.00185834623,0.869861327522,4.1579755416,5.56602200562) p_j = (31.1051450106,3.86135147796,18.4716819885,24.7268472598) p_k = (5.38139591403e-10,-6.61100418022e-11,-1.44634521467e-10,5.14105574846e-10) p_ij -> (38.1071571779,4.73123191863,22.6297489296,30.2929915344) p_k -> (-0.000153820605085,-1.91132132259e-05,-9.13996164886e-05,-0.000122268465709) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.1493947531,-0.981860673765,-18.8909922475,-27.2222103074) p_j = (0.0826545529379,-0.00244833839232,-0.0470989706425,-0.0678783303034) p_k = (1.1545708275e-06,-1.81400043175e-07,-5.19772605575e-07,-1.01487154793e-06) p_ij -> (33.2320506523,-0.984309051084,-18.9380919862,-27.2900897428) p_k -> (-1.91679024653e-07,-1.42472678211e-07,2.48310142226e-07,9.02363623823e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.53255146992,0.258084891669,-0.0595201170543,-3.52260832793) p_j = (1.65698701722,0.120971423841,-0.0284751230458,-1.6523199016) p_k = (9.48250217696e-09,7.05087021565e-12,-2.45599990349e-10,9.47932849747e-09) p_ij -> (5.18953849689,0.379056318581,-0.0879952399735,-5.17492830441) p_k -> (-2.64691824015e-10,-3.06416483853e-09,-3.72186725883e-10,8.43603435996e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.8575449175,13.0056063171,-2.95365734331,31.1201455727) p_j = (2.40925110545,0.932730558071,-0.216148214485,2.2108334502) p_k = (4.84006963679e-09,-1.39018947092e-09,2.31803322655e-10,-4.63032569847e-09) p_ij -> (36.2667987912,13.938344575,-3.16980713666,33.3310001018) p_k -> (-2.76342480632e-06,-7.70123083704e-06,1.57909606746e-06,-2.10835919496e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.38121737894,0.763678575357,1.86491002312,2.71505738482) p_j = (11.5421622849,2.6189187811,6.35836625619,9.27005680574) p_k = (2.76805897529e-09,-1.25033829017e-09,2.45866305149e-09,-2.31905946117e-10) p_ij -> (14.9233813779,3.38259977612,8.22327621421,11.9851182227) p_k -> (-1.71131538718e-06,-2.42091804292e-06,6.75567672914e-08,-4.03232840895e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.4106921929,5.15731653178,-3.19906576763,-8.45875737572) p_j = (0.209419509319,0.103726217618,-0.064349195865,-0.17016634113) p_k = (1.4498647407e-09,-7.08658850468e-10,-1.14879167987e-09,-5.29329536839e-10) p_ij -> (10.6201128406,5.26104331476,-3.26341531257,-8.62892464241) p_k -> (-1.13686905756e-06,-5.66068553809e-07,3.47924449917e-07,9.25024663978e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.436489138,-10.2640675056,-8.37759832098,15.5600402602) p_j = (16.3456103371,-8.21087419874,-6.70389327949,12.4426017007) p_k = (3.1649335164e-09,-1.71325780514e-09,1.97042085099e-09,-1.7885749137e-09) p_ij -> (36.782099654,-18.4749417848,-15.0814919234,28.0026424177) p_k -> (-1.75814108161e-07,7.87491405418e-08,3.24891639814e-07,-4.58589997976e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.47548721832,-5.92044997825,1.75845370829,-7.1861652246) p_j = (33.0642657738,-20.6342173629,6.13540130165,-25.0964458808) p_k = (7.43018125024e-09,-4.58487189545e-09,-1.04119378008e-09,5.75347376915e-09) p_ij -> (42.5397608424,-26.5546722622,7.89385740258,-32.2826214686) p_k -> (-7.84291104594e-06,4.91645475975e-06,-2.39367963495e-06,1.03689951096e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.2737340381,-0.378203816869,-1.02628972472,-10.2153464141) p_j = (35.321857183,-1.31084933794,-3.52764623098,-35.1208055281) p_k = (4.52637991615e-10,-9.42586092801e-11,1.05876290226e-10,4.29866823394e-10) p_ij -> (45.5957043316,-1.68905731364,-4.55394731374,-45.3362647639) p_k -> (-0.000113109987169,4.15873368997e-06,1.13581482846e-05,0.000112822237355) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.118674263225,0.0473849190978,-0.0201779759028,-0.106916320001) p_j = (44.60979959,17.8091677542,-7.58744518724,-40.1907755448) p_k = (9.15633898185e-09,-3.44750158104e-09,7.39588287289e-09,4.15381676316e-09) p_ij -> (44.7284764816,17.8565537228,-7.60762361046,-40.2976942332) p_k -> (-2.61925589484e-06,-1.05297315933e-06,4.54710313402e-07,2.37255979485e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.558878474209,0.331842199262,0.125975431757,-0.431689812617) p_j = (12.6705149531,7.52332188664,2.8564299525,-9.78684754618) p_k = (4.79313323439e-09,1.75343650008e-09,3.32896655394e-09,-2.96943884038e-09) p_ij -> (13.2294016552,7.85516897182,2.9824072382,-10.2185437144) p_k -> (-8.22312780535e-06,-4.88416396349e-06,-1.85061363189e-06,6.35267936566e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.894744010013,-0.581731288684,0.078995757984,-0.675214944622) p_j = (25.9553466943,-16.8806388858,2.32067025285,-19.5790332347) p_k = (5.08259270126e-08,-2.94293513984e-08,5.11987391567e-09,-4.11214666897e-08) p_ij -> (26.8500970817,-17.4623848189,2.39966490928,-20.2542449392) p_k -> (-6.32656979249e-06,1.46149780225e-05,1.10667743725e-06,-3.28124821181e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.6456367026,-10.3663122029,-8.0985523157,3.62717834144) p_j = (14.4913179798,-11.0086970832,-8.60041428209,3.85224084119) p_k = (1.99665377016e-08,-1.18598939294e-08,1.21640433823e-08,-1.04900726421e-08) p_ij -> (28.1369548042,-21.3750093788,-16.6989666716,7.47941921601) p_k -> (-1.01889717996e-07,8.09187525874e-08,8.59884110582e-08,-4.38715761497e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.5194575529,3.05515137333,6.90217425174,-39.81020574) p_j = (5.07220379643,0.37330710028,0.871252134572,-4.98285188214) p_k = (1.02217772475e-09,-1.10878738198e-10,-6.99932126751e-11,1.0137319635e-09) p_ij -> (45.5916653412,3.42845987294,7.77342849702,-44.7930733583) p_k -> (-3.99088405345e-06,-1.39943606348e-06,-2.11077897694e-06,1.57371842704e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0011066064803,-7.42129149986e-05,-0.000645181459999,0.000895997337703) p_j = (32.9680887214,-1.10906203986,-19.4057904508,26.6285589604) p_k = (3.85654128203e-08,3.58825764055e-08,5.98351789645e-09,1.28034884372e-08) p_ij -> (32.9691960672,-1.10913699698,-19.4064366225,26.6294559099) p_k -> (-7.00806744192e-07,7.80091904073e-07,9.96156147792e-07,-9.39341353146e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.0209031621,3.43591689988,-0.664527565731,9.38996157369) p_j = (35.57898808,12.287101057,-2.5297350758,33.2940232003) p_k = (1.15182401681e-10,-6.34964641711e-11,-9.09521937974e-11,-3.10380255951e-11) p_ij -> (45.6002345435,15.7232136692,-3.1942245817,42.6844101723) p_k -> (-0.000343301213487,-0.000195712352624,-3.8059923366e-05,-0.000425398346135) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.0722197636,-9.08188231144,-8.42263883467,-14.5026940757) p_j = (26.5231440961,-12.7235483883,-11.7228450355,-20.1038153947) p_k = (2.14300674466e-10,-3.27145701625e-11,2.0806183452e-10,3.95446639608e-11) p_ij -> (45.59587561,-21.8056978232,-20.145807108,-34.6069627557) p_k -> (-0.000511750157816,0.000267123393206,0.000323238101657,0.000453285343756) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.3322470835,13.6337506157,-2.77799784038,-3.4375687065) p_j = (0.0426521733031,0.0405426132565,-0.00841659802708,-0.0102306048439) p_k = (1.58595004553e-08,-7.80540694283e-09,2.85778359196e-10,1.38028202721e-08) p_ij -> (14.3748993048,13.6742935082,-2.786414482,-3.44779950254) p_k -> (-3.21166657713e-08,-2.87071538096e-07,4.38762199906e-08,2.04998458875e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.20520719616,0.474687393155,-0.855898291518) b = (0,0,1) a' = (0.330502126156,-0.457754122371,0.825366287208) -> rel. dev. (inf,-inf,-0.174633712792) m_ct = -0.855898291518 m_st = -0.517144191281 m_n = (0,-1.17550523981e-06,-6.51943722119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207198622,0.474687393028,-0.855898290998) b = (0,0,1) a' = (0.330502124731,-0.457754122732,0.825366287578) -> rel. dev. (inf,-inf,-0.174633712422) m_ct = -0.855898290998 m_st = -0.517144192142 m_n = (0,-1.17550523981e-06,-6.51943722341e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207194779,0.474687392952,-0.855898291962) b = (0,0,1) a' = (0.330502126679,-0.457754121951,0.825366287231) -> rel. dev. (inf,-inf,-0.174633712769) m_ct = -0.855898291962 m_st = -0.517144190548 m_n = (0,-1.17550524092e-06,-6.51943722119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207193682,0.474687393407,-0.855898291973) b = (0,0,1) a' = (0.330502127717,-0.457754122106,0.82536628673) -> rel. dev. (inf,-inf,-0.17463371327) m_ct = -0.855898291973 m_st = -0.517144190529 m_n = (0,-1.17550523981e-06,-6.51943722119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.20520719616,0.474687393155,-0.855898291518) b = (0,0,1) a' = (0.330502126156,-0.457754122371,0.825366287208) -> rel. dev. (inf,-inf,-0.174633712792) m_ct = -0.855898291518 m_st = -0.517144191281 m_n = (0,-1.17550523981e-06,-6.51943722119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207198622,0.474687393028,-0.855898290998) b = (0,0,1) a' = (0.330502124731,-0.457754122732,0.825366287578) -> rel. dev. (inf,-inf,-0.174633712422) m_ct = -0.855898290998 m_st = -0.517144192142 m_n = (0,-1.17550523981e-06,-6.51943722341e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207194779,0.474687392952,-0.855898291962) b = (0,0,1) a' = (0.330502126679,-0.457754121951,0.825366287231) -> rel. dev. (inf,-inf,-0.174633712769) m_ct = -0.855898291962 m_st = -0.517144190548 m_n = (0,-1.17550524092e-06,-6.51943722119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207194779,0.474687392952,-0.855898291962) b = (0,0,1) a' = (0.330502126679,-0.457754121951,0.825366287231) -> rel. dev. (inf,-inf,-0.174633712769) m_ct = -0.855898291962 m_st = -0.517144190548 m_n = (0,-1.17550524092e-06,-6.51943722119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207194779,0.474687392952,-0.855898291962) b = (0,0,1) a' = (0.330502126679,-0.457754121951,0.825366287231) -> rel. dev. (inf,-inf,-0.174633712769) m_ct = -0.855898291962 m_st = -0.517144190548 m_n = (0,-1.17550524092e-06,-6.51943722119e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207198622,0.474687393028,-0.855898290998) b = (0,0,1) a' = (0.330502124731,-0.457754122732,0.825366287578) -> rel. dev. (inf,-inf,-0.174633712422) m_ct = -0.855898290998 m_st = -0.517144192142 m_n = (0,-1.17550523981e-06,-6.51943722341e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.205207198622,0.474687393028,-0.855898290998) b = (0,0,1) a' = (0.330502124731,-0.457754122732,0.825366287578) -> rel. dev. (inf,-inf,-0.174633712422) m_ct = -0.855898290998 m_st = -0.517144192142 m_n = (0,-1.17550523981e-06,-6.51943722341e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.06021579323,0.00593600620147,-0.222857333418,-1.03651189139) p_j = (30.4371845411,0.153402002626,-6.39704693013,-29.7569565176) p_k = (1.15023931592e-08,4.87937404634e-09,-1.04134699353e-08,2.37497386836e-10) p_ij -> (31.4974009442,0.159337930661,-6.61990425696,-30.7934691987) p_k -> (-5.98330919033e-07,8.30461035078e-08,-1.69996239308e-08,7.89962436798e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.95749823321,-1.17544517382,0.293779099844,1.53747254183) p_j = (15.2669495322,-9.1666719278,2.29242893669,11.9915238129) p_k = (4.14258505599e-08,-3.55653135359e-08,7.79577276436e-09,1.97594405859e-08) p_ij -> (17.2244538813,-10.342120746,2.58620895072,13.5290011918) p_k -> (-6.07450570378e-06,3.60877800532e-06,-9.06390060562e-07,-4.81731597546e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.8011935649,7.11068007286,37.0032591782,3.02113786938) p_j = (7.32172386638,1.37734321266,7.16723833491,0.584175231104) p_k = (6.27082989139e-09,2.89175772129e-09,5.35922369171e-09,-1.49658367334e-09) p_ij -> (45.1229697874,8.4880329727,44.1705488376,3.6053174721) p_k -> (-5.23498001002e-05,-9.68429039361e-06,-5.13191052605e-05,-4.37311925272e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.9568901937,-13.5541154686,-1.32977067242,36.4987254214) p_j = (0.180235097238,-0.0626673875933,-0.00612368121653,0.16887862309) p_k = (1.00070155922e-07,6.28036382281e-09,-6.88685056984e-08,-7.23306426043e-08) p_ij -> (39.1371254372,-13.616782909,-1.33589435565,36.667604189) p_k -> (-4.61307188004e-08,5.90209827678e-08,-6.68622186506e-08,-2.16878486725e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.408469458,-14.7955776697,7.72755721176,-20.4641882339) p_j = (9.96158987011,-5.58122206462,2.91492191663,-7.71922685414) p_k = (1.22629662479e-07,-7.29981130117e-08,2.84839763102e-08,-9.43290660943e-08) p_ij -> (36.3702007525,-20.3768789507,10.6425205434,-28.1835246818) p_k -> (-0.00014130182624,7.91433869463e-05,-4.13865454334e-05,0.000109499484946) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.4235237216,4.85600405916,2.68540862936,8.82369830889) p_j = (8.22142596891,3.83152569301,2.11666624584,6.95923701492) p_k = (8.04466298355e-09,-7.32512930308e-09,1.2579871031e-09,-3.07839884728e-09) p_ij -> (18.6449514549,8.68753068722,4.80207533792,15.7829369182) p_k -> (-1.75632963639e-06,-9.42370878221e-07,-4.61464842783e-07,-1.59747397355e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.0189038654,2.33944694419,-1.21392166712,-27.8946653681) p_j = (5.6162671631,0.470425650292,-0.24314105255,-5.59124663948) p_k = (6.18857394097e-10,5.35658319955e-10,1.78957049577e-10,2.53039271234e-10) p_ij -> (33.6352928311,2.80988267174,-1.45706803783,-33.4860334459) p_k -> (-0.000121802042809,-1.00767242324e-05,5.3183328077e-06,0.000121438583673) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.2457111326,-13.1268781791,5.14138408526,-35.5525759825) p_j = (0.71054210017,-0.243966305441,0.0955388479982,-0.660471684818) p_k = (3.34229567681e-08,-4.46230836049e-09,4.42667227336e-09,-3.28266113905e-08) p_ij -> (38.9562638401,-13.370848187,5.23692435979,-36.2130575123) p_k -> (-1.05739066036e-05,3.69795090549e-06,-1.42211027754e-06,9.8120950156e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.911346661,-2.84097646533,-6.91822985307,12.9002018461) p_j = (27.3443317347,-5.18229103102,-12.6826905179,23.6644395436) p_k = (3.18197418612e-10,-7.68750789045e-11,-2.79989335172e-12,-3.08760002639e-10) p_ij -> (42.2557092341,-8.02327319583,-19.6009360479,36.5646736093) p_k -> (-3.08381023366e-05,5.69940657336e-06,1.56768819579e-05,-3.22199169034e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.8182132128,-14.9130841925,-7.86459670203,5.7651331883) p_j = (19.0387512458,-15.9342768435,-8.40282424342,6.1616081674) p_k = (6.69700183803e-09,5.48361254113e-09,3.41959924424e-09,-1.75674436315e-09) p_ij -> (36.8569693024,-30.8473651196,-16.2674231004,11.9267429336) p_k -> (-4.83699591314e-06,4.08907128779e-06,2.1583203722e-06,-1.57965180669e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.8159793151,-3.71462614279,3.9946929813,24.2090233172) p_j = (16.1661047037,-2.41960588446,2.60090557403,15.7709777392) p_k = (4.11523162003e-08,-2.27718357728e-09,3.02743622854e-09,4.09775816209e-08) p_ij -> (40.9821241635,-6.13423846951,6.5956054175,39.9800401267) p_k -> (-4.01034909814e-05,6.4399845856e-06,-6.85914080734e-06,-3.90292440997e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.9407352173,33.1907395486,-10.3958191053,-3.3401692882) p_j = (10.4764487779,9.9515246364,-3.10795799004,-1.03137458764) p_k = (2.73976145174e-09,-2.67484081243e-09,3.37103459341e-10,4.87725394293e-10) p_ij -> (45.4171954917,43.1423099079,-13.5037881086,-4.37154993785) p_k -> (-1.14936911189e-05,-4.57255833268e-05,1.10136486953e-05,6.06250037682e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.4546691088,-11.8018895123,15.4038600458,23.4717568614) p_j = (15.1435112597,-5.89680666461,7.67263301937,11.6483606993) p_k = (3.47545854453e-10,1.12272548534e-10,-1.17270198144e-10,-3.0729829521e-10) p_ij -> (45.5982156488,-17.6987217702,23.0765250332,35.1201724149) p_k -> (-3.5279973563e-05,2.55933807569e-05,-3.19682227428e-05,-5.48545078232e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.7317023085,9.15136007582,-5.26100196416,-1.93491641528) p_j = (34.867184963,29.7246280015,-17.0881313624,-6.33741618945) p_k = (1.89301824414e-09,-1.76636293466e-09,4.78435146085e-10,-4.84339271413e-10) p_ij -> (45.5988991648,38.8760068337,-22.3491427404,-8.27233440316) p_k -> (-1.18914541325e-05,-1.87581988342e-05,9.41433319923e-06,1.79794241095e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.3415783546,-4.65113447348,1.25259980881,16.6591801016) p_j = (9.23085327704,-2.47517248444,0.667128786636,8.86775690784) p_k = (2.3366322163e-09,-1.09183382541e-09,-7.80557587653e-10,-1.91271510248e-09) p_ij -> (26.572442679,-7.12630991842,1.91972939808,25.5269476419) p_k -> (-1.10449794271e-05,2.95941015827e-06,-8.0341345754e-07,-1.0634356947e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.6045929508,27.686794708,-7.14936874088,0.742066901342) p_j = (14.6137910813,14.1449084394,-3.65256779376,0.378422410097) p_k = (2.07636862078e-10,-1.68883535981e-10,7.87388934533e-11,-9.16088845367e-11) p_ij -> (43.2184779015,41.8317940151,-10.8019599998,1.1204917478) p_k -> (-9.38691864718e-05,-9.08679413918e-05,2.34652604236e-05,-2.43645003439e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.21431202967,0.0147214964043,0.10625299696,0.185534967706) p_j = (2.64665472117,0.183192199621,1.3099077578,2.29245795973) p_k = (7.0690317869e-10,-4.31798986423e-10,5.3906422437e-10,-1.50581674162e-10) p_ij -> (2.86096725208,0.197913826773,1.41616096507,2.47799351405) p_k -> (-5.00538060111e-07,-1.3117990276e-07,-2.09770028348e-07,-5.86763658328e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.0521967341,2.23772377441,28.769155637,-19.8993661238) p_j = (4.48020854831,0.28519755831,3.67718138789,-2.5434755807) p_k = (1.51317541736e-08,-6.54089545067e-09,1.40686579539e-09,-1.35723033949e-08) p_ij -> (39.5324062381,2.52292146829,32.4463379187,-22.4428421975) p_k -> (-9.40553789519e-07,-1.42113559587e-07,-8.92390147555e-07,4.79479925986e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.8955949405,-36.7311691267,-14.4280096618,21.4071996498) p_j = (0.601323030479,-0.491949167929,-0.193412194204,0.286648087891) p_k = (4.67029249728e-09,3.05469055221e-10,9.71255336794e-10,-4.5579582217e-09) p_ij -> (45.496929154,-37.2231274595,-14.6214254592,21.6938530954) p_k -> (-1.11783667442e-05,9.16512281179e-06,3.60414561573e-06,-5.3622771361e-06) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0213063044148,0.0948982703611,-0.995258941017) b = (0,0,1) a' = (0.118443893621,-0.0942516529811,0.988477450413) -> rel. dev. (inf,-inf,-0.0115225495874) m_ct = -0.995258941017 m_st = -0.09726068232 m_n = (0,-3.21219106425e-07,-3.06283484131e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0213063044151,0.0948982701907,-0.995258941033) b = (0,0,1) a' = (0.118443893455,-0.0942516528137,0.988477450448) -> rel. dev. (inf,-inf,-0.0115225495516) m_ct = -0.995258941033 m_st = -0.0972606821538 m_n = (0,-3.21219106425e-07,-3.06283483575e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0213063044148,0.0948982703611,-0.995258941017) b = (0,0,1) a' = (0.118443893621,-0.0942516529811,0.988477450413) -> rel. dev. (inf,-inf,-0.0115225495874) m_ct = -0.995258941017 m_st = -0.09726068232 m_n = (0,-3.21219106425e-07,-3.06283484131e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0213063044151,0.0948982701907,-0.995258941033) b = (0,0,1) a' = (0.118443893455,-0.0942516528137,0.988477450448) -> rel. dev. (inf,-inf,-0.0115225495516) m_ct = -0.995258941033 m_st = -0.0972606821538 m_n = (0,-3.21219106425e-07,-3.06283483575e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.34876653405,0.306815337389,-0.885565499254) b = (0,0,1) a' = (0.744203102081,-0.218668629914,0.631146395969) -> rel. dev. (inf,-inf,-0.368853604031) m_ct = -0.885565499254 m_st = -0.464514527792 m_n = (0,-1.14550723174e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3487665358,0.306815337494,-0.885565498529) b = (0,0,1) a' = (0.744203104372,-0.218668629305,0.631146393478) -> rel. dev. (inf,-inf,-0.368853606522) m_ct = -0.885565498529 m_st = -0.464514529176 m_n = (0,-1.1455072304e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.348766535588,0.306815337308,-0.885565498677) b = (0,0,1) a' = (0.744203104008,-0.218668629287,0.631146393914) -> rel. dev. (inf,-inf,-0.368853606086) m_ct = -0.885565498677 m_st = -0.464514528894 m_n = (0,-1.14550723129e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.348766535376,0.306815337121,-0.885565498825) b = (0,0,1) a' = (0.744203103644,-0.218668629268,0.63114639435) -> rel. dev. (inf,-inf,-0.36885360565) m_ct = -0.885565498825 m_st = -0.464514528611 m_n = (0,-1.14550723218e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3487665358,0.306815337494,-0.885565498529) b = (0,0,1) a' = (0.744203104372,-0.218668629305,0.631146393478) -> rel. dev. (inf,-inf,-0.368853606522) m_ct = -0.885565498529 m_st = -0.464514529176 m_n = (0,-1.1455072304e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3487665358,0.306815337494,-0.885565498529) b = (0,0,1) a' = (0.744203104372,-0.218668629305,0.631146393478) -> rel. dev. (inf,-inf,-0.368853606522) m_ct = -0.885565498529 m_st = -0.464514529176 m_n = (0,-1.1455072304e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.348766535588,0.306815337308,-0.885565498677) b = (0,0,1) a' = (0.744203104008,-0.218668629287,0.631146393914) -> rel. dev. (inf,-inf,-0.368853606086) m_ct = -0.885565498677 m_st = -0.464514528894 m_n = (0,-1.14550723129e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.348766535588,0.306815337308,-0.885565498677) b = (0,0,1) a' = (0.744203104008,-0.218668629287,0.631146393914) -> rel. dev. (inf,-inf,-0.368853606086) m_ct = -0.885565498677 m_st = -0.464514528894 m_n = (0,-1.14550723129e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.348766535588,0.306815337308,-0.885565498677) b = (0,0,1) a' = (0.744203104008,-0.218668629287,0.631146393914) -> rel. dev. (inf,-inf,-0.368853606086) m_ct = -0.885565498677 m_st = -0.464514528894 m_n = (0,-1.14550723129e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3487665358,0.306815337494,-0.885565498529) b = (0,0,1) a' = (0.744203104372,-0.218668629305,0.631146393478) -> rel. dev. (inf,-inf,-0.368853606522) m_ct = -0.885565498529 m_st = -0.464514529176 m_n = (0,-1.1455072304e-06,-3.96875429409e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.3487665358,0.306815337494,-0.885565498529) b = (0,0,1) a' = (0.744203104372,-0.218668629305,0.631146393478) -> rel. dev. (inf,-inf,-0.368853606522) m_ct = -0.885565498529 m_st = -0.464514529176 m_n = (0,-1.1455072304e-06,-3.96875429409e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.2162153822,24.0171444421,-3.42794228927,-19.6437798628) p_j = (14.1531115961,10.8768809225,-1.51033397344,-8.92876926213) p_k = (4.87162773877e-10,-2.90000806063e-10,-1.69420619722e-10,3.52877846836e-10) p_ij -> (45.3694261651,34.89414724,-4.93827907544,-28.5726568372) p_k -> (-9.9186290381e-05,-0.000121875602549,2.81256010171e-06,0.000107712582201) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.7968792034,-10.5050426569,-10.1507159434,29.3639631197) p_j = (7.08726870696,-2.2674462496,-2.19235739154,6.34678141246) p_k = (2.90178855778e-08,-1.86117411072e-08,-1.03589349719e-08,1.97061726687e-08) p_ij -> (39.8841727945,-12.7724943737,-12.3430806658,35.7107684971) p_k -> (-2.48551203192e-05,5.44857551787e-06,7.32050773422e-06,-2.39452159789e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.3516286067,9.63092490051,6.28641487996,-4.50433155489) p_j = (0.777081545618,0.605679959892,0.395746446731,-0.283535296966) p_k = (1.99423690065e-09,-1.10664291388e-10,-1.97243763784e-09,2.72455691566e-10) p_ij -> (13.128710373,10.2366050765,6.68216151795,-4.78786695875) p_k -> (-2.18653122275e-07,-2.16170987777e-07,-1.93229732215e-07,1.07160881058e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.7275865091,11.277248009,3.20108267728,-0.336202863583) p_j = (10.0175869704,9.63235857016,2.73656921945,-0.284439788536) p_k = (4.21224191127e-10,3.07048315855e-11,-4.19295493485e-10,-2.60665792871e-11) p_ij -> (21.7452049827,20.9096371274,5.93766086376,-0.62064354168) p_k -> (-3.1502759958e-05,-3.05482723881e-05,-8.96745377421e-06,8.89534820137e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.4470016524,-6.4579854902,10.3562825348,7.73030996871) p_j = (9.47751870268,-4.24371923425,6.79873891299,5.05879007408) p_k = (1.12160176718e-09,5.90004659167e-10,-7.09774706095e-10,-6.37266639444e-10) p_ij -> (23.9245222871,-10.7017091556,17.1550277799,12.7891051167) p_k -> (-1.93089842782e-06,4.43176173803e-06,-6.33282721019e-06,-5.07453148568e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.5856057936,11.6204626001,-16.7678165083,-2.75178930804) p_j = (0.0100990644105,0.0056651490399,-0.00825228939289,-0.00134048800803) p_k = (1.07075876832e-09,3.94518946699e-11,-8.31432730852e-10,6.73563907449e-10) p_ij -> (20.5957498607,11.6261532771,-16.7761054632,-2.75313599155) p_k -> (-4.50015586839e-05,-2.55279956782e-05,3.66646746368e-05,6.19618250952e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.42563554999,6.48725608322,3.01936485055,6.13527097455) p_j = (34.48533371,23.482101017,11.212576975,22.6297876813) p_k = (7.00971160948e-11,-2.61501567218e-11,-3.9427427066e-11,-5.17200532591e-11) p_ij -> (43.9112496638,29.9697618508,14.2322119228,28.7655239097) p_k -> (-0.000280403717277,-0.000404750674555,-0.000270097291491,-0.000465253911443) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.8926424659,1.92651525926,22.3465661615,25.4092647092) p_j = (0.0419313449281,0.00238065522545,0.0276442061838,0.0314383210867) p_k = (3.91438972657e-07,1.0301121062e-07,2.35960599123e-07,2.94848699215e-07) p_ij -> (33.9345777369,1.92889613548,22.3742129569,25.4407059737) p_k -> (-3.53465057401e-06,-1.17985245573e-07,-2.35323705766e-06,-2.64849794362e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0017820852073,4.36093808476e-06,0.000667578172994,-0.00165231596592) p_j = (34.5751505109,0.0600207961506,12.7943910934,-32.1207251927) p_k = (9.89886021403e-07,-9.14371346928e-09,3.38779168409e-07,-9.30064192906e-07) p_ij -> (34.5771032931,0.06002593292,12.7951230524,-32.122535627) p_k -> (-0.000169707091374,-7.8497507033e-07,-6.40420139604e-05,0.000157188197786) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.1611419512,-13.1007933283,27.1012071116,1.89427322856) p_j = (14.1451768195,-6.14468353524,12.7101967983,0.883056540197) p_k = (6.15087405647e-09,-1.37177620273e-09,5.7894221401e-09,1.56015212547e-09) p_ij -> (44.3063478613,-19.2454930292,39.8114293365,2.77732840338) p_k -> (-2.90844842006e-05,1.61642195486e-05,-2.54207453096e-05,1.3669357608e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.218416421692,0.0143504448202,0.0476117344977,-0.212680325221) p_j = (45.3782094987,2.28053279562,8.97306698006,-44.4237001661) p_k = (2.02599790876e-10,-1.42779551931e-10,-6.72279457887e-12,1.43581933105e-10) p_ij -> (45.5966938364,2.29491861041,9.02070192673,-44.6365183918) p_k -> (-6.79157819299e-05,-3.53701087126e-05,-2.32121786068e-05,0.000137900665205) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.3267585207,-11.9590879057,21.5180868586,-15.9377200295) p_j = (14.1043741215,-5.75145467107,10.3486738412,-7.66544768767) p_k = (2.13483181135e-10,1.56255378894e-10,-6.23988482649e-11,1.31387203182e-10) p_ij -> (43.4311911649,-17.7105664445,31.8668036426,-23.6031995251) p_k -> (-5.85225796677e-05,2.38678868136e-05,-4.29427788298e-05,3.18081362689e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.8659589317,-14.9904834277,-1.9881911849,-39.0396083444) p_j = (3.73269968782,-1.33862667411,-0.17921210142,-3.47980008184) p_k = (2.69146872054e-09,-1.33605804801e-09,-3.18210361798e-10,2.31466027658e-09) p_ij -> (45.5986748549,-16.3291158209,-2.16740400952,-42.5194247949) p_k -> (-1.6232640526e-05,5.71774542735e-06,7.22884530235e-07,1.63709095844e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0264101928361,0.0130571243937,0.00487315608157,0.0224335048089) p_j = (19.1744332874,9.48686089612,3.498998686,16.2915736019) p_k = (4.32646377689e-08,1.83107684716e-08,-2.87184685828e-08,2.66794712991e-08) p_ij -> (19.2008436185,9.49991809945,3.50387199192,16.3140072585) p_k -> (-9.49960519137e-08,-6.06293566463e-08,-1.78555815467e-07,-1.25100159565e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.8756957457,15.2692524841,0.147954401591,12.7228660076) p_j = (25.7224591151,19.7486359356,0.227288358811,16.4798246839) p_k = (1.06305099476e-09,3.46119828419e-10,-6.18257863067e-11,-1.00322327075e-09) p_ij -> (45.598224752,35.0179466288,0.375244016116,29.2027516917) p_k -> (-6.98901517389e-05,-5.82086835017e-05,-1.25577574711e-06,-6.10012736182e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.21321499268,-0.0540054411318,-0.11144440323,-0.17356321736) p_j = (32.6026002168,-8.24950136393,-17.0266046715,-26.5512711842) p_k = (1.42035363142e-08,1.05483625209e-08,3.81152944542e-09,8.71462624077e-09) p_ij -> (32.8158180076,-8.30350753563,-17.138050554,-26.7248367127) p_k -> (-2.78394600173e-06,7.4111660453e-07,1.48304318515e-06,2.31982461329e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.3062295556,11.0424634643,12.7200924912,7.16807423216) p_j = (16.8959624652,10.1922434811,11.7399304937,6.61556894386) p_k = (1.95498097197e-09,-1.33302828662e-10,-1.85690501225e-09,-5.96734621085e-10) p_ij -> (35.2022048585,21.2347146914,24.4600319101,13.7836482048) p_k -> (-1.28356897058e-05,-7.74610716547e-06,-8.92699895694e-06,-5.02937047031e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.1544348004,10.0518841309,-0.3506353256,-13.8964496764) p_j = (0.0126175354003,0.00723686597098,-0.000943494612534,-0.0102927055924) p_k = (1.78686346716e-10,-5.3259361008e-11,-8.5141574475e-11,1.47793466134e-10) p_ij -> (17.1670668244,10.0591390188,-0.351574199865,-13.9067717726) p_k -> (-1.44883887838e-05,-1.80219559391e-05,-4.62043236207e-06,2.93907999591e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00139972020089,0.000101804769911,-0.000913533533358,0.00105560831422) p_j = (45.596611761,1.8608466629,-28.8071177504,35.2950169386) p_k = (3.69369513373e-10,-3.25091636546e-11,-3.45520898647e-10,1.26446291598e-10) p_ij -> (45.5986912643,1.86097734168,-28.808458094,35.2966025362) p_k -> (-0.000679782715842,-2.88740512364e-05,0.000426809688015,-0.00052998918477) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.073914142078,0.0650782222439,0.0284261378472,0.020495855088) p_j = (18.2531013001,16.0740468794,7.01678753805,5.05622553246) p_k = (2.69891090756e-07,2.28574230481e-07,1.1097961733e-07,9.09865185906e-08) p_ij -> (18.3270289409,16.1391370508,7.04521881582,5.07672501633) p_k -> (-1.32288533035e-05,-1.17206264854e-05,-5.02894143128e-06,-3.53778915363e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.2467649103,-16.6467185289,19.9270494019,-20.7640757404) p_j = (0.0187640353239,-0.00950135786468,0.0113021500555,-0.011579059741) p_k = (5.7772325614e-09,-1.19333766798e-09,4.41195625409e-09,-3.53369537115e-09) p_ij -> (33.2656106985,-16.6562654977,19.9383979396,-20.7757060629) p_k -> (-8.17470842271e-05,4.56097914334e-05,-4.6383258173e-05,5.12592120465e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.2193574144,0.203464141409,1.14849178428,0.355529842141) p_j = (39.7720989434,6.81221665747,37.4053271534,11.6728342369) p_k = (6.71186751745e-09,-5.96432970078e-09,-3.01793945818e-09,-6.06610239708e-10) p_ij -> (40.991463266,7.0156918299,38.5538383542,12.028369673) p_k -> (-6.90143003013e-06,-1.10369813737e-05,-1.94195246692e-05,-5.59456776017e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.71094602164,-1.72667098432,-5.04542502737,2.04381948008) p_j = (24.4052981398,-7.3777401458,-21.5621451551,8.73277870692) p_k = (6.17252145046e-08,-1.44491899862e-08,-5.03714840177e-08,3.26180412263e-08) p_ij -> (30.1162530957,-9.10441388224,-26.6075781264,10.7766012559) p_k -> (-8.87254164361e-06,2.73767001069e-06,7.8936354484e-06,-3.03629386789e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.1748041195,-10.5742577398,-4.48891141855,33.2460763456) p_j = (0.927546551514,-0.277598751691,-0.119428941631,0.876936865564) p_k = (2.31072081319e-09,2.43777271802e-10,5.94024795449e-10,-2.2197161712e-09) p_ij -> (36.1023526279,-10.8518573739,-4.60834088869,34.1230164414) p_k -> (-1.95456248164e-06,8.82646851608e-07,5.29099026814e-07,-3.23248839607e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0462919614795,-0.0156492936426,0.0366630146692,0.0235344144067) p_j = (18.8203022719,-6.25345253081,14.8991649622,9.64950736984) p_k = (8.09029354672e-09,-6.94014890178e-09,-1.51341593691e-09,-3.87256326738e-09) p_ij -> (18.8665965991,-6.26910203796,14.935830916,9.67304407724) p_k -> (-2.35761126888e-06,2.06575104578e-07,-2.94062266626e-06,-2.29686280573e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.314374729458,-0.298824145294,-0.0892960034311,-0.0395199251239) p_j = (13.4731513952,-12.8066870591,-3.82367436655,-1.70120234741) p_k = (2.74321489907e-08,-2.55545655094e-08,-9.8175808697e-09,1.76127442399e-09) p_ij -> (13.7875264473,-13.1055115621,-3.91297026216,-1.74072282589) p_k -> (-2.95193499866e-07,3.32193408781e-07,-1.17645612141e-07,5.55117799728e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.4869908073,0.162520535481,4.29559390919,-40.2581406013) p_j = (2.98292366833,0.0144954937024,0.316663619738,-2.96603230658) p_k = (1.08740199431e-08,6.73532709822e-09,-3.9052794205e-09,7.59134173064e-09) p_ij -> (43.4699162482,0.177015681403,4.61225798541,-43.2241756469) p_k -> (-1.76166554766e-06,3.5451614272e-07,-4.60387120427e-07,2.74654367516e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.7755925281,6.96744872478,12.7506922975,-17.5385894304) p_j = (10.5598027419,3.23139841141,5.91357494012,-8.13001412561) p_k = (1.94388149588e-09,-3.52848498371e-10,-9.83764156309e-10,1.63901764555e-09) p_ij -> (33.3354031967,10.198849616,18.6642717954,-25.6686098406) p_k -> (-7.9247921505e-06,-2.48018951154e-06,-4.55868300619e-06,6.28626152022e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.85559488136,0.583629482803,-1.05949306123,-2.58674954459) p_j = (38.2015182808,7.80736080284,-14.1735549828,-34.6050784626) p_k = (8.58750293517e-10,3.50180773983e-10,-3.59898852064e-10,6.96625199597e-10) p_ij -> (41.0571320156,8.39099413877,-15.233055039,-37.1918450858) p_k -> (-1.88525587532e-05,-3.85277610082e-06,6.99464901466e-06,1.7079299667e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.0334937169,-5.59118476189,-18.6529258223,-14.0860154575) p_j = (13.0984131699,-3.04995620298,-10.1740220922,-7.66521162113) p_k = (3.64237813619e-09,-3.18513973725e-09,-2.24871811944e-10,1.75249784374e-09) p_ij -> (37.13190922,-8.6411382674,-28.8269533341,-21.7512338326) p_k -> (-2.32951808599e-06,-2.70064954488e-06,5.41936316623e-06,6.75573711462e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0019879374214,0.000343965849959,0.0019281681948,-0.000340220660792) p_j = (27.7866530451,9.11845828849,26.0172841745,-3.47170420319) p_k = (6.32074625912e-10,-4.29523250481e-10,-3.69375681229e-10,-2.80347997811e-10) p_ij -> (27.7886528234,9.11882210304,26.0192475196,-3.47204085641) p_k -> (-1.18401992459e-05,-1.98491240244e-05,-3.51772374376e-05,-3.56772304766e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.75922248233,1.20865983211,-1.34363191904,-3.29629312229) p_j = (5.78851885159,1.86109413686,-2.0692579734,-5.07557391321) p_k = (5.48136908943e-09,2.06777738918e-09,2.15649920469e-09,-4.59556476835e-09) p_ij -> (9.54774353883,3.06975467715,-3.41289069047,-8.37186896937) p_k -> (-2.19943210489e-06,-7.06114178906e-07,8.00199384088e-07,1.92927278153e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.79700010036,0.916021851272,1.07882013868,1.10736644209) p_j = (36.4363807598,18.574177558,21.874694746,22.4523384236) p_k = (1.81572313966e-08,2.7246380318e-09,-1.58728254001e-08,-8.38539100244e-09) p_ij -> (38.2333825997,19.4902002962,22.9535159298,23.5597059382) p_k -> (-1.72141633215e-06,-8.84237913112e-07,-1.06097480668e-06,-1.08086817008e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.0868871724,5.92008957008,8.7862955161,3.26689726803) p_j = (6.00547044886,3.21086895577,4.75795388871,1.76574931796) p_k = (3.67139170861e-09,-3.37604448958e-10,-3.65567934129e-09,3.38352931362e-11) p_ij -> (17.0923582102,9.13095945777,13.5442516343,5.03264704058) p_k -> (-5.85283915555e-07,-9.32248645391e-07,-2.23311648284e-06,-4.54552604445e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.3274722163,-11.366434899,-14.3770710686,0.0149336571145) p_j = (9.54950530669,-5.92067755804,-7.49256741259,0.00790087795725) p_k = (6.55271174519e-09,-3.99427561602e-09,1.70327214371e-09,4.90741095878e-09) p_ij -> (27.8769940911,-17.2871227336,-21.869651706,0.0228343860624) p_k -> (-1.65616001944e-05,1.02725683e-05,1.32264924737e-05,1.53916752042e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.670846951,14.9657566625,-10.7456517124,-3.02615641738) p_j = (26.9277751272,21.5826846638,-15.5009219643,-4.3605291258) p_k = (1.08548225059e-08,2.87465809829e-09,-7.08445403161e-09,-7.70545424497e-09) p_ij -> (45.5986890959,36.5484954184,-26.2466121982,-7.38669601617) p_k -> (-6.70069070345e-05,-5.40891901757e-05,3.85144171187e-05,1.04652785238e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00296639194537,-0.00280790290325,0.000935226707444,0.000201279569633) p_j = (8.75357132336,-8.2832828071,2.76846117241,0.589796225465) p_k = (9.36351432625e-09,-7.79413819979e-09,1.06575401517e-09,-5.07848149037e-09) p_ij -> (8.75653890867,-8.28609184028,2.76939677837,0.589997590958) p_k -> (-1.18399848148e-06,1.12248467143e-06,-3.78186105543e-07,-9.1002146152e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.20545895861,-4.30158741466,-0.211760296571,4.46757475347) p_j = (39.3927910355,-27.3071292964,-1.34472915137,28.3602605535) p_k = (6.10699521649e-07,-4.29813358184e-07,-2.7842757877e-08,4.32942448487e-07) p_ij -> (45.599219062,-31.6093884319,-1.55652248666,32.8285330129) p_k -> (-0.000968457215908,0.000671290994143,3.3010870565e-05,-0.000697272921386) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.3949762062,5.99269361911,-4.11955028839,10.0375476966) p_j = (0.140405489174,0.0678306651502,-0.0466136104587,0.113753565111) p_k = (1.64087714125e-08,1.46433824566e-08,-7.31435199677e-09,1.14864659397e-09) p_ij -> (12.5353832106,6.06052498493,-4.16616439359,10.1513025464) p_k -> (-1.49877296796e-06,-6.86025483088e-07,4.87418622797e-07,-1.28353994011e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.8802097531,-7.40802103226,-13.1687534056,-37.9854802206) p_j = (4.69114926996,-0.842422485067,-1.50736675048,-4.36177157921) p_k = (7.37263036804e-09,5.98341023914e-09,2.49503672193e-09,3.51131814272e-09) p_ij -> (45.5713683514,-8.25044974044,-14.6761261773,-42.3472668886) p_k -> (-9.32095687034e-06,6.22909666514e-06,6.02366670233e-06,1.50922762394e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0203409273684,-0.00236918603124,0.0135542251037,-0.0149807631847) p_j = (32.2093103314,-3.756509247,21.4703920027,-23.7139321402) p_k = (3.70412724643e-08,-7.12349352523e-09,-2.87823787357e-08,2.2201045097e-08) p_ij -> (32.229651332,-3.75887844152,21.4839462777,-23.7289129583) p_k -> (-3.61640282165e-08,1.35977407112e-09,-7.86201379555e-08,7.70601342737e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.2929356297,-2.2569814296,-12.5946756971,-6.36931611921) p_j = (5.43125557243,-0.856628399833,-4.78604964541,-2.42042427466) p_k = (1.93618743238e-09,-6.91512844145e-10,1.69653085986e-09,6.26435858692e-10) p_ij -> (19.7241913516,-3.11360984547,-17.3807255409,-8.78974048968) p_k -> (-1.47533841144e-07,1.53373143075e-08,2.00127091787e-07,9.64364694767e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00790133181325,0.0278057005826,0.999582118673) b = (0,0,1) a' = (0.0210076072186,0.0278004321243,0.999392723814) -> rel. dev. (inf,inf,-0.000607276185858) m_ct = 0.999582118673 m_st = -0.0289065395597 m_n = (0,2.9237638952e-06,-8.13312902717e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00790133325354,0.0278057005502,0.999582118662) b = (0,0,1) a' = (0.0210076061411,0.0278004320928,0.999392723838) -> rel. dev. (inf,inf,-0.000607276162332) m_ct = 0.999582118662 m_st = -0.0289065399221 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.007901332039,0.0278057005504,0.999582118672) b = (0,0,1) a' = (0.0210076070236,0.0278004320923,0.999392723819) -> rel. dev. (inf,inf,-0.000607276180868) m_ct = 0.999582118672 m_st = -0.0289065395904 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.007901332039,0.0278057005504,0.999582118672) b = (0,0,1) a' = (0.0210076070236,0.0278004320923,0.999392723819) -> rel. dev. (inf,inf,-0.000607276180868) m_ct = 0.999582118672 m_st = -0.0289065395904 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00790133325354,0.0278057005502,0.999582118662) b = (0,0,1) a' = (0.0210076061411,0.0278004320928,0.999392723838) -> rel. dev. (inf,inf,-0.000607276162332) m_ct = 0.999582118662 m_st = -0.0289065399221 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00790133325354,0.0278057005502,0.999582118662) b = (0,0,1) a' = (0.0210076061411,0.0278004320928,0.999392723838) -> rel. dev. (inf,inf,-0.000607276162332) m_ct = 0.999582118662 m_st = -0.0289065399221 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.007901332039,0.0278057005504,0.999582118672) b = (0,0,1) a' = (0.0210076070236,0.0278004320923,0.999392723819) -> rel. dev. (inf,inf,-0.000607276180868) m_ct = 0.999582118672 m_st = -0.0289065395904 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.007901332039,0.0278057005504,0.999582118672) b = (0,0,1) a' = (0.0210076070236,0.0278004320923,0.999392723819) -> rel. dev. (inf,inf,-0.000607276180868) m_ct = 0.999582118672 m_st = -0.0289065395904 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.007901332039,0.0278057005504,0.999582118672) b = (0,0,1) a' = (0.0210076070236,0.0278004320923,0.999392723819) -> rel. dev. (inf,inf,-0.000607276180868) m_ct = 0.999582118672 m_st = -0.0289065395904 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00790133325354,0.0278057005502,0.999582118662) b = (0,0,1) a' = (0.0210076061411,0.0278004320928,0.999392723838) -> rel. dev. (inf,inf,-0.000607276162332) m_ct = 0.999582118662 m_st = -0.0289065399221 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.00790133325354,0.0278057005502,0.999582118662) b = (0,0,1) a' = (0.0210076061411,0.0278004320928,0.999392723838) -> rel. dev. (inf,inf,-0.000607276162332) m_ct = 0.999582118662 m_st = -0.0289065399221 m_n = (0,2.9237638941e-06,-8.13312901471e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.9144159401,-2.39434118503,-3.40337304247,-30.6330751826) p_j = (1.84307331974,-0.142641660396,-0.202972380512,-1.82630086004) p_k = (3.5672131132e-09,-5.65805332478e-10,2.78907751476e-09,2.15079495169e-09) p_ij -> (32.7574916658,-2.53698303157,-3.60634569001,-32.4593784305) p_k -> (-2.40240035509e-06,1.85573922451e-07,2.69823990928e-07,2.39007611569e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.6203795557,-9.65866295126,-1.70912604471,-12.1567008527) p_j = (3.30852298777,-2.04572503817,-0.361961095483,-2.57494030885) p_k = (2.16769413116e-06,-1.36954575617e-06,-2.54126964246e-07,-1.66092195905e-06) p_ij -> (18.92893943,-11.7044107264,-2.07109113474,-14.7316699326) p_k -> (-3.47188199274e-05,2.13674567497e-05,3.74042809637e-06,2.71101326437e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.7514526661,-5.34764145725,27.1180613991,31.2921280281) p_j = (3.8475815064,-0.492992544006,2.49933378842,2.88343066745) p_k = (6.61151204202e-08,-2.17070370535e-08,4.46484525836e-08,4.3663822247e-08) p_ij -> (45.5990858865,-5.84064043763,29.6174287525,34.1755975376) p_k -> (-5.1647921314e-05,6.41466667028e-06,-3.3520394414e-05,-3.87983656509e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.1955476324,-1.58275335695,9.20559135509,-36.0036212524) p_j = (8.40186324274,-0.3522488047,2.06392361411,-8.13679580944) p_k = (7.54789996197e-10,3.6916132306e-10,-3.56272007965e-10,-5.5362059344e-10) p_ij -> (45.5976741385,-1.93503050551,11.2696032692,-44.1406794912) p_k -> (-0.000263262580315,2.8344235551e-05,-8.83003775218e-05,0.00026242877313) } Poincare::Poincare(): Inaccurate rotation { a = (-0.149531078103,0.0349546905414,0.988138971142) b = (0,0,1) a' = (0.00407829720861,0.0353518598858,0.999366606153) -> rel. dev. (inf,inf,-0.000633393846636) m_ct = 0.988138971142 m_st = -0.153562279579 m_n = (0,1.27455673837e-06,-4.50865087487e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.149531079307,0.0349546888096,0.988138971022) b = (0,0,1) a' = (0.00407829677846,0.0353518581409,0.999366606217) -> rel. dev. (inf,inf,-0.000633393783155) m_ct = 0.988138971022 m_st = -0.153562280357 m_n = (0,1.2745567386e-06,-4.50865065282e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.149531078103,0.0349546905414,0.988138971142) b = (0,0,1) a' = (0.00407829720861,0.0353518598858,0.999366606153) -> rel. dev. (inf,inf,-0.000633393846636) m_ct = 0.988138971142 m_st = -0.153562279579 m_n = (0,1.27455673837e-06,-4.50865087487e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.149531079307,0.0349546888096,0.988138971022) b = (0,0,1) a' = (0.00407829677846,0.0353518581409,0.999366606217) -> rel. dev. (inf,inf,-0.000633393783155) m_ct = 0.988138971022 m_st = -0.153562280357 m_n = (0,1.2745567386e-06,-4.50865065282e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.3755529182,-5.91480437984,6.08021605529,10.3417347547) p_j = (6.26471259113,-2.76883177103,2.84998044998,4.84332591386) p_k = (1.43165315603e-08,-3.81074792742e-09,6.05801720449e-09,1.23992621954e-08) p_ij -> (19.6403251213,-8.68366589442,8.93022421728,15.1851049695) p_k -> (-5.95977247801e-05,2.97397439581e-05,-2.77059493445e-05,-4.42885783327e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0010818952066,-0.000513545945881,-0.000949483513089,7.2449002088e-05) p_j = (15.8660564246,-7.50394663284,-13.9378696592,1.07625311265) p_k = (1.84561358303e-08,-8.27193781529e-09,-2.49118881961e-09,-1.6309447257e-08) p_ij -> (15.8671388477,-7.50446042854,-13.9388196089,1.0763256006) p_k -> (-5.09445844621e-07,2.41484070518e-07,4.63703516473e-07,-5.52521338681e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.8749372312,-3.92466070272,24.9694828278,-34.6320979477) p_j = (2.32179594566,-0.213101533812,1.35454598259,-1.87364066209) p_k = (5.29321772688e-09,4.40764207933e-09,-2.80660413961e-09,8.44873843904e-10) p_ij -> (45.196749724,-4.13776489465,26.3240398243,-36.5057531716) p_k -> (-1.65418837064e-05,2.66252219783e-06,-1.10166851996e-05,1.45626244041e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.3960690778,12.2818739948,-0.291153930499,1.65327830286) p_j = (32.899263986,32.5945737127,-0.773690856142,4.39962927585) p_k = (4.50094940674e-09,5.47000350706e-10,-1.95762055629e-10,4.46329648037e-09) p_ij -> (45.2953566821,44.8764718011,-1.06484532593,6.05291005011) p_k -> (-2.36137974881e-05,-2.40930501931e-05,5.39095655117e-07,-2.466934653e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.26490687522,-0.243213664133,0.100631527879,0.0299342899382) p_j = (9.37110995609,-8.60645069797,3.55390895381,1.05661693181) p_k = (3.2067388547e-09,-1.73300844802e-09,2.69809464296e-09,1.19280020219e-11) p_ij -> (9.63602364049,-8.84967076062,3.65454288683,1.08655203139) p_k -> (-6.80596588332e-06,6.39678579439e-06,-2.40243748695e-06,-8.09620717801e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.8898091447,1.34995863029,3.36684935289,-11.3229633325) p_j = (2.25885945421,0.256450765728,0.640297193287,-2.15097618372) p_k = (1.72963582298e-08,-2.39424168707e-09,-1.55566301896e-08,-7.17097296117e-09) p_ij -> (14.1486687751,1.60640944088,4.00714671279,-13.4739397371) p_k -> (-1.58867861977e-07,-4.72627039727e-08,-1.82168094831e-07,2.13661627058e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00635556573335,0.00480275076967,0.00285070200695,0.00303319944991) p_j = (11.9406396138,9.18359659598,5.29205844631,5.49859485221) p_k = (9.49313341434e-10,-8.50115011672e-10,4.16907471132e-10,6.84705384416e-11) p_ij -> (11.9469998841,9.18840473697,5.29491123771,5.50163063158) p_k -> (-4.70370527861e-06,-5.3910631399e-06,-2.08897891518e-06,-2.57984490526e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.774001907,-8.81339589573,-4.08868266378,6.65085316079) p_j = (33.825545961,-25.3085073719,-11.7158781645,19.141191525) p_k = (3.36806382392e-10,2.56698859218e-10,4.92209123381e-12,-2.1798787702e-10) p_ij -> (45.5996107289,-34.1219568843,-15.8045841886,25.7920855233) p_k -> (-6.2860524114e-05,5.36168494421e-05,2.33603395179e-05,-4.08376416168e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.2585121118,7.10095069677,-22.7747517484,-37.2787214956) p_j = (0.675254631927,0.108319617162,-0.34747644742,-0.568766909168) p_k = (5.58932754638e-08,-3.13445420058e-08,-1.61133716605e-09,4.6249122831e-08) p_ij -> (44.9337673813,7.20927041635,-23.122228524,-37.8474889421) p_k -> (-5.81683163858e-07,-1.33760783783e-07,3.26557971775e-07,5.83559273792e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.6417486441,-4.13385760768,-18.7630648494,9.96111957112) p_j = (11.1105625041,-2.12429434989,-9.63176051913,5.11479833175) p_k = (2.09438110463e-09,1.87823772641e-09,7.06543000224e-11,9.23936593334e-10) p_ij -> (32.7523249864,-6.25815478983,-28.3948375214,15.0759242759) p_k -> (-1.38361462092e-05,2.83413623903e-06,1.21529687753e-05,-6.37214202381e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.102173856735,0.0202391718273,-0.0044649471888,0.100049673515) p_j = (35.22913889,7.08446946021,-1.72386622554,34.466372084) p_k = (8.12580046396e-09,1.29951524047e-09,1.21226562707e-09,7.92907968416e-09) p_ij -> (35.331464022,7.10474286162,-1.72835690851,34.5665699948) p_k -> (-0.000151267160565,-3.42282877432e-05,2.57369979193e-05,-0.000148229354732) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.9201717022,-20.5591703572,11.6355953175,-7.934002363) p_j = (19.2585994795,-15.8300107414,9.04080292654,-6.21033785577) p_k = (3.74377600525e-10,9.94074604253e-11,2.25226186681e-10,2.82044607527e-10) p_ij -> (44.1787877096,-36.3893570497,20.6763860696,-14.1445055112) p_k -> (-1.65275289383e-05,0.000175951162294,1.21746389876e-05,0.000165292753194) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.4814070898,-8.95425688457,-23.4180664255,-35.525317888) p_j = (0.122531598537,-0.0252814927753,-0.0659106390009,-0.100153015079) p_k = (2.82579780586e-08,2.61128708827e-08,-1.04056718808e-08,-2.89020979544e-09) p_ij -> (43.6039415129,-8.9795390137,-23.483978594,-35.6254732454) p_k -> (-2.79638537037e-06,6.62469276769e-07,1.51911589086e-06,2.33948811967e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.4320077273,8.00994991792,-9.94409037501,36.2487929023) p_j = (5.78801408935,1.20635068429,-1.49759024907,5.45921684593) p_k = (7.05319038202e-09,1.66857509466e-09,-4.49177717684e-09,-5.17564803783e-09) p_ij -> (44.2200239085,9.21630103819,-11.4416811653,41.7080117214) p_k -> (-2.08482166641e-06,-4.34316413944e-07,5.36744175328e-07,-1.97832729043e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (36.7688088384,-11.8599250502,15.7443217017,31.0387470004) p_j = (8.82996014424,-2.85392572029,3.76096505601,7.46179911143) p_k = (5.10457774665e-10,-1.14533677985e-10,-3.87217658509e-10,-3.12270002016e-10) p_ij -> (45.5988339679,-14.7138729991,19.5053297503,38.5006196305) p_k -> (-6.49847346672e-05,2.22284957268e-05,-4.2992976903e-05,-7.35190297085e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0898621558128,-0.0197957456656,-0.00833700772894,-0.0872572621792) p_j = (45.4511227977,-10.0120207286,-4.21704126975,-44.1336670517) p_k = (7.48903991985e-08,3.05662035242e-08,3.53191337777e-08,-5.8539201131e-08) p_ij -> (45.5409855289,-10.031816601,-4.22537833087,-44.2209248726) p_k -> (-5.00541965209e-07,1.57332475936e-07,8.87172921793e-08,5.00216398081e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.308792735,-3.22733900233,10.6286737385,2.1223502651) p_j = (34.1645050996,-9.80697562416,32.0954331331,6.39685937044) p_k = (3.85426475121e-10,2.11904266332e-10,-1.74114963906e-10,2.70802079976e-10) p_ij -> (45.4734223193,-13.0343580278,42.7242366706,8.51922820186) p_k -> (-0.000124484427577,4.34015413795e-05,-0.000129799216083,-1.85660443206e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.2485635336,8.30830290467,43.2283243251,4.49660468236) p_j = (1.34537706507,0.253162187337,1.31438281134,0.13544806892) p_k = (5.0368131648e-09,-3.90256501145e-10,-4.95562395772e-09,-8.11774489457e-10) p_ij -> (45.5939463487,8.56146626381,44.5427134346,4.63205342666) p_k -> (-5.74504396766e-06,-1.17219178453e-06,-6.30307255634e-06,-6.76189237492e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.6836107943,22.3527847857,8.65644173245,20.7188373665) p_j = (6.62026666319,4.67058789833,1.80872172509,4.32921067828) p_k = (7.65220343192e-07,4.9284694657e-07,2.12539350124e-07,5.45427433781e-07) p_ij -> (38.3038823259,27.0233761208,10.4651647875,25.0480512264) p_k -> (-4.103172909e-06,-2.9438882585e-06,-1.11742091935e-06,-2.63616294305e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.26532835225,-4.08247922182,0.431241164791,-5.99436322951) p_j = (38.3028006068,-21.5617730908,2.31845330217,-31.5724444697) p_k = (7.21191117e-10,-4.97208047779e-10,4.85570960383e-10,1.92656605921e-10) p_ij -> (45.5682609529,-25.64432512,2.74969529687,-37.5669292222) p_k -> (-0.000131993099018,7.28069524083e-05,-8.29421545001e-07,0.000121523165038) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00147698498881,0.000469135597218,-0.00016962688402,-0.00139018817748) p_j = (29.4177935813,8.99493593025,-4.84419717444,-27.5867986642) p_k = (2.88877332326e-09,-2.69043887405e-09,2.29976976463e-10,1.02647912331e-09) p_ij -> (29.4192787336,8.995409039,-4.84436843763,-27.588198054) p_k -> (-8.16440719831e-06,-3.97585283096e-06,1.63653455276e-06,9.20265550697e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.70611928434,0.609822510721,1.08277989096,1.16899410843) p_j = (13.3970491635,4.78884693139,8.50220669064,9.179343808) p_k = (1.01942977052e-08,3.12095244006e-09,-4.93310430516e-09,-8.35749645339e-09) p_ij -> (15.1031688112,5.39866957202,9.58498681256,10.3483381659) p_k -> (-3.53209952841e-07,-1.26793653799e-07,-2.35883413247e-07,-2.57786249236e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.5677578105,0.657856952939,-0.883298184238,4.43299221323) p_j = (26.6948805056,3.83579585583,-5.15708120308,25.9096088127) p_k = (2.15747383991e-08,1.17394347941e-08,1.800741039e-08,1.84070002978e-09) p_ij -> (31.2626392593,4.49365282425,-6.04037987783,30.3426022068) p_k -> (-9.21552823385e-07,-3.73574149393e-09,5.08520480835e-07,-1.17904498076e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.4238058557,7.26593984784,-11.387049401,-13.957989038) p_j = (0.304238339488,0.114003368081,-0.178257083695,-0.218606064401) p_k = (1.93091370804e-10,-5.41125553881e-11,8.28524500504e-11,1.65814242772e-10) p_ij -> (19.7281023094,7.37996498167,-11.565340594,-14.1766369265) p_k -> (-5.81140420053e-05,-2.17658114505e-05,3.41093800946e-05,4.18241812525e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.2007990023,-17.5811157481,17.450449839,-34.1656787713) p_j = (0.0055864044564,-0.00231492072265,0.00230795995708,-0.00453016309142) p_k = (3.80513572463e-07,7.42119400047e-08,3.67762498347e-07,6.35130807613e-08) p_ij -> (42.2063859531,-17.5834309107,17.4527580119,-34.1702093995) p_k -> (-1.65785635886e-07,3.16104827647e-07,1.54792239471e-07,5.28628845586e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.81297797813,-0.247556680769,-1.48459264435,-2.37645649562) p_j = (42.5473681248,-3.84290506478,-22.4658257305,-35.927667462) p_k = (3.14000859477e-10,7.34430921557e-11,1.42278330862e-10,2.70108700577e-10) p_ij -> (45.3604790394,-4.09047493588,-23.9504922064,-38.3042425399) p_k -> (-0.000132936125599,1.31904042431e-05,7.38316232827e-05,0.000118582600308) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.99048140318,-2.00639066464,3.72221678215,5.56653653322) p_j = (34.9415839463,-10.0288201191,18.6048911232,27.8243613042) p_k = (3.84785900888e-08,2.56806840751e-08,2.82889578161e-08,4.56499454314e-09) p_ij -> (41.9320692133,-12.0352118936,22.3271099625,33.3909009148) p_k -> (-3.82533292509e-06,1.1355430436e-06,-2.02884486988e-06,-3.07285155188e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.4540356641,12.1086151195,-24.4721040778,-29.8500680637) p_j = (0.0198789745225,0.00591639838385,-0.012053867167,-0.0146585860352) p_k = (2.52615218935e-07,-1.65965852117e-07,-1.55972571472e-07,-1.09281021929e-07) p_ij -> (40.4739151626,12.1145317718,-24.4841582606,-29.8647270674) p_k -> (-2.71341811242e-07,-4.198805863e-07,1.59719812487e-07,3.08326347565e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.87261943793,-1.83892187364,0.0757854482193,-7.65446011963) p_j = (3.80909065457,-0.889390142573,0.0355775601019,-3.70363213971) p_k = (1.46428172842e-09,-9.57247694754e-10,6.61493981414e-10,8.88946052657e-10) p_ij -> (11.6817136141,-2.72831280436,0.111363005757,-11.3580958124) p_k -> (-3.52009855398e-06,7.87183731088e-07,3.22591722779e-09,3.55395290441e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.3466185871,-12.4647615669,17.3178133649,0.633391223611) p_j = (0.0430054714055,-0.0252121873569,0.0347934063332,0.00179862592525) p_k = (5.24297485846e-10,1.8220846442e-10,4.04237123754e-10,2.79785416136e-10) p_ij -> (21.3896610398,-12.4900009736,17.3526370159,0.635187904509) p_k -> (-3.6980831041e-05,2.72195036093e-05,-3.02442921871e-05,1.94530761316e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.47508097142,-0.802421287358,1.78671876497,7.21391652722) p_j = (38.1248338275,-4.08691061498,9.11295350591,36.7933987883) p_k = (4.24890379769e-09,1.03452687989e-09,-9.84255053941e-10,-4.0017721679e-09) p_ij -> (45.5999188803,-4.88933235217,10.8996732628,44.0073193208) p_k -> (-4.07716373019e-06,4.50863736567e-07,-9.92945086153e-07,-4.00926171551e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.5506257408,10.7201147689,-4.73697890161,-19.2657958966) p_j = (12.5480392311,5.96460778496,-2.63577015509,-10.7205157621) p_k = (4.63115943508e-09,1.15330914312e-09,-4.32913078921e-09,1.17309192419e-09) p_ij -> (35.0986698902,16.6847248939,-7.37275008339,-29.9863158705) p_k -> (-4.91367245559e-06,-2.33885514866e-06,1.02235442911e-06,4.21294285324e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.180033299387,-0.113248982786,0.131785478387,0.0471088576851) p_j = (39.1824749448,-24.6477287378,28.6828767716,10.2493117317) p_k = (3.61172842976e-07,-2.34040569518e-07,2.57429690552e-07,9.69576647074e-08) p_ij -> (39.3626513426,-24.7610676991,28.8147670409,10.2964580074) p_k -> (-0.000142737257889,8.9744463228e-05,-0.000104533540684,-3.73210294811e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.92048877644,-1.03350941099,-1.7809454182,6.6070611182) p_j = (38.6778776375,-5.81798241423,-9.92225044672,36.928014369) p_k = (3.16791134983e-10,-1.49828180709e-10,1.47486834146e-10,-2.36975683582e-10) p_ij -> (45.5986825808,-6.85153835145,-11.7032792055,43.53538252) p_k -> (-0.000316166593127,4.65260790712e-05,8.33407201064e-05,-0.000307033052209) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.1248369348,-29.583729437,9.5813507115,1.32519634798) p_j = (4.08764548584,-3.88526553505,1.2582986763,0.173901642402) p_k = (3.66271014803e-08,-3.15083041033e-08,-1.73430205974e-08,-6.92755350218e-09) p_ij -> (35.212490767,-33.4690029057,10.8396519621,1.49909834719) p_k -> (-8.30972239996e-06,7.90215915458e-06,-2.59161112304e-06,-3.63728694386e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.7086554163,-1.03905701048,18.2171528951,19.5040502223) p_j = (18.883496957,-0.631874676458,12.9291985696,13.7485641456) p_k = (5.85937776588e-10,3.84648578364e-11,-4.26886944584e-10,-3.99517518149e-10) p_ij -> (45.5922485228,-1.67094687841,31.1465781648,33.2528454514) p_k -> (-9.6148885131e-05,1.51915124497e-05,-0.000226700492762,-0.000231083912688) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0417885701682,-0.0335667153237,0.0125273489719,-0.021508736523) p_j = (45.1842573251,-36.2849364653,13.6698585255,-23.1981780238) p_k = (1.57558342941e-07,-9.23950844983e-08,1.27074103939e-07,-1.18301380035e-08) p_ij -> (45.2260470069,-36.318504244,13.6823858135,-23.2196876765) p_k -> (-9.54044825363e-07,9.71008368822e-07,1.88003478563e-07,9.04359627185e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.23985666664,1.11396457864,1.13833977337,-1.57487249165) p_j = (36.6734607851,18.2386150903,18.6383472282,-25.7858034225) p_k = (9.06121141518e-08,-3.78280459599e-08,-2.77301100104e-08,7.7528287565e-08) p_ij -> (38.9133175505,19.3525797181,19.7766870519,-27.3606759838) p_k -> (-8.1162987442e-09,-8.70354419646e-08,-7.80017366253e-08,1.47128815797e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.865326171,8.09334918893,-4.6238970233,-11.5799480739) p_j = (27.3155979702,14.8720006707,-8.49238030447,-21.280154259) p_k = (1.11134810501e-09,-1.19786578055e-10,-8.0321087624e-10,-7.58683109335e-10) p_ij -> (42.1812374713,22.9655207324,-13.1163745815,-32.8603464671) p_k -> (-0.000313328974094,-0.000170872914699,9.7252894923e-05,0.000244133472275) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.542274369651,0.221158911911,-0.165820155316,-0.466533925619) p_j = (9.11218397322,3.71520408717,-2.78525335853,-7.84037748333) p_k = (2.08239918614e-08,-1.83775231751e-08,-2.67359324169e-09,9.42110536247e-09) p_ij -> (9.65445843117,3.93636304264,-2.95107354188,-8.30691149262) p_k -> (-6.74815137103e-08,-6.19345184028e-08,2.5356441391e-08,9.30860473147e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.04516735875,1.69919095773,-0.443299462594,-2.48782634411) p_j = (0.338317865734,0.188772367752,-0.0492988292591,-0.276393916145) p_k = (3.45916255146e-10,1.17673811744e-10,-2.86503827975e-11,3.24026634286e-10) p_ij -> (3.38348606808,1.88796379664,-0.492598414799,-2.76422095303) p_k -> (-8.43242604853e-07,-4.7104446288e-07,1.22916828244e-07,6.9309764994e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0211561367544,0.0168220864328,0.0125075321152,0.00285677629589) p_j = (23.2458504515,18.5129607331,13.6961271771,3.17111154877) p_k = (6.2799166375e-08,-5.37237430572e-08,-3.25034274145e-08,1.0110620183e-09) p_ij -> (23.2670067063,18.5297829801,13.7086348234,3.17396834602) p_k -> (-5.52959367184e-08,-2.14285959643e-07,-1.46646534915e-07,-1.99432592662e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.6448880931,-27.7170276063,-4.99718342962,14.4289112849) p_j = (13.912354091,-12.1851960304,-2.19687797139,6.34415646339) p_k = (4.91282106652e-10,-4.61505371882e-10,1.41192651173e-10,-9.18463082059e-11) p_ij -> (45.5585507411,-39.90336976,-7.19426805685,20.773664447) p_k -> (-0.00130855657333,0.00114612286914,0.000206655989474,-0.000596698718558) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.28106410019,-0.740576984826,-2.98507396033,-5.47655415491) p_j = (32.5322257799,-3.81515213062,-15.4390342874,-28.3800378556) p_k = (1.17032496347e-08,3.83268114323e-10,4.54439264237e-09,1.07781100428e-08) p_ij -> (38.8132911856,-4.55572947868,-18.4241100746,-33.8565956578) p_k -> (-1.29380686431e-06,3.6361696143e-07,1.8314257364e-06,3.65801406588e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.4569144433,-0.614425975539,-0.719660938354,26.4399865869) p_j = (15.2807290191,-0.354667762576,-0.415661869561,15.2709565955) p_k = (3.43262475545e-09,-1.42153846462e-09,-9.22848613519e-10,-2.98504124759e-09) p_ij -> (41.7376488056,-0.969093861991,-1.13532295314,41.7109485231) p_k -> (-5.33981905804e-06,1.22454906493e-07,1.44305602023e-07,-5.34371215366e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.156862187446,-0.131782590435,-0.0822252296009,-0.0218656425858) p_j = (19.4248648909,-16.3211588146,-10.1793898102,-2.70650587821) p_k = (3.01723746011e-09,2.36391999177e-10,2.8724605107e-09,8.9263400584e-10) p_ij -> (19.5817281691,-16.4529423232,-10.261615614,-2.72837167355) p_k -> (-1.0878120893e-06,9.18396281691e-07,5.77121049616e-07,1.5365013506e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.5105838519,-9.1899824173,-7.66917652958,3.63904696919) p_j = (2.05061176313,-1.5064010908,-1.25699275831,0.596434038485) p_k = (6.18393654256e-10,6.49431058143e-11,2.87927592357e-10,-5.43406101317e-10) p_ij -> (14.5612013488,-10.6963877211,-8.92617280421,4.23548267708) p_k -> (-5.73308306073e-06,4.21309454346e-06,3.51659761666e-06,-1.66994590201e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0781371379964,0.014344762298,-0.0031164468751,-0.0767458656069) p_j = (32.9348484372,7.0975861805,-1.08601098288,-32.1426366706) p_k = (1.84973635872e-10,-1.16905833879e-10,-1.28268257467e-10,6.401260704e-11) p_ij -> (33.0130787175,7.11197617636,-1.08911088798,-32.2195127021) p_k -> (-9.31421259622e-05,-4.52336788097e-05,-1.6541904325e-05,0.000130165959302) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.2481047463,4.6436898423,-3.95226658905,-17.1991005663) p_j = (1.22454121811,0.311596531363,-0.265231566706,-1.15414947581) p_k = (4.61551343317e-06,1.22947820915e-06,-8.76096100276e-07,-4.36162850413e-06) p_ij -> (19.4726511326,4.95528768294,-4.21749928842,-18.353254912) p_k -> (-5.52745143878e-07,-7.98022168347e-08,2.56560247713e-07,5.08299764945e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.77879120342,-3.8713904413,6.73371267593,0.423133826891) p_j = (7.73456725441,-3.84880318433,6.69583508073,0.41956791235) p_k = (1.0633249422e-09,7.17954909303e-10,-4.08754321674e-10,6.69420152145e-10) p_ij -> (15.5133651749,-7.72019701125,13.4295536172,0.842702083084) p_k -> (-6.71600699231e-06,3.38634163244e-06,-5.86092846966e-06,-3.4317486125e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.1891197206,-10.3584820671,8.23720938586,-17.8103134384) p_j = (2.85615485541,-1.33430067334,1.06073370704,-2.29174742805) p_k = (1.19801878811e-10,-2.16264702043e-11,-3.96716866991e-11,1.10959477716e-10) p_ij -> (25.0454084829,-11.6928453004,9.29799291174,-20.1021686061) p_k -> (-0.000133906797567,6.25599618536e-05,-4.98188741442e-05,0.000107739820541) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.3947947466,-1.20587651209,25.3289677788,-1.37289960371) p_j = (3.81310526454,-0.179500069147,3.80339122004,-0.204369055636) p_k = (1.68898648934e-09,-9.56377973714e-10,-1.13191283122e-09,8.10430540062e-10) p_ij -> (29.2079056926,-1.38537665082,29.132365308,-1.57726917183) p_k -> (-5.67974020171e-06,6.86338459399e-08,-6.31035787002e-06,5.13292287008e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.73768954578,-0.54457103241,0.525869251191,-2.63094051062) p_j = (37.8800932831,-7.35654555678,7.29876706919,-36.4350202948) p_k = (4.69937934806e-10,4.36054988212e-10,-1.63089464904e-10,-6.40134243219e-11) p_ij -> (40.6178424209,-7.90115802699,7.82466215071,-39.0660400731) p_k -> (-5.95915485562e-05,4.14382292062e-05,-2.58304925116e-05,7.92677083652e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.4916816511,-13.7312662054,10.9489145426,-40.8788861747) p_j = (1.08059780401,-0.333518975837,0.264288321183,-0.993281626771) p_k = (2.48114034778e-09,-2.27051299821e-09,9.71540818828e-10,-2.38599682305e-10) p_ij -> (45.572351106,-14.0648058249,11.2132201411,-41.8722356282) p_k -> (-7.16484321508e-05,2.06414535366e-05,-1.72763505217e-05,6.78265740461e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.9919202247,-2.05602064427,2.94494373169,-14.5553343332) p_j = (16.4592585175,-2.25692385297,3.23323773261,-15.9799768283) p_k = (2.84504033444e-08,5.5491932705e-09,2.21765589505e-08,-1.6936119121e-08) p_ij -> (31.4511821113,-4.31294496109,6.17818212286,-30.5353144345) p_k -> (-3.34061395613e-06,4.69401999492e-07,-6.36388926889e-07,3.25610991325e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.3373921106,4.15306888134,11.5760040311,-14.922562889) p_j = (25.6568271569,5.50914544051,15.3565970818,-19.8014399057) p_k = (1.45713666195e-07,2.6716179621e-08,1.0030646593e-07,-1.02261093054e-07) p_ij -> (44.9942708313,9.66222584972,26.932630677,-34.7240436022) p_k -> (-5.1418128713e-05,-1.15011551998e-05,-2.94636809723e-05,4.0705232486e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.48036834132,0.142339363675,-2.02277280721,8.23436560279) p_j = (35.7674581231,0.600427535517,-8.53120719578,34.7299445888) p_k = (1.07638580085e-07,3.7445821862e-08,-8.55885704466e-08,-5.34646737178e-08) p_ij -> (44.2478272154,0.742766911765,-10.553980182,42.964310921) p_k -> (-6.43347238594e-07,2.48724727481e-08,9.34807458108e-08,-7.82812982436e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00139328783473,0.000749036108083,0.00104241619614,-0.000541815811159) p_j = (20.527076195,10.9626948116,15.421092011,-7.96053394997) p_k = (1.18085147906e-08,-8.90079685113e-09,-2.40259492097e-09,7.37863541225e-09) p_ij -> (20.5284696298,10.9634439379,15.4221345463,-7.96107583192) p_k -> (-1.35222377295e-07,-9.90115553989e-08,-1.21450653978e-07,7.35097840376e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.3904344787,-2.06115800031,2.92090251351,37.2191422081) p_j = (8.20700805011,-0.445527600972,0.64002201554,8.16987503644) p_k = (1.32311195233e-09,-3.71927137211e-10,4.51456904009e-11,-1.26895902244e-09) p_ij -> (45.5974637534,-2.50668648316,3.56092624198,45.3890408349) p_k -> (-2.12232376526e-05,8.81499094607e-07,-1.71289340711e-06,-2.35916102085e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.0783664595,-34.4651929052,18.3138599096,-1.96767333706) p_j = (0.0430695875708,-0.0379859234233,0.0201813423803,-0.00218458575503) p_k = (6.87666836035e-08,6.26327502082e-08,-2.83898199589e-08,1.1732621856e-10) p_ij -> (39.1214369227,-34.5031796037,18.3340416638,-1.96985796699) p_k -> (-8.06937283215e-07,8.37705158574e-07,-4.4013310152e-07,4.4290817014e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154325,0.323151330597,-0.941477353607) b = (0,0,1) a' = (0.245251219959,-0.314732250306,0.916948989708) -> rel. dev. (inf,-inf,-0.0830510102925) m_ct = -0.941477353607 m_st = -0.33707624159 m_n = (0,-1.39919982889e-06,-4.80259333635e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833166522,0.323151331277,-0.94147735325) b = (0,0,1) a' = (0.2452512198,-0.314732251019,0.916948989506) -> rel. dev. (inf,-inf,-0.0830510104944) m_ct = -0.94147735325 m_st = -0.337076242589 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0958833154679,0.323151331314,-0.941477353358) b = (0,0,1) a' = (0.245251220643,-0.31473225095,0.916948989304) -> rel. dev. (inf,-inf,-0.0830510106961) m_ct = -0.941477353358 m_st = -0.337076242288 m_n = (0,-1.399199828e-06,-4.80259334523e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.158901476744,-0.424017070464,-0.891605206716) b = (0,0,1) a' = (0.588737734741,0.347154008918,0.729980803709) -> rel. dev. (inf,inf,-0.270019196291) m_ct = -0.891605206716 m_st = -0.452813598908 m_n = (0,-1.38474839417e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.15890147802,-0.424017070819,-0.89160520632) b = (0,0,1) a' = (0.588737736495,0.347154008733,0.729980802383) -> rel. dev. (inf,inf,-0.270019197617) m_ct = -0.89160520632 m_st = -0.452813599689 m_n = (0,-1.3847483924e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.158901475629,-0.424017070541,-0.891605206878) b = (0,0,1) a' = (0.588737733539,0.347154009294,0.7299808045) -> rel. dev. (inf,inf,-0.2700191955) m_ct = -0.891605206878 m_st = -0.452813598589 m_n = (0,-1.38474839417e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.158901477858,-0.424017070387,-0.891605206554) b = (0,0,1) a' = (0.588737735943,0.347154008542,0.729980802918) -> rel. dev. (inf,inf,-0.270019197082) m_ct = -0.891605206554 m_st = -0.452813599227 m_n = (0,-1.38474839417e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.158901477463,-0.424017070858,-0.891605206401) b = (0,0,1) a' = (0.588737735894,0.347154008921,0.729980802778) -> rel. dev. (inf,inf,-0.270019197222) m_ct = -0.891605206401 m_st = -0.45281359953 m_n = (0,-1.3847483924e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.15890147802,-0.424017070819,-0.89160520632) b = (0,0,1) a' = (0.588737736495,0.347154008733,0.729980802383) -> rel. dev. (inf,inf,-0.270019197617) m_ct = -0.89160520632 m_st = -0.452813599689 m_n = (0,-1.3847483924e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.158901475629,-0.424017070541,-0.891605206878) b = (0,0,1) a' = (0.588737733539,0.347154009294,0.7299808045) -> rel. dev. (inf,inf,-0.2700191955) m_ct = -0.891605206878 m_st = -0.452813598589 m_n = (0,-1.38474839417e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.158901475629,-0.424017070541,-0.891605206878) b = (0,0,1) a' = (0.588737733539,0.347154009294,0.7299808045) -> rel. dev. (inf,inf,-0.2700191955) m_ct = -0.891605206878 m_st = -0.452813598589 m_n = (0,-1.38474839417e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.158901475629,-0.424017070541,-0.891605206878) b = (0,0,1) a' = (0.588737733539,0.347154009294,0.7299808045) -> rel. dev. (inf,inf,-0.2700191955) m_ct = -0.891605206878 m_st = -0.452813598589 m_n = (0,-1.38474839417e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.15890147802,-0.424017070819,-0.89160520632) b = (0,0,1) a' = (0.588737736495,0.347154008733,0.729980802383) -> rel. dev. (inf,inf,-0.270019197617) m_ct = -0.89160520632 m_st = -0.452813599689 m_n = (0,-1.3847483924e-06,6.58539175191e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.15890147802,-0.424017070819,-0.89160520632) b = (0,0,1) a' = (0.588737736495,0.347154008733,0.729980802383) -> rel. dev. (inf,inf,-0.270019197617) m_ct = -0.89160520632 m_st = -0.452813599689 m_n = (0,-1.3847483924e-06,6.58539175191e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.798063235,21.2678435442,-8.74517152619,36.095360126) p_j = (2.80103484558,1.39811613104,-0.549741840211,2.36407516788) p_k = (9.61068164778e-10,1.43042319013e-10,-4.82232347408e-10,8.1892831016e-10) p_ij -> (45.5991433038,22.6662889465,-9.29466011223,38.459465792) p_k -> (-4.52221728828e-05,-0.00032927102616,-0.000253254656054,-3.04972443317e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.900380263705,0.128287409622,0.161665173941,0.876408199036) p_j = (40.8374847468,5.7761588509,7.25442725005,39.7707107637) p_k = (1.45373775796e-08,3.82961557177e-09,2.87491264278e-09,1.3726043434e-08) p_ij -> (41.7379678418,5.90442768202,7.41610524241,40.6472271667) p_k -> (-0.000102816677092,1.85823314296e-05,-1.28155404013e-05,-0.000108190238304) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.0311655023,2.19292480961,6.66311648898,30.2279207334) p_j = (6.98714932168,0.494520286249,1.50168490514,6.80592740011) p_k = (1.8274941901e-09,1.11655686766e-09,1.14304576028e-09,-8.86831939298e-10) p_ij -> (38.0183265533,2.68744586172,8.16480386502,37.0338597299) p_k -> (-1.17274550924e-05,-7.64747685178e-07,-2.46974765705e-06,-1.15973097046e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0153280599731,0.0139024988973,0.00356221963004,0.00538335752648) p_j = (11.1578331592,10.1211829585,2.5997359504,3.91155586914) p_k = (2.3702171107e-08,1.99697398208e-08,-3.59963244276e-09,1.22492880626e-08) p_ij -> (11.1731619021,10.1350860812,2.6032983547,3.91693945503) p_k -> (-6.59199609565e-07,-6.03772626562e-07,-1.88271076063e-07,-2.16114088403e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.0532265697,-10.8871501826,4.66677685882,-7.56203224473) p_j = (12.8714156121,-9.97150115344,4.27499200527,-6.92581749405) p_k = (2.30945532577e-07,-1.8771483777e-07,6.83932726502e-08,-1.15850502605e-07) p_ij -> (26.9248206321,-20.858789379,8.94182832007,-14.4879459556) p_k -> (-0.000178219467401,0.000137855264343,-5.93875865347e-05,9.61009325104e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.7532837781,15.0225559472,3.21246146113,-3.48838844847) p_j = (0.00115139498769,0.00109853609245,0.000235044632421,-0.000252354694903) p_k = (4.88032913428e-09,2.88209001969e-09,1.35040453351e-09,-3.69967233395e-09) p_ij -> (15.754439188,15.0236583173,3.21269732344,-3.48864168437) p_k -> (-4.01009693363e-06,-3.83117545422e-06,-8.16331001241e-07,8.77511156627e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347876,0.340391732165,0.829644026308) b = (0,0,1) a' = (0.133519381404,0.376181488288,0.916875161982) -> rel. dev. (inf,inf,-0.0831248380184) m_ct = 0.829644026308 m_st = -0.55829274544 m_n = (0,7.91402424483e-07,-3.24701719734e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347657,0.340391735721,0.829644024966) b = (0,0,1) a' = (0.133519384028,0.376181492038,0.916875160061) -> rel. dev. (inf,inf,-0.0831248399392) m_ct = 0.829644024966 m_st = -0.558292747434 m_n = (0,7.91402423594e-07,-3.24701723287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347315,0.340391735458,0.829644025257) b = (0,0,1) a' = (0.133519383891,0.376181491684,0.916875160226) -> rel. dev. (inf,inf,-0.0831248397738) m_ct = 0.829644025257 m_st = -0.558292747003 m_n = (0,7.91402424483e-07,-3.24701723287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520348194,0.340391734272,0.829644025275) b = (0,0,1) a' = (0.133519382888,0.376181490606,0.916875160815) -> rel. dev. (inf,inf,-0.0831248391855) m_ct = 0.829644025275 m_st = -0.558292746976 m_n = (0,7.91402422928e-07,-3.2470172151e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347315,0.340391735458,0.829644025257) b = (0,0,1) a' = (0.133519383891,0.376181491684,0.916875160226) -> rel. dev. (inf,inf,-0.0831248397738) m_ct = 0.829644025257 m_st = -0.558292747003 m_n = (0,7.91402424483e-07,-3.24701723287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347657,0.340391735721,0.829644024966) b = (0,0,1) a' = (0.133519384028,0.376181492038,0.916875160061) -> rel. dev. (inf,inf,-0.0831248399392) m_ct = 0.829644024966 m_st = -0.558292747434 m_n = (0,7.91402423594e-07,-3.24701723287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347315,0.340391735458,0.829644025257) b = (0,0,1) a' = (0.133519383891,0.376181491684,0.916875160226) -> rel. dev. (inf,inf,-0.0831248397738) m_ct = 0.829644025257 m_st = -0.558292747003 m_n = (0,7.91402424483e-07,-3.24701723287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347315,0.340391735458,0.829644025257) b = (0,0,1) a' = (0.133519383891,0.376181491684,0.916875160226) -> rel. dev. (inf,inf,-0.0831248397738) m_ct = 0.829644025257 m_st = -0.558292747003 m_n = (0,7.91402424483e-07,-3.24701723287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347315,0.340391735458,0.829644025257) b = (0,0,1) a' = (0.133519383891,0.376181491684,0.916875160226) -> rel. dev. (inf,inf,-0.0831248397738) m_ct = 0.829644025257 m_st = -0.558292747003 m_n = (0,7.91402424483e-07,-3.24701723287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347657,0.340391735721,0.829644024966) b = (0,0,1) a' = (0.133519384028,0.376181492038,0.916875160061) -> rel. dev. (inf,inf,-0.0831248399392) m_ct = 0.829644024966 m_st = -0.558292747434 m_n = (0,7.91402423594e-07,-3.24701723287e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.442520347657,0.340391735721,0.829644024966) b = (0,0,1) a' = (0.133519384028,0.376181492038,0.916875160061) -> rel. dev. (inf,inf,-0.0831248399392) m_ct = 0.829644024966 m_st = -0.558292747434 m_n = (0,7.91402423594e-07,-3.24701723287e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.0461853545,-7.38789885327,15.8761191674,24.4159997762) p_j = (3.03770752603,-0.746939523326,1.60507225684,2.46849983036) p_k = (1.35491820003e-07,3.50867369781e-08,-1.20197542088e-07,-5.1763940297e-08) p_ij -> (33.0838930765,-8.13483842481,17.4811915279,26.8844997659) p_k -> (-6.04641670066e-08,8.33048332538e-08,-2.23838018343e-07,-2.11084739021e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.96771128869,-2.47717099207,0.226188637368,-3.09114791733) p_j = (41.4881894408,-25.8950550239,2.3502610494,-32.32943336) p_k = (3.31230672129e-08,-2.78036992873e-08,-3.40721122952e-09,-1.76771833145e-08) p_ij -> (45.4559367674,-28.3722473981,2.57645255349,-35.4206106275) p_k -> (-3.60048118999e-05,2.13542723309e-05,-2.87012871492e-06,2.93324493832e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.23927064573,9.07859604903,1.62918032427,-0.537575403659) p_j = (3.9400226159,3.87147902622,0.694867757746,-0.229318910308) p_k = (1.1404186116e-07,1.13774692317e-07,4.61463447867e-09,-6.29051936377e-09) p_ij -> (13.1793028382,12.9500844825,2.32404979572,-0.766894871776) p_k -> (-9.46250631717e-06,-9.29345026179e-06,-1.70908675989e-06,5.51519079406e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.26049565553,1.52026416901,1.56262825925,0.59735281745) p_j = (37.1579770852,24.9922715543,25.6826916305,9.82349093925) p_k = (8.17220590453e-08,-6.71655346576e-08,4.64826272568e-08,2.57900841051e-09) p_ij -> (39.4184729683,26.5125359132,27.24532005,10.4208438226) p_k -> (-1.45758107806e-07,-2.56991851799e-07,-1.13763315213e-07,-6.3295218844e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.55874156885,-0.427079107623,-5.92378577631,-7.48972001428) p_j = (15.981593132,-0.713899395566,-9.90394872788,-12.5225183683) p_k = (2.4774634748e-10,1.49183935316e-10,1.14868758924e-10,1.61019048174e-10) p_ij -> (25.5404122745,-1.14098196916,-15.8277825786,-20.0122991668) p_k -> (-7.75734331331e-05,3.46612320679e-06,4.80745089897e-05,6.07844117049e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.1273977317,3.39929682972,-11.603795198,0.933002577997) p_j = (0.401736374268,0.112623488572,-0.384386194941,0.03090820879) p_k = (1.51086695094e-07,2.04900973851e-09,-1.5101772973e-07,-4.07876204814e-09) p_ij -> (12.529135253,3.51192064228,-11.98818249,0.963910875998) p_k -> (-9.95905817369e-07,-3.21938830039e-07,9.46054651507e-07,-9.32893870487e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.929219991165,-0.00384006271525,0.566829127437,-0.736301423459) p_j = (0.00343851354708,-2.33182042888e-05,0.00209840127641,-0.00272388394723) p_k = (1.7963553192e-09,-1.12462171556e-09,1.39569259163e-09,1.18957966156e-10) p_ij -> (0.932658521874,-0.00386336780051,0.568927535642,-0.739025339215) p_k -> (-1.53658083479e-08,-1.42436458327e-08,-5.53247819779e-09,3.19281054373e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.1465198256,16.0285506504,-13.9630978047,35.2300093315) p_j = (1.88101848336,0.732125854812,-0.638657321226,1.61069522055) p_k = (5.95467941371e-11,-1.98394339471e-11,4.52539186859e-11,-3.32333304957e-11) p_ij -> (43.0283404234,16.760989007,-14.602027408,36.8413914324) p_k -> (-0.000802114421106,-0.000312501800662,0.000272282116611,-0.000686880368033) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.5762985376,3.19806026065,8.37879291163,29.2314603154) p_j = (3.61242081576,0.378528466016,0.989138586464,3.45367995149) p_k = (1.12547553829e-08,-1.10987937579e-08,9.81925015584e-10,-1.58813613424e-09) p_ij -> (34.1887212566,3.5765890477,9.36793204046,32.6851422091) p_k -> (-1.89196029154e-06,-3.32131731229e-07,-5.41388738284e-07,-1.94374619156e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.7784325074,4.92066032268,10.3023519931,-17.3606423518) p_j = (24.62867441,6.01919637908,12.2629813745,-20.4929296577) p_k = (9.68996456976e-11,-7.15201009273e-11,-4.92128473311e-11,4.30409729016e-11) p_ij -> (45.4080577816,10.9403115897,22.5660376575,-37.8546594125) p_k -> (-0.000950864023771,-0.000454887968221,-0.000704290071727,0.00108740309222) } Poincare::Poincare(): Inaccurate rotation { a = (0.24320825557,0.0969075842821,-0.965121062112) b = (0,0,1) a' = (0.0192176899137,-0.0998889436551,0.994812987114) -> rel. dev. (inf,-inf,-0.00518701288642) m_ct = -0.965121062112 m_st = -0.26180400201 m_n = (0,-1.37678587109e-06,-1.38242753245e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.24320825557,0.0969075842821,-0.965121062112) b = (0,0,1) a' = (0.0192176899137,-0.0998889436551,0.994812987114) -> rel. dev. (inf,-inf,-0.00518701288642) m_ct = -0.965121062112 m_st = -0.26180400201 m_n = (0,-1.37678587109e-06,-1.38242753245e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.24320825557,0.0969075842821,-0.965121062112) b = (0,0,1) a' = (0.0192176899137,-0.0998889436551,0.994812987114) -> rel. dev. (inf,-inf,-0.00518701288642) m_ct = -0.965121062112 m_st = -0.26180400201 m_n = (0,-1.37678587109e-06,-1.38242753245e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.24320825557,0.0969075842821,-0.965121062112) b = (0,0,1) a' = (0.0192176899137,-0.0998889436551,0.994812987114) -> rel. dev. (inf,-inf,-0.00518701288642) m_ct = -0.965121062112 m_st = -0.26180400201 m_n = (0,-1.37678587109e-06,-1.38242753245e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.9809823891,-15.2918605483,14.0582799664,-21.6190441595) p_j = (15.5932565723,-7.96190371574,7.33066925901,-11.2258197012) p_k = (6.80728264047e-10,3.01786971168e-10,-6.08752753413e-10,-4.164407392e-11) p_ij -> (45.574453476,-23.2538833413,21.3890636631,-32.845025115) p_k -> (-0.000214513982549,0.000119077588248,-0.000114438290497,0.000161254231006) } Poincare::Poincare(): Inaccurate rotation { a = (0.962045857889,0.196510322824,0.189344818629) b = (0,0,1) a' = (0.450109866304,-0.64304241521,-0.619594674361) -> rel. dev. (inf,-inf,-1.61959467436) m_ct = 0.189344818629 m_st = -0.981910657676 m_n = (0,1.57267759704e-07,-1.63219350036e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.962045857889,0.196510322824,0.189344818629) b = (0,0,1) a' = (0.450109866304,-0.64304241521,-0.619594674361) -> rel. dev. (inf,-inf,-1.61959467436) m_ct = 0.189344818629 m_st = -0.981910657676 m_n = (0,1.57267759704e-07,-1.63219350036e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.962045857889,0.196510322824,0.189344818629) b = (0,0,1) a' = (0.450109866304,-0.64304241521,-0.619594674361) -> rel. dev. (inf,-inf,-1.61959467436) m_ct = 0.189344818629 m_st = -0.981910657676 m_n = (0,1.57267759704e-07,-1.63219350036e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.962045857889,0.196510322824,0.189344818629) b = (0,0,1) a' = (0.450109866304,-0.64304241521,-0.619594674361) -> rel. dev. (inf,-inf,-1.61959467436) m_ct = 0.189344818629 m_st = -0.981910657676 m_n = (0,1.57267759704e-07,-1.63219350036e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.1849626129,-2.47410173896,-7.91495350403,12.7206690536) p_j = (16.3066471758,-2.65659945843,-8.49938268023,13.6605166626) p_k = (1.59112798798e-07,-1.48421482198e-08,-6.88640611566e-08,1.4266861763e-07) p_ij -> (31.4916350838,-5.13070533897,-16.4143493947,26.3812068891) p_k -> (-2.51359701267e-05,4.12674102979e-06,1.31416140672e-05,-2.10302620864e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (36.8529488221,-36.0835650945,6.98259659793,2.71284199773) p_j = (8.32752001798,-8.15352111347,1.57771687685,0.615217488782) p_k = (8.09898281088e-08,-7.46868991191e-08,2.72872980318e-08,-1.53825464579e-08) p_ij -> (45.1804832726,-44.2371006287,8.56031545946,3.32806189007) p_k -> (-1.43515069375e-05,1.43460257576e-05,-1.95739281939e-06,-2.41893761155e-06) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559886,0.0640466451736,-0.839289278185) b = (0,0,1) a' = (0.00450386285986,-0.0760885765182,0.997090890412) -> rel. dev. (inf,-inf,-0.00290910958791) m_ct = -0.839289278185 m_st = -0.54368511799 m_n = (0,-8.58418292449e-07,-6.55063912003e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559802,0.0640466419072,-0.839289278489) b = (0,0,1) a' = (0.0045038624018,-0.0760885726329,0.997090890711) -> rel. dev. (inf,-inf,-0.00290910928935) m_ct = -0.839289278489 m_st = -0.543685117521 m_n = (0,-8.58418292893e-07,-6.55063878696e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559879,0.0640466453898,-0.839289278174) b = (0,0,1) a' = (0.00450386289025,-0.0760885767746,0.997090890392) -> rel. dev. (inf,-inf,-0.00290910960761) m_ct = -0.839289278174 m_st = -0.543685118008 m_n = (0,-8.58418292449e-07,-6.55063914223e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559682,0.0640466453665,-0.839289278302) b = (0,0,1) a' = (0.00450386288792,-0.0760885767354,0.997090890395) -> rel. dev. (inf,-inf,-0.00290910960462) m_ct = -0.839289278302 m_st = -0.54368511781 m_n = (0,-8.58418292893e-07,-6.55063914223e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559802,0.0640466419072,-0.839289278489) b = (0,0,1) a' = (0.0045038624018,-0.0760885726329,0.997090890711) -> rel. dev. (inf,-inf,-0.00290910928935) m_ct = -0.839289278489 m_st = -0.543685117521 m_n = (0,-8.58418292893e-07,-6.55063878696e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559802,0.0640466419072,-0.839289278489) b = (0,0,1) a' = (0.0045038624018,-0.0760885726329,0.997090890711) -> rel. dev. (inf,-inf,-0.00290910928935) m_ct = -0.839289278489 m_st = -0.543685117521 m_n = (0,-8.58418292893e-07,-6.55063878696e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559879,0.0640466453898,-0.839289278174) b = (0,0,1) a' = (0.00450386289025,-0.0760885767746,0.997090890392) -> rel. dev. (inf,-inf,-0.00290910960761) m_ct = -0.839289278174 m_st = -0.543685118008 m_n = (0,-8.58418292449e-07,-6.55063914223e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559879,0.0640466453898,-0.839289278174) b = (0,0,1) a' = (0.00450386289025,-0.0760885767746,0.997090890392) -> rel. dev. (inf,-inf,-0.00290910960761) m_ct = -0.839289278174 m_st = -0.543685118008 m_n = (0,-8.58418292449e-07,-6.55063914223e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559879,0.0640466453898,-0.839289278174) b = (0,0,1) a' = (0.00450386289025,-0.0760885767746,0.997090890392) -> rel. dev. (inf,-inf,-0.00290910960761) m_ct = -0.839289278174 m_st = -0.543685118008 m_n = (0,-8.58418292449e-07,-6.55063914223e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559802,0.0640466419072,-0.839289278489) b = (0,0,1) a' = (0.0045038624018,-0.0760885726329,0.997090890711) -> rel. dev. (inf,-inf,-0.00290910928935) m_ct = -0.839289278489 m_st = -0.543685117521 m_n = (0,-8.58418292893e-07,-6.55063878696e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.539899559802,0.0640466419072,-0.839289278489) b = (0,0,1) a' = (0.0045038624018,-0.0760885726329,0.997090890711) -> rel. dev. (inf,-inf,-0.00290910928935) m_ct = -0.839289278489 m_st = -0.543685117521 m_n = (0,-8.58418292893e-07,-6.55063878696e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.337600088907,-0.521428673064,0.783669776677) b = (0,0,1) a' = (0.849275076973,-0.292458956145,0.439544767461) -> rel. dev. (inf,-inf,-0.560455232539) m_ct = 0.783669776677 m_st = -0.621177656652 m_n = (-0,5.83123969702e-07,3.87991940997e-07) } Channel_Elements::CheckMasses(): Strong deviation in masses s2,p2: 0;(44.8936297796,-16.5720421965,1.83334646225,41.6826607544) -> 4.54140720194e-05 : 4.54140720194e-05, rel = 1.01159278593e-06. Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.275625384345,-0.0867966570415,-0.229652818943,-0.125280786929) p_j = (28.4268675437,-8.96873495768,-23.7157847023,-12.8534099585) p_k = (9.69838977876e-09,8.41369372752e-09,4.61367299403e-09,1.40803160337e-09) p_ij -> (28.7024964128,-9.05553337777,-23.9454411633,-12.9786926562) p_k -> (-3.47497532971e-06,1.77146663649e-06,3.6466145481e-06,1.91221261048e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.6487628099,-13.6920744521,-8.03341964245,-5.01722723684) p_j = (8.45840557694,-6.95135417349,-4.08817695259,-2.55149157613) p_k = (2.3036943418e-09,-1.68802571435e-09,7.16862770782e-10,1.39415977083e-09) p_ij -> (25.1071919462,-20.6434483636,-12.1216112284,-7.56872963653) p_k -> (-2.35571137868e-05,1.97363820416e-05,1.46340352654e-05,1.0824956334e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.23147742651,0.40427546984,-2.1320279731,-0.520105346481) p_j = (2.49010681781,0.451062553792,-2.37909571117,-0.580584303774) p_k = (4.0468456538e-09,-3.313859872e-09,-7.70364722647e-10,-2.191308753e-09) p_ij -> (4.72158468669,0.855338108893,-4.51112411084,-1.1006897518) p_k -> (-4.38322707463e-07,-8.85745234935e-08,4.25800452231e-07,9.93535157479e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.114567700362,-0.415301363427,0.902440590604) b = (0,0,1) a' = (0.531368144092,-0.354150743421,0.769561658594) -> rel. dev. (inf,-inf,-0.230438341406) m_ct = 0.902440590604 m_st = -0.430814322453 m_n = (-0,1.37815753051e-06,6.34225352224e-07) } Channel_Elements::CheckMasses(): Strong deviation in masses s2,p2: 0;(10.3082536411,7.47148309949,-6.4735136177,2.92073193398) -> -2.01664168742e-05 : 2.01664168742e-05, rel = 1.95633689046e-06. Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.9827131188,0.120787517905,-2.63297884367,-11.6892363511) p_j = (30.736595706,0.339579535563,-6.77310458483,-29.9791269989) p_k = (1.7387359782e-09,-2.95101370208e-10,1.66496489519e-09,4.04990356235e-10) p_ij -> (42.7193521465,0.460368252348,-9.40609774368,-41.6684105063) p_k -> (-4.33199541412e-05,-1.19917615357e-06,1.4316844589e-05,4.715675529e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.59162559936,-0.292272961686,-0.429244537398,-1.50452573641) p_j = (3.59978968539,-0.66119536112,-0.970602992752,-3.40282769236) p_k = (4.54616330743e-08,-1.2042606573e-08,-1.65269721112e-08,-4.06028927924e-08) p_ij -> (5.19141793289,-0.953468780217,-1.39984821075,-4.90735595061) p_k -> (-2.60268090368e-06,4.45368784352e-07,6.64071566514e-07,2.4812296564e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.673106458066,0.587050865443,0.307660488338,-0.117424908722) p_j = (3.1958777163,2.78741185168,1.46043422832,-0.557764655935) p_k = (3.28500857793e-10,-2.8361064716e-10,2.87443986739e-11,-1.63252983403e-10) p_ij -> (3.86898524101,3.37446365253,1.76809520519,-0.675189749855) p_k -> (-1.06632108055e-06,-9.35693063697e-07,-4.88506412322e-07,1.85034642441e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.701023160402,0.412369357685,-0.128080010489,-0.552250391739) p_j = (32.9557944195,19.3846135263,-6.02874484699,-25.9610358003) p_k = (1.80710023118e-08,8.23928954168e-09,-1.31509916672e-08,9.25886774101e-09) p_ij -> (33.6568193124,19.7969839055,-6.15682516415,-26.5132875813) p_k -> (-1.71440972707e-06,-1.01329686863e-06,2.93519031747e-07,1.39849167624e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.7897708766,-6.09072357037,6.63744601597,-17.6205115738) p_j = (18.5666060355,-5.72054614751,6.22772475828,-16.529054897) p_k = (2.22057288932e-10,-2.09401499924e-10,-6.22814020165e-11,3.97741040108e-11) p_ij -> (38.3564142104,-11.8112807883,12.865183687,-34.1496003772) p_k -> (-3.72981067045e-05,1.10702529499e-05,-1.29128116804e-05,3.39064432282e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.006784736,0.14405148505,4.45408559176,-16.4125286829) p_j = (19.8465258072,0.168190327746,5.197561323,-19.1531108419) p_k = (7.30691038504e-09,5.01604929243e-09,-5.24314418318e-09,8.60015855891e-10) p_ij -> (36.8533187316,0.312241881708,9.65164905992,-35.5656474279) p_k -> (-8.18111196921e-06,-6.38958169985e-08,-2.15040953222e-06,7.90391447936e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (35.3102167454,16.5105865351,-17.9244092219,-25.5524459283) p_j = (10.2839666082,4.81303438965,-5.21821637928,-7.44075849508) p_k = (8.95643749285e-09,-9.24596367815e-10,1.27072895768e-09,-8.81749225685e-09) p_ij -> (45.5941892047,21.3236250196,-23.1426301163,-32.9932080367) p_k -> (-5.84206633292e-06,-4.09575900662e-06,4.51641367327e-06,3.60446698977e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.493103610339,-0.0495470017217,-0.182934228528,0.455226683294) p_j = (45.1058715454,-4.63663694962,-16.70819859,41.6398528521) p_k = (1.2394205808e-08,-1.02877018873e-08,5.15505206751e-09,4.60489112014e-09) p_ij -> (45.5989884548,-4.68618393095,-16.8911392446,42.0950928647) p_k -> (-1.32866432168e-05,-3.06769654124e-08,6.43129856392e-06,-1.33246233673e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.224570148177,0.171503207525,0.142787998169,-0.025099578481) p_j = (36.0812806469,27.6686912895,22.8314491429,-3.87650170705) p_k = (6.45355352052e-09,5.31984670332e-09,3.29944699606e-09,-1.56883172559e-09) p_ij -> (36.3067158715,27.8408445034,22.9748127847,-3.90166275161) p_k -> (-0.000865069892392,-0.000650000987919,-0.000575640383461,6.1464510337e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.0442681411,13.3933562585,-8.33275224162,-6.4568045253) p_j = (0.0154239817183,0.0121223641138,-0.0075381620834,-0.00584154198357) p_k = (2.14009503497e-08,2.08427551208e-08,-2.12510040866e-09,-4.36625354012e-09) p_ij -> (17.0596934808,13.405479689,-8.34029106912,-6.46264658239) p_k -> (-1.33657165335e-06,-1.04551782254e-06,6.63288515668e-07,5.10748661586e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.7489738033,12.9592348554,12.8163195218,16.7425174389) p_j = (20.8416765954,10.9131576155,10.7929213442,14.0993376803) p_k = (3.98065036969e-05,2.07780048606e-05,2.07146707336e-05,2.69023171303e-05) p_ij -> (45.5908543052,23.8724993257,23.6093463304,30.8419930951) p_k -> (-0.000164100040966,-8.6076699354e-05,-8.47496847403e-05,-0.00011107357011) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.8056903791,-0.196533524323,2.3581824461,2.98054179408) p_j = (25.4606630877,-1.3228453087,15.7717531343,19.9436016863) p_k = (2.30821487254e-08,1.24361858013e-08,-1.88656147022e-09,1.9353753016e-08) p_ij -> (29.2663568936,-1.51937936362,18.1299381219,22.9241461317) p_k -> (-3.40375610364e-06,5.43036333567e-07,-2.54342849715e-06,-2.63191964045e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.2550280466,1.96960304136,-7.18840955178,27.2542481439) p_j = (6.72324633002,0.46856325288,-1.71024865797,6.48517842624) p_k = (3.39025089691e-08,3.10046947396e-08,-8.10912615811e-09,-1.10603320809e-08) p_ij -> (34.9782748143,2.43816632199,-8.89865832115,33.7394269965) p_k -> (-4.03808545713e-07,3.25471583018e-09,1.03296606824e-07,-4.3748690004e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.078094237768,-0.00762760045371,0.0627613774091,0.0458425478089) p_j = (37.1822617684,-3.47655757667,29.8915163631,21.8387588279) p_k = (1.60514928386e-09,3.97571157831e-10,1.04703544451e-09,1.14985199498e-09) p_ij -> (37.2603963095,-3.48419194025,29.9543114718,21.8846239154) p_k -> (-4.03017462922e-05,6.76352661833e-06,-3.37302042936e-05,-2.25385184223e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0344898629724,-0.013326625502,0.0314887235218,0.00451796320821) p_j = (33.2841165493,-12.7775550397,30.4277775731,4.32629791375) p_k = (2.81748914588e-08,3.10029166623e-09,-2.52512903144e-08,-1.21072557614e-08) p_ij -> (33.3186070738,-12.7908819578,30.459267043,4.33081600673) p_k -> (-6.33280951234e-07,2.95672021089e-07,-7.71574809377e-07,-1.41871023374e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.8111521147,-28.9091125585,6.68525673744,-29.4574777365) p_j = (0.00270646225374,-0.00186915208111,0.000428768102086,-0.0019098079336) p_k = (6.31322708906e-07,-4.3692437469e-07,8.93121233948e-08,-4.46865525856e-07) p_ij -> (41.8141931147,-28.9112129966,6.68573956717,-29.4596231364) p_k -> (-0.000333906407999,0.000230849119772,-5.39723170978e-05,0.000235145108697) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.26060755513,-0.041555127626,1.09875425206,-4.11628339693) p_j = (41.0921547626,-0.395444006308,10.5964153026,-39.7004381564) p_k = (1.43500088618e-07,-6.76971598198e-08,-4.66766193041e-08,-1.1760384006e-07) p_ij -> (45.3527642278,-0.436999098899,11.6951701146,-43.8167234156) p_k -> (-1.76654909723e-06,-1.02732963941e-07,-6.06658549174e-07,1.74470653747e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.8122906984,13.7570447394,12.9836713383,40.6240002493) p_j = (0.11545564187,0.0354366180034,0.0334570218625,0.104665558003) p_k = (7.80359735492e-08,-7.24795673312e-08,2.3362168487e-08,-1.70450744472e-08) p_ij -> (44.9277465442,13.7924814203,13.0171284192,40.7286659925) p_k -> (-1.25955178731e-07,-1.35432551396e-07,-3.57385845362e-08,-2.02270314276e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (27.5216420311,24.9218256851,11.6556769302,-0.698984912027) p_j = (8.66484215569,7.84645915141,3.66935598509,-0.21998868834) p_k = (1.42257571234e-08,-1.09502533039e-08,-9.07170293308e-09,-4.10285349772e-10) p_ij -> (36.1864859094,32.7682864004,15.3250336474,-0.918973644104) p_k -> (-1.70834324464e-06,-1.57480686624e-06,-7.41117811565e-07,4.33269712885e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.5992390238,26.7704955047,4.537120448,31.5158975096) p_j = (1.27636752262,0.820959983185,0.1379131622,0.967532282924) p_k = (2.52314603589e-08,9.56287839079e-09,-1.64983004217e-09,2.32906850392e-08) p_ij -> (42.8756489448,27.5914861737,4.67504047611,32.4834597867) p_k -> (-4.23731192818e-05,-3.0676185272e-05,-6.86756919288e-06,-2.99709053664e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.474218040893,0.165112161691,0.285140928271,-0.341050400081) p_j = (0.232812512226,0.0811268044674,0.139933054915,-0.167448044444) p_k = (2.57019528671e-10,-2.43530202713e-10,-8.08837037791e-11,1.44395899348e-11) p_ij -> (0.707030618009,0.246238997761,0.425074028562,-0.508498496581) p_k -> (-6.4632088681e-08,-3.18464211807e-08,-4.54571016384e-08,5.20706571749e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.1735495468,5.23689842909,8.11934961808,-3.18624653845) p_j = (4.92686774151,2.53640554148,3.93184461248,-1.54313661571) p_k = (6.72236457419e-08,-3.03868206364e-08,1.30370876935e-09,-5.99496450627e-08) p_ij -> (15.1004174584,7.77330406702,12.0511943735,-4.72938320212) p_k -> (-1.02878926711e-07,-1.26833935798e-07,-1.4160438333e-07,-1.19902971996e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555624,0.325687244853,-0.894097292207) b = (0,0,1) a' = (0.701060612334,-0.244068801408,0.670033161876) -> rel. dev. (inf,-inf,-0.329966838124) m_ct = -0.894097292207 m_st = -0.447872785585 m_n = (0,-8.9070709019e-07,-3.24452317106e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555609,0.325687246702,-0.894097291538) b = (0,0,1) a' = (0.701060613388,-0.244068802438,0.670033160397) -> rel. dev. (inf,-inf,-0.329966839603) m_ct = -0.894097291538 m_st = -0.44787278692 m_n = (0,-8.90707090306e-07,-3.24452319234e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555159,0.325687243604,-0.894097292822) b = (0,0,1) a' = (0.701060611007,-0.24406880088,0.670033163456) -> rel. dev. (inf,-inf,-0.329966836544) m_ct = -0.894097292822 m_st = -0.447872784358 m_n = (0,-8.90707090306e-07,-3.24452315681e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555159,0.325687243604,-0.894097292822) b = (0,0,1) a' = (0.701060611007,-0.24406880088,0.670033163456) -> rel. dev. (inf,-inf,-0.329966836544) m_ct = -0.894097292822 m_st = -0.447872784358 m_n = (0,-8.90707090306e-07,-3.24452315681e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555609,0.325687246702,-0.894097291538) b = (0,0,1) a' = (0.701060613388,-0.244068802438,0.670033160397) -> rel. dev. (inf,-inf,-0.329966839603) m_ct = -0.894097291538 m_st = -0.44787278692 m_n = (0,-8.90707090306e-07,-3.24452319234e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555609,0.325687246702,-0.894097291538) b = (0,0,1) a' = (0.701060613388,-0.244068802438,0.670033160397) -> rel. dev. (inf,-inf,-0.329966839603) m_ct = -0.894097291538 m_st = -0.44787278692 m_n = (0,-8.90707090306e-07,-3.24452319234e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555159,0.325687243604,-0.894097292822) b = (0,0,1) a' = (0.701060611007,-0.24406880088,0.670033163456) -> rel. dev. (inf,-inf,-0.329966836544) m_ct = -0.894097292822 m_st = -0.447872784358 m_n = (0,-8.90707090306e-07,-3.24452315681e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555159,0.325687243604,-0.894097292822) b = (0,0,1) a' = (0.701060611007,-0.24406880088,0.670033163456) -> rel. dev. (inf,-inf,-0.329966836544) m_ct = -0.894097292822 m_st = -0.447872784358 m_n = (0,-8.90707090306e-07,-3.24452315681e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555159,0.325687243604,-0.894097292822) b = (0,0,1) a' = (0.701060611007,-0.24406880088,0.670033163456) -> rel. dev. (inf,-inf,-0.329966836544) m_ct = -0.894097292822 m_st = -0.447872784358 m_n = (0,-8.90707090306e-07,-3.24452315681e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555609,0.325687246702,-0.894097291538) b = (0,0,1) a' = (0.701060613388,-0.244068802438,0.670033160397) -> rel. dev. (inf,-inf,-0.329966839603) m_ct = -0.894097291538 m_st = -0.44787278692 m_n = (0,-8.90707090306e-07,-3.24452319234e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.307437555609,0.325687246702,-0.894097291538) b = (0,0,1) a' = (0.701060613388,-0.244068802438,0.670033160397) -> rel. dev. (inf,-inf,-0.329966839603) m_ct = -0.894097291538 m_st = -0.44787278692 m_n = (0,-8.90707090306e-07,-3.24452319234e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606507,0.20333221887,-0.916948109889) b = (0,0,1) a' = (0.0599576145365,-0.216100586005,0.974528409636) -> rel. dev. (inf,-inf,-0.0254715903641) m_ct = -0.916948109889 m_st = -0.399006470838 m_n = (0,-1.24085133534e-06,-2.75157397221e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.343310606894,0.203332218885,-0.916948109741) b = (0,0,1) a' = (0.0599576144962,-0.216100586054,0.974528409627) -> rel. dev. (inf,-inf,-0.0254715903726) m_ct = -0.916948109741 m_st = -0.399006471179 m_n = (0,-1.24085133546e-06,-2.75157397311e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.0371148386,18.40982732,1.18613137549,24.9594440626) p_j = (2.91733446882,1.72984589356,0.112899458595,2.3464286266) p_k = (2.45118025814e-08,1.38607294746e-08,-2.62353398178e-09,2.00455908664e-08) p_ij -> (33.95445934,20.1396801319,1.29903629928,27.3058802816) p_k -> (-1.00080852512e-05,-6.90445748397e-06,-5.46781675748e-06,-7.57236008297e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00240794851794,-0.00123866652234,0.00206197845956,0.000110300243651) p_j = (45.5953168987,-22.9936523966,39.345456569,1.46966660813) p_k = (8.70207967744e-08,-6.82267847675e-08,5.39764330418e-08,-2.06629645475e-09) p_ij -> (45.597765352,-22.9949099046,39.347554875,1.46977853117) p_k -> (-4.04177537412e-05,1.87732862944e-05,-3.62736425146e-05,-1.62486519528e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00106399489146,-0.000214156756953,-0.000893433316073,-0.000536655310454) p_j = (20.4954979002,-4.47456010209,-17.1048551923,-10.3666617058) p_k = (1.34975401847e-08,1.31950925896e-08,-2.56046108693e-09,-1.23171782193e-09) p_ij -> (20.4965622211,-4.47477453104,-17.1057490061,-10.3671985957) p_k -> (-3.12509518707e-07,2.85395858057e-07,3.77913798033e-07,2.3334679522e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.8548614205,7.57844985367,2.0916219096,10.1705298654) p_j = (32.6785271158,19.2636127543,5.31702648928,25.8559197752) p_k = (7.94598393721e-09,3.15106870582e-09,-4.93490345134e-09,5.37179245633e-09) p_ij -> (45.5334034631,26.8420714186,7.40865087268,36.0264614575) p_k -> (-1.49189473184e-05,-8.80739311526e-06,-2.47874233139e-06,-1.18115526035e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.1512023407,-9.26878402912,-7.7737797695,-16.1161082924) p_j = (6.03250689592,-2.77594103248,-2.32860206049,-4.82316320244) p_k = (2.92191403925e-08,-2.51176038891e-08,-1.35582128794e-08,6.24811990277e-09) p_ij -> (26.1837108066,-12.0447255509,-10.1023823902,-20.939273341) p_k -> (-1.54076232661e-06,4.64213305129e-07,5.4661805482e-07,1.85240134698e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.0033858878,-4.40184683658,10.38057302,-12.727237715) p_j = (18.4243010564,-4.77017978977,11.248584934,-13.7901990984) p_k = (6.87954767366e-11,-1.84872906462e-11,-6.56468161668e-11,-9.02961184935e-12) p_ij -> (35.42837424,-9.17220456323,21.6295775718,-26.5179512558) p_k -> (-0.000687295702463,0.000177936865372,-0.00041961791363,0.000514442383091) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.5981742668,-8.94011542407,3.71089957212,-9.5505970473) p_j = (31.9329633243,-20.9369765196,8.66456624397,-22.5007211594) p_k = (1.06513499444e-09,7.55684365068e-10,-3.7818608247e-10,6.48409647593e-10) p_ij -> (45.5311401747,-29.877129157,12.3754828217,-32.051354166) p_k -> (-2.58259488461e-06,3.72141633633e-05,-1.70059769777e-05,3.59599977884e-05) } Poincare::Poincare(): Inaccurate rotation { a = (-0.0993479358141,-0.37693426235,-0.920896600882) b = (0,0,1) a' = (0.479367646449,0.332447554943,0.81221012229) -> rel. dev. (inf,inf,-0.18778987771) m_ct = -0.920896600882 m_st = -0.389806940015 m_n = (0,-1.23390677093e-06,5.05053160217e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.7640012595,25.178333687,3.0918620963,-31.9091789334) p_j = (4.37352432422,2.70164155762,0.327704615549,-3.42366143093) p_k = (9.30406979296e-09,-8.47334597729e-09,4.22062382547e-10,3.81969435025e-09) p_ij -> (45.1375277684,27.8799779577,3.41956690448,-35.3328431393) p_k -> (-2.17543701098e-06,-2.72163006798e-06,-1.92212211036e-07,2.7787492094e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.5792459078,25.419517541,2.91742243275,-37.7200799556) p_j = (0.00812256786919,0.00453465516241,0.000521506293572,-0.00671870839771) p_k = (1.12797976605e-08,-5.45099899912e-09,-3.52930090874e-10,9.8689144413e-09) p_ij -> (45.5873739986,25.4240552775,2.91794429265,-37.7268032364) p_k -> (-5.51159827467e-06,-3.08669867799e-06,-3.53964305422e-07,4.5823111563e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.242577996061,-0.0371785646575,0.0477734055162,-0.234903257169) p_j = (43.8562692403,-6.7214494072,8.63703434489,-42.4687662555) p_k = (1.04510413414e-08,2.8522263534e-09,1.00542563781e-08,3.21251402747e-11) p_ij -> (44.0988626769,-6.7586303383,8.68481079127,-42.7036844648) p_k -> (-1.54301457727e-05,2.36929243913e-06,-3.03080868846e-06,1.49521287582e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.652499529167,0.214627464883,-0.162093732209,-0.594488274788) p_j = (11.5591407508,3.8017975325,-2.87151191884,-10.5315948326) p_k = (6.11913694497e-08,7.88586494951e-09,-1.61901624143e-08,-5.84814113247e-08) p_ij -> (12.2116421209,4.01642560618,-3.03360610811,-11.126084784) p_k -> (-1.7797795806e-06,-6.00912195559e-07,4.40875655983e-07,1.61809992516e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.75285381413,1.67347038857,0.37721273054,0.360144288029) p_j = (38.0045499183,36.2777128984,8.12047023181,7.89501897189) p_k = (1.57113667605e-08,1.00046870203e-08,1.00113099177e-08,-6.82106698893e-09) p_ij -> (39.7574081393,37.9511932961,8.49767617234,8.25517589321) p_k -> (-4.39118336715e-06,-9.99911782174e-06,6.80001595299e-06,-1.2640112792e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.680980713968,0.131081215396,0.385958991459,0.54551636518) p_j = (27.1416136656,5.22132696538,15.3826950103,21.7434503084) p_k = (2.07772640732e-06,3.93668465079e-07,1.15625340681e-06,1.68078857163e-06) p_ij -> (27.8227772567,5.35244352514,15.7687582246,22.2891127379) p_k -> (-0.000180799414247,-3.49506966311e-05,-0.000103066609126,-0.000144383480739) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.89763635098,1.62704959114,3.97851089588,-6.62546757683) p_j = (1.32008694687,0.271876321399,0.666982062136,-1.10627652147) p_k = (1.5688276904e-09,3.11242255863e-10,1.52298939949e-09,2.11798354522e-10) p_ij -> (9.2177272408,1.89892674718,4.64549357515,-7.73175026355) p_k -> (-3.94138841031e-06,-8.34323302779e-07,-6.1561514153e-07,6.16547006516e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.4192094372,2.14823473878,5.00215069286,-15.4904491379) p_j = (0.350320522409,0.0458560794915,0.106735830191,-0.330498337285) p_k = (6.21263168923e-09,9.24794999588e-10,-3.84301901322e-09,-4.79298947331e-09) p_ij -> (16.7695315527,2.19409102668,5.10888701012,-15.8209489786) p_k -> (-1.58692518859e-06,-2.07484461612e-07,-4.90919682683e-07,1.49854846487e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.022097429838,-0.00519295741789,-0.018043852466,-0.0116511367207) p_j = (4.17170426283,-0.961121972258,-3.41381277677,-2.19664365251) p_k = (8.89322555967e-10,-8.23184374381e-10,3.22004142091e-10,9.78542232578e-11) p_ij -> (4.19380245659,-0.96631493902,-3.43185753736,-2.2082953441) p_k -> (-7.63030979734e-07,8.52087067571e-09,9.08444409919e-07,5.54969263211e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.38210350382,-0.34139833263,-0.821564689412,1.05768082844) p_j = (14.8627464497,-3.67047099421,-8.84008399958,11.3702150195) p_k = (4.20101298236e-08,6.89446056837e-10,-1.98814752177e-08,3.70013866337e-08) p_ij -> (16.2448604361,-4.0118725674,-9.66165522417,12.427903581) p_k -> (-1.04405474648e-05,3.24125552487e-06,6.51530225593e-06,-7.69612088725e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.2247173401,9.70168190827,26.4746393744,35.3588163919) p_j = (0.0619261895492,0.016505416772,0.0374544901084,0.0464713389089) p_k = (4.6511523222e-10,2.11217241189e-10,-2.3645625512e-10,-3.40310025465e-10) p_ij -> (45.2866894545,9.71818017311,26.5121984144,35.4054310966) p_k -> (-4.59244076936e-05,7.15215082092e-06,-0.000104550131828,-0.000143366131294) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.7351571523,-16.1391129226,-22.3567674785,-19.4361727219) p_j = (2.6841757672,-1.28679419301,-1.76473318283,-1.56034516933) p_k = (1.1011022311e-09,8.64290668238e-10,6.20739548532e-10,2.83007279573e-10) p_ij -> (36.4193335665,-17.4259532659,-24.1215455758,-20.9965485079) p_k -> (-6.45915115172e-07,4.61511899132e-05,4.49150353763e-05,3.06169865407e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.1645947301,-6.88989082089,10.221648396,-15.9580133216) p_j = (20.8177807073,-7.11344583031,10.5519486189,-16.4752924812) p_k = (1.04491219012e-06,-6.01213973065e-07,4.04023907897e-07,-7.53092242341e-07) p_ij -> (40.9823767199,-14.0033370211,20.7735977001,-32.4333068385) p_k -> (-2.37571995854e-07,-2.31336846568e-07,-2.81216314235e-07,2.82528716866e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.86688378174,-0.412564972506,2.09191427645,3.22590684691) p_j = (18.4331567158,-1.96534949417,9.9740516491,15.3765068067) p_k = (2.07853920164e-07,-1.13724497985e-07,1.59451990286e-07,6.9606417214e-08) p_ij -> (22.300041018,-2.37791446125,12.0659661759,18.6024141568) p_k -> (-3.12629987675e-07,-1.19151559952e-07,-9.09008406325e-08,-4.3363553992e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.4955324657,5.14670073834,6.74123574707,27.2040912845) p_j = (17.1019945641,3.09520932403,4.0504806169,16.3245675006) p_k = (1.69176360049e-10,-4.23050317529e-11,-5.85601529874e-11,-1.52985910164e-10) p_ij -> (45.5976329964,8.24192948214,10.7917418032,43.5287610913) p_k -> (-0.000105966469505,-1.94198072485e-05,-2.5439287672e-05,-0.00010230628785) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.17588106436,-0.959923663219,0.422527966867,-0.531707584611) p_j = (44.4138496851,-36.2716665782,16.0329513856,-19.99751778) p_k = (7.0222904427e-09,5.84341434026e-09,-2.61082295376e-09,2.88975393556e-09) p_ij -> (45.5897355844,-37.2315972936,16.4554824769,-20.5292291641) p_k -> (-4.82783560329e-06,7.05803069323e-06,-3.12706228023e-06,3.80234653008e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0207446159326,0.00729171818438,0.00471067782863,-0.0188408983466) p_j = (43.770062531,15.4753908243,9.93302711521,-39.7198391881) p_k = (1.17462775863e-07,9.83839540976e-09,9.24213185143e-08,7.18262460737e-08) p_ij -> (43.7908080207,15.4826828615,9.93773797038,-39.7386809361) p_k -> (-7.56253765388e-07,-3.09159601031e-07,-8.4925725119e-08,9.21481003502e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0852340838548,0.00972065516819,0.0160693741133,0.0831392394076) p_j = (25.633516843,2.9311716391,4.85440405166,24.9984035463) p_k = (6.19827321732e-09,1.51445418588e-09,-4.54095521736e-09,3.9376064591e-09) p_ij -> (25.7187612631,2.94089346671,4.87047545057,25.0815528907) p_k -> (-1.0330054188e-05,-1.17091823126e-06,-2.02933838089e-06,-1.01010659463e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266959159,0.0701163072449,-0.996415519405) b = (0,0,1) a' = (0.0373419652946,-0.0701460054328,0.996837557253) -> rel. dev. (inf,-inf,-0.00316244274719) m_ct = -0.996415519405 m_st = -0.0845938099862 m_n = (0,-2.79120161707e-06,-1.96412787992e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0473266971727,0.0701163073486,-0.996415519338) b = (0,0,1) a' = (0.0373419648287,-0.070146005542,0.996837557263) -> rel. dev. (inf,-inf,-0.00316244273742) m_ct = -0.996415519338 m_st = -0.0845938107753 m_n = (0,-2.7912016165e-06,-1.96412788256e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.0375900978,-1.35806933386,12.7211730358,-9.67117885383) p_j = (0.337404962665,-0.0283824334433,0.267447438907,-0.203736137503) p_k = (1.98097899909e-08,-3.59874826364e-09,1.80828142798e-08,7.24491695189e-09) p_ij -> (16.3749965533,-1.38645185181,12.9886216072,-9.87491630999) p_k -> (-1.47301549269e-06,8.09048497086e-08,-1.11435904593e-06,1.32589847013e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0119098343556,-0.000365720263389,-0.00147114040761,-0.0118129652911) p_j = (37.9856798058,-1.17407752367,-4.68568002981,-37.6772851322) p_k = (2.02492743685e-08,-1.28337988035e-08,-1.06474955505e-08,-1.1487277759e-08) p_ij -> (37.9976116791,-1.17444392442,-4.68715388835,-37.6891199581) p_k -> (-2.20187483251e-05,6.67650778552e-07,2.70747852404e-06,2.18490783332e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.18261641389,0.225648140769,-0.820094313554,-0.821650665332) p_j = (44.3174011791,8.53725819788,-30.8375062272,-30.6626071856) p_k = (1.46926202183e-10,-3.95162249235e-11,-3.6462789666e-11,1.367325574e-10) p_ij -> (45.5005187741,8.76300588897,-31.6579521839,-31.4846152913) p_k -> (-0.000501181043099,-9.95503616803e-05,0.000351643130681,0.000357440467543) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.613283553141,-0.271191382134,-0.277058811883,-0.47519508159) p_j = (11.9231526262,-5.27279250546,-5.38692840271,-9.23797759936) p_k = (5.84916676566e-08,-3.41620809091e-08,-3.73446310421e-08,-2.93190373888e-08) p_ij -> (12.5364363341,-5.54398395289,-5.66398728037,-9.71317280688) p_k -> (-9.62397574966e-08,3.11316195045e-08,2.84396479699e-08,9.66093258725e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.2887156751,4.46601552161,-12.0196634701,15.7230524762) p_j = (19.4744805191,4.28562912066,-11.5367312636,15.0927998158) p_k = (1.08448252869e-08,-1.59082391108e-09,8.9852933769e-09,-5.86037627932e-09) p_ij -> (39.763200931,8.75164569027,-23.5563975611,30.8158559826) p_k -> (-4.72598398105e-06,-1.04959301428e-06,2.83629316122e-06,-3.69638806497e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.46061932612,2.23476855102,4.99011341415,5.07596477199) p_j = (0.13008736478,0.0389582162207,0.0870129756103,0.0885083156531) p_k = (7.08385627958e-09,-4.06634258469e-09,2.11245970518e-09,5.40216577448e-09) p_ij -> (7.59070676059,2.27372678869,5.07712643662,5.16447313501) p_k -> (-6.26109084578e-08,-2.55175813813e-08,-4.47475283494e-08,-4.19618038094e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0929694252571,0.00266550653728,-0.0328193158737,-0.0869430941083) p_j = (42.9234163103,1.23155310865,-15.150116123,-40.14195967) p_k = (1.01464282276e-06,1.34402178106e-07,-5.1896654018e-07,-8.61457974958e-07) p_ij -> (43.0163913258,1.23421877472,-15.1829374107,-40.2289079928) p_k -> (-4.5755848106e-06,-2.5130209913e-08,1.4528276191e-06,4.36723552255e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.84803153221,-5.24692143873,-4.25712191778,1.11456909125) p_j = (2.79236210437,-2.13967620305,-1.73572409832,0.454239719254) p_k = (1.91620946731e-09,-2.41941970174e-10,1.25534822697e-09,-1.42738411603e-09) p_ij -> (9.64039424634,-7.38659811571,-5.99284640857,1.56880891927) p_k -> (-6.0784008582e-07,4.73689354408e-07,3.93726509174e-07,-1.10196858416e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0710767634691,0.0353095320819,-0.0302088596707,0.0537825998515) p_j = (6.6787246904,3.30406701082,-2.82769045122,5.06879387925) p_k = (6.35354720887e-09,3.58547746763e-09,5.87535384222e-10,5.2121700008e-09) p_ij -> (6.74980168989,3.33937644517,-2.8579010009,5.12257646887) p_k -> (-2.29667953988e-07,1.01310618339e-07,1.69058919397e-06,1.54434083299e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.42077080425,3.45894633887,-1.82282607316,-3.75469725065) p_j = (12.4740391663,7.95917123576,-4.19395535983,-8.64083241375) p_k = (4.02518621792e-08,-1.64559653578e-08,2.61508028721e-08,-2.57982394451e-08) p_ij -> (17.8948101222,11.4181176844,-6.01678149623,-12.39552977) p_k -> (-1.11334522046e-07,-1.26214012575e-07,8.93949509972e-08,7.98485082498e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0416759465969,0.00697347765381,0.00915414178422,0.0400556715379) p_j = (41.4539644941,6.84550318412,8.92886236161,39.8979407409) p_k = (5.5057965423e-09,3.62362113495e-09,-2.87765988903e-09,-2.98366158103e-09) p_ij -> (41.4956474792,6.85247765768,8.93801826858,39.9380036945) p_k -> (-7.03296728588e-06,-9.92285775325e-07,-1.76805556862e-06,-7.28501971636e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.3616139073,-10.1713952826,-8.73095338873,43.3357726042) p_j = (0.00603196165704,-0.00128242615263,-0.00111343381009,0.00578793657063) p_k = (2.45651313523e-08,-1.83228078711e-08,-1.39695164538e-08,-8.51897882003e-09) p_ij -> (45.36764666,-10.1726775655,-8.73206674353,43.3415620969) p_k -> (-7.66454380852e-07,-1.61623997741e-07,-9.29729537802e-08,-1.56464694712e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.49521746673,-4.34780201108,-0.802148111023,6.05239299401) p_j = (0.00365175929369,-0.00205383224175,-0.000409893581741,0.00299150569336) p_k = (3.06651136333e-10,1.0842681669e-10,2.67862041684e-11,-2.85587914386e-10) p_ij -> (7.49887599336,-4.34986018105,-0.802558814689,6.05539073207) p_k -> (-6.76703196456e-06,4.33783880194e-06,8.10110967309e-07,-6.23265196831e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.3974259502,-0.609442948064,-0.638877762096,1.08314993627) p_j = (40.0405270549,-17.466386662,-18.3059974639,31.0332015857) p_k = (4.44536348021e-08,1.38166067499e-08,-3.34425638936e-08,-2.58228947167e-08) p_ij -> (41.4379532186,-18.0758297087,-18.9448753215,32.1163516973) p_k -> (-1.69069810596e-07,1.12392561036e-07,6.2030769854e-08,-2.01176877823e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.6476449918,16.6975997588,33.5707938709,3.39663577627) p_j = (0.00515938850685,0.00228967725807,0.0046001928876,0.00046356576171) p_k = (2.6119409753e-08,5.46044607875e-09,2.52831757919e-08,-3.62879028083e-09) p_ij -> (37.6528385754,16.6999046047,33.5754245552,3.39710242945) p_k -> (-3.41690434524e-05,-1.51632154832e-05,-3.04661381634e-05,-3.09105154583e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.02037147168,4.9448534208,2.55800183496,2.29127124458) p_j = (30.2253771429,24.8254922427,12.8411482681,11.5053582949) p_k = (9.74484036873e-09,8.73343195777e-09,-4.18468080054e-09,-1.08515958473e-09) p_ij -> (36.2457625063,29.770357071,15.399156033,13.7966348434) p_k -> (-1.38819526754e-05,-1.13987222203e-05,-5.9341052312e-06,-5.30495223039e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.5277511485,1.69367203633,-5.45659588654,-17.6248290484) p_j = (22.963521345,2.0991135872,-6.76294526418,-21.8444410792) p_k = (2.53096985663e-09,2.07906510102e-09,-1.40743656595e-09,-3.20029250781e-10) p_ij -> (41.4913037295,3.79278847883,-12.21955035,-39.4692998414) p_k -> (-3.12334627068e-05,-2.85322350568e-06,9.19785362985e-06,2.97134789591e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (33.0648611035,-2.08129432847,-17.0589543865,28.2479261) p_j = (0.00446017841627,-0.000280980557721,-0.00230335263223,0.00380904293526) p_k = (2.11854721885e-05,-1.33615938337e-06,-1.11587140757e-05,1.79588977983e-05) p_ij -> (33.0693699651,-2.08157837223,-17.0612827511,28.2517767983) p_k -> (-2.74977729973e-05,1.72704418744e-06,1.38532851928e-05,-2.36964259539e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0358659785,-0.0067029982419,2.68600705106e-05,0.0352340390371) p_j = (41.8542597859,-7.73869890273,-0.170980876035,41.1322545827) p_k = (2.75980904335e-08,7.6149770676e-09,-1.7113357115e-08,2.02681931467e-08) p_ij -> (41.8901282043,-7.7454030465,-0.170953097677,41.1674913938) p_k -> (-2.41227642661e-06,1.15313901583e-06,-9.35400857313e-07,-2.75173651332e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.75362130819,0.135133044001,-2.60002350969,-5.13086493367) p_j = (0.0857938117109,0.00202651741169,-0.038788475179,-0.0764978793717) p_k = (1.1888086704e-08,-8.189571931e-09,7.5000775837e-09,4.24336459819e-09) p_ij -> (5.83941517134,0.137159564094,-2.63881201035,-5.20736286149) p_k -> (-3.95456747349e-08,-1.0871468531e-08,3.29829263901e-08,5.26933483513e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.2805035135,-10.434088932,16.2301578926,22.0240697635) p_j = (16.2947526266,-5.81574798946,8.98404864628,12.2875102607) p_k = (4.1657813167e-10,1.45821242343e-10,-1.49813489779e-10,3.60320003114e-10) p_ij -> (45.5755154702,-16.249998968,25.2144399073,34.3117642234) p_k -> (-0.000259329659329,0.000162046640446,-0.000233368564945,-0.000184198927762) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0136634272773,-0.00798851817289,-0.000541289025407,-0.0110715775098) p_j = (33.4222318877,-19.3983974004,-1.75988787023,-27.1597230718) p_k = (1.1546329119e-08,7.30649545845e-09,7.1914900661e-09,-5.31181058565e-09) p_ij -> (33.43589904,-19.4063896433,-1.76043022546,-27.1707981305) p_k -> (-3.71345903005e-06,3.73201623916e-06,1.07339501776e-06,3.47586427374e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.49035522285,-1.91381843841,1.80676045179,-3.63815965593) p_j = (1.65230354635,-0.704230809233,0.664734634214,-1.33876579082) p_k = (3.33964988696e-09,-3.21790637638e-09,-3.92820225589e-10,-8.02516710461e-10) p_ij -> (6.14266016822,-2.61804984104,2.47149565168,-4.97692658332) p_k -> (-1.39568156987e-06,5.90180196935e-07,-5.66070927022e-07,1.1357671954e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.4092892261,-21.3584109616,-6.7409806732,-0.744113150679) p_j = (0.0470102203727,-0.044820103129,-0.0140895746738,-0.00161340029319) p_k = (2.02056696695e-08,5.79151064698e-09,1.33410767724e-08,-1.40265164015e-08) p_ij -> (22.4563000008,-21.4032316441,-6.7550704542,-0.745726542154) p_k -> (-5.34095155658e-07,5.85161474831e-07,2.1966511321e-07,-2.28439923089e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.845714687,-22.9048087768,9.38536527017,2.14340662379) p_j = (0.771906660082,-0.711600450253,0.291596769404,0.0666034169721) p_k = (6.28993050511e-06,-5.88485061406e-06,2.1841681867e-06,4.0145777043e-07) p_ij -> (25.6176301205,-23.6164173115,9.67696536154,2.21001080342) p_k -> (-2.48340670339e-06,2.1995866426e-06,-1.13779671462e-06,-3.61201381915e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.358419308,6.58249639544,4.74982148817,11.843738517) p_j = (0.0010518260268,0.000480835172148,0.00034679994358,0.000868829860792) p_k = (5.34695680246e-09,-4.92519314399e-09,1.96455899303e-09,6.87696432933e-10) p_ij -> (14.3594718856,6.58297757774,4.75016853667,11.8446079681) p_k -> (-7.46250533368e-07,-3.52048683094e-07,-2.46598840903e-07,-6.20569848842e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.7962031764,8.44216350202,-5.55546321095,-3.79798722255) p_j = (34.8007440665,27.2109865605,-17.9078442818,-12.2459426411) p_k = (5.5542311786e-09,-4.43386439562e-09,1.99211637398e-09,2.68734002998e-09) p_ij -> (45.5969479853,35.6531506826,-23.4633078967,-16.0439301459) p_k -> (-7.36883400521e-07,-6.24587201514e-07,4.05934546421e-07,2.84881336299e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.28881065,-21.0325608105,15.4491452581,31.9956431634) p_j = (0.287839933183,-0.146619936628,0.107695467047,0.223060771306) p_k = (8.27592865093e-09,-7.44335984465e-09,1.66473798279e-09,-3.21185938311e-09) p_ij -> (41.5766557378,-21.1791833728,15.5568426539,32.2187079295) p_k -> (-5.14630942305e-06,2.61819626779e-06,-1.92708854119e-06,-3.99794821604e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.3820257602,-14.1790899966,-5.30578393937,-21.605863715) p_j = (12.9234209928,-6.94565281495,-2.59901617132,-10.583847697) p_k = (2.26634074244e-08,1.11803659453e-08,-1.77386801879e-08,8.60050325132e-09) p_ij -> (39.3054476941,-21.1247433175,-7.90480029981,-32.1897121829) p_k -> (-9.18373416425e-07,5.17187514149e-07,1.71376290936e-07,7.79561183606e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947739,-0.180655197189,0.502872473533) b = (0,0,1) a' = (0.886924156081,0.156169635368,-0.434714373294) -> rel. dev. (inf,inf,-1.43471437329) m_ct = 0.502872473533 m_st = -0.864360616504 m_n = (-0,4.81541118482e-07,1.7299198165e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.845270947806,-0.180655197262,0.502872473393) b = (0,0,1) a' = (0.886924155949,0.156169635549,-0.4347143735) -> rel. dev. (inf,inf,-1.4347143735) m_ct = 0.502872473393 m_st = -0.864360616585 m_n = (-0,4.81541118091e-07,1.72991981628e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.1077297931,8.54789070578,14.313849263,-20.0913125184) p_j = (19.4556001114,6.37231677428,10.6667213309,-14.9711392576) p_k = (7.10880820361e-09,3.76842823182e-09,2.01812232033e-09,-5.67990195437e-09) p_ij -> (45.5633545343,14.9202151873,24.9805845645,-35.0624706774) p_k -> (-2.46226504963e-05,-7.7035046564e-06,-1.3968559534e-05,1.88956632172e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.622984380302,0.279769280567,0.0898555685438,0.549331106486) p_j = (14.8958468405,6.6893495409,2.14799501275,13.1348762171) p_k = (1.6750341088e-07,6.40109766904e-08,3.67222905263e-08,1.5037107734e-07) p_ij -> (15.5188478779,6.96912630631,2.23785297821,13.6842220105) p_k -> (-1.64896516042e-05,-7.42083564376e-06,-2.36019301969e-06,-1.45365082886e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00537137684823,0.00289479110909,-0.00201002833396,0.00405359837394) p_j = (32.9808839546,16.9482160632,-12.6006412113,25.3322032158) p_k = (8.89232938881e-10,-3.99748343118e-10,6.70650144998e-10,4.25632209191e-10) p_ij -> (32.9863017973,16.9511366851,-12.6026712953,25.3362930906) p_k -> (-4.64649706693e-05,-2.58311845034e-05,2.00563081902e-05,-3.6275956214e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.28233053095,-8.6742266411,2.52100813434,-2.13634506837) p_j = (0.0596609565005,-0.05575723474,0.0161905874731,-0.0137268125207) p_k = (6.36125596542e-07,-6.02352801727e-07,1.52503267343e-07,-1.36270430684e-07) p_ij -> (9.34199629015,-8.72998833389,2.53720010318,-2.15007302475) p_k -> (-4.16658034208e-06,3.85570102424e-06,-1.22885748266e-06,1.00758691834e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.7107126962,21.0336876575,-19.4739881019,-32.999608715) p_j = (0.00212879831657,0.000617454658807,-0.00113328954842,-0.00169298163499) p_k = (6.45331688636e-10,-5.4935450435e-11,-8.64061702585e-11,-6.37157803281e-10) p_ij -> (43.7130191256,21.0345073697,-19.4752647926,-33.0013878812) p_k -> (-0.000177630444089,-0.000202257669136,0.000143401069543,8.61838674417e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.65531013466,4.84609001247,1.1141082875,5.82047657607) p_j = (37.9439248274,24.0010298872,5.49424083609,28.8704920862) p_k = (1.03570929622e-09,3.36582355926e-10,-4.07988941005e-10,8.90477691063e-10) p_ij -> (45.5996369641,28.8473796455,6.6084168938,34.6912727499) p_k -> (-0.000402000965387,-0.000259745568822,-6.77706196259e-05,-0.000304086662492) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.3359442512,-0.475060686725,17.7639782275,-39.5249219989) p_j = (0.0112118512156,-0.000122742666223,0.00459619388871,-0.0102257294927) p_k = (3.45369002319e-07,6.79901437457e-08,1.90434034739e-07,-2.79985654044e-07) p_ij -> (43.3471591152,-0.475183462453,17.7685756564,-39.5351504762) p_k -> (-2.6674037521e-06,1.01052347351e-07,-1.04451741834e-06,2.46785698366e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.3805807871,5.90360658492,21.183765081,30.2275263008) p_j = (5.97595449227,0.942855133094,3.38253100041,4.83544623824) p_k = (3.75233087976e-10,1.98373882632e-10,-1.48157542708e-10,-2.81952366545e-10) p_ij -> (43.356566606,6.84646625645,24.5663148904,35.0629995917) p_k -> (-3.13262676919e-05,-4.53824270474e-06,-1.88091665994e-05,-2.7052925045e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.2126976785,-17.7240932152,-7.85086413592,-25.7269963996) p_j = (7.20302993675,-3.9630891785,-1.75555878551,-5.75287560996) p_k = (7.41606633389e-11,4.36538999913e-11,-3.36947612861e-11,4.95851527277e-11) p_ij -> (39.4162998882,-21.6874972692,-9.60656239584,-31.4803290645) p_k -> (-0.000572272888494,0.000314875533192,0.000139474375024,0.000457055036541) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.6865292764,-0.51473751809,5.11856465024,9.36681638462) p_j = (34.7940892058,-1.67524864171,16.6652477507,30.4974048578) p_k = (1.97629475993e-10,-1.35622564406e-10,-7.51797601982e-11,1.22523650798e-10) p_ij -> (45.4815727503,-2.19003210795,21.7842694684,39.8650576688) p_k -> (-0.000954267943808,4.59480092481e-05,-0.000457067546208,-0.000836426279459) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.457487093,18.8484385768,-21.8483649351,5.92696032663) p_j = (0.447411713829,0.290300774279,-0.329208450302,0.0867438664935) p_k = (4.82004973408e-10,-1.7333095495e-10,-1.2066483536e-10,4.33272844675e-10) p_ij -> (29.9049261187,19.138799967,-22.1776148401,6.01367957218) p_k -> (-2.73113518201e-05,-6.06160411714e-05,4.14545855385e-05,2.46213780581e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0799736131282,-0.00965116046049,0.031003906476,0.0730848252496) p_j = (44.3927661516,-5.43183504966,17.1824506107,40.5706327975) p_k = (5.77659165302e-09,5.87462395362e-10,3.49299211527e-09,4.56321180574e-09) p_ij -> (44.4730598597,-5.4415258836,17.2135779184,40.6440104392) p_k -> (-0.000320089191234,3.96740675357e-05,-0.000123397775182,-0.000292811898657) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (10.5346231401,6.07039031181,-2.09531457464,8.35094623381) p_j = (3.18247130929,1.83384968262,-0.63298573158,2.52278576967) p_k = (1.12147575624e-09,-8.61648946429e-10,-2.25194235053e-10,6.815836817e-10) p_ij -> (13.7170972208,7.90424159142,-2.72830085745,10.8737342004) p_k -> (-2.77027847773e-06,-1.59784567755e-06,5.51000222115e-07,-2.19624750475e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.7081396084,-6.68653539852,18.4803782203,1.47534132375) p_j = (21.2578045793,-7.21532834355,19.9325036562,1.59015421257) p_k = (1.93451911957e-07,6.5297229472e-08,-1.78776605366e-07,-3.46242618346e-08) p_ij -> (40.9659444184,-13.9018638649,38.4128822153,3.06549557026) p_k -> (-3.73165285339e-08,1.88087102337e-07,-5.17502797948e-07,-6.85706371684e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.8215347932,5.51623140532,2.77898071497,10.0795407701) p_j = (33.7522674596,15.7496849903,7.9344196376,28.7786025788) p_k = (1.87295138772e-09,-9.33065320092e-11,1.82457543928e-09,4.12506768926e-10) p_ij -> (45.574038948,21.2660268437,10.7134559944,38.8583451651) p_k -> (-0.000236693298007,-0.000110448190959,-5.56400121532e-05,-0.000201815860951) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.62750124449,-5.70642738751,0.594419745712,3.3176986576) p_j = (38.6328919758,-33.2647853869,3.46675795537,19.337424463) p_k = (5.16750572791e-08,4.50842861329e-08,4.85334890122e-10,-2.52484386789e-08) p_ij -> (45.26039351,-38.9712130374,4.06117772771,22.6551232734) p_k -> (-2.37967608285e-07,3.08151864914e-07,-2.61376920108e-08,-1.78030850506e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.280249224204,-0.156124075066,0.124193146844,-0.196827241836) p_j = (33.7593669531,-18.7948127083,14.9670487924,-23.7157610626) p_k = (6.29796230645e-08,9.06939756696e-09,4.15648344421e-08,-4.64385987875e-08) p_ij -> (34.0396181753,-18.9509379661,15.0912428033,-23.9125897045) p_k -> (-1.93498105716e-06,1.19177238389e-06,-8.22462020267e-07,1.35361296927e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.5971516846,13.1863770176,-41.9791533399,-11.9570225288) p_j = (0.00218377697999,0.000468092923394,-0.00191834638196,-0.000932586763897) p_k = (3.57346950269e-10,1.35118258774e-10,3.23616479566e-10,-6.86482236214e-11) p_ij -> (45.59938121,13.1868563367,-41.981154956,-11.957968693) p_k -> (-4.57480735392e-05,-1.12260528358e-05,8.32700279965e-05,1.35773344203e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.3974640277,27.6011463113,3.93194516519,34.5521539359) p_j = (0.211589163158,0.131407383379,0.0186679059077,0.164783442277) p_k = (1.48290348382e-07,-8.41171839361e-09,-7.3216067832e-08,1.28680527787e-07) p_ij -> (44.6090534479,27.7325539976,3.95061321671,34.7169375593) p_k -> (-1.0877632306e-07,-3.11349912963e-07,-2.1883064516e-07,-5.24966772275e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.9916235127,19.9764223267,-17.4329688615,-36.3494199955) p_j = (0.39299692512,0.173418392227,-0.153361140787,-0.317573621208) p_k = (1.47519998063e-08,7.58072577037e-09,1.14136815707e-08,5.4664471296e-09) p_ij -> (45.3846250957,20.1498426367,-17.5863343027,-36.6669999125) p_k -> (-4.64303029091e-06,-1.91016018825e-06,4.31182240845e-06,6.30122926992e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.094711584,-0.909862162165,42.4996628671,7.07848666985) p_j = (2.50397993557,-0.0594518387675,2.47107800651,0.40019305634) p_k = (6.55614397702e-11,-1.1235821557e-11,-6.3978698691e-11,-8.93226017584e-12) p_ij -> (45.5994210668,-0.969327088383,44.9714920153,7.47880422182) p_k -> (-0.000729547150957,1.30874390514e-05,-0.00075114172283,-0.0001244956386) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00158332098162,0.00154372009417,-0.000284837149632,-0.000206643170391) p_j = (43.1645219601,41.9918521213,-9.27259148431,-3.72550112566) p_k = (6.43622986609e-09,3.40389908825e-09,2.82468157772e-09,4.67543604281e-09) p_ij -> (43.1661062725,41.9933985443,-9.27287909417,-3.72571103695) p_k -> (-9.84914258595e-07,-2.6995240674e-06,2.77554012573e-06,3.27279176071e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.83334912921,-0.470077412993,-0.952790543861,-6.75025019736) p_j = (38.7648995267,-2.66491069485,-5.40393765776,-38.2937742211) p_k = (1.32554831889e-07,-1.26976166877e-08,-2.6687286552e-08,-1.29218198121e-07) p_ij -> (45.5986819051,-3.13501779309,-6.3567883669,-45.0444524507) p_k -> (-0.00043311664437,2.96725521389e-05,6.01385858685e-05,0.000427902993774) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.8492478549,-12.0995636995,5.33051001538,-14.8046905292) p_j = (25.747040818,-15.6844761109,6.91497975749,-19.2117249347) p_k = (4.04637855604e-09,3.35130275203e-09,2.19425038465e-09,5.72051049215e-10) p_ij -> (45.5963086417,-27.7840533968,12.2454948657,-34.0164312369) p_k -> (-1.99647227106e-05,1.35897543476e-05,-5.09061139908e-06,1.57735780064e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0404042446561,-0.000805410287431,0.00144278746227,-0.0403704429606) p_j = (37.1868988447,-0.628146435324,0.977132292503,-37.168751529) p_k = (5.00042617511e-08,1.04227681715e-08,-4.86741340231e-08,-4.7561355638e-09) p_ij -> (37.2273034581,-0.628952330643,0.978577213861,-37.2091242622) p_k -> (-3.18678573308e-07,4.95453954918e-07,-2.18256892853e-06,2.28547290604e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.8593246192,-22.6656718895,-12.5487086086,-27.6066240361) p_j = (7.01142315888,-4.19970718281,-2.32334060276,-5.11122321319) p_k = (1.46166758036e-08,-3.81447920556e-09,-1.18917628102e-08,7.59492849626e-09) p_ij -> (44.8707534725,-26.8653826283,-14.8720508897,-32.717851943) p_k -> (-5.67988398714e-06,3.55210998038e-06,1.6664322402e-06,4.70129864993e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.23151809,31.1852751948,0.54564706045,-1.60891345854) p_j = (14.359931785,14.338515596,0.257012881387,-0.740645497048) p_k = (3.21349500163e-09,-3.17826736352e-09,-2.92076062695e-10,3.73977325206e-10) p_ij -> (45.5914542945,45.5237961157,0.802660069428,-2.3495592604) p_k -> (-4.41637557103e-06,-5.32818114252e-06,-1.27883598822e-07,3.05182983773e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.1710130338,32.5446611441,4.95901265073,-9.16031420355) p_j = (11.1247367955,10.5863788174,1.60568485007,-3.01829893584) p_k = (1.78998062255e-10,-2.20715035911e-11,6.91228156706e-11,1.6362542777e-10) p_ij -> (45.296160004,43.1314711596,6.56474783498,-12.178768108) p_k -> (-0.000410174457208,-0.000431198091761,-5.03341046239e-05,0.000154968819739) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.55869039248,0.384742805162,-0.867050602914,-4.45890730116) p_j = (19.8313808566,1.6740540813,-3.77573727355,-19.3965207615) p_k = (1.29987346857e-09,-1.08897699033e-09,-6.68730512312e-10,-2.37911614586e-10) p_ij -> (24.3900775674,2.0587975054,-4.64278904911,-23.8554343163) p_k -> (-6.31702082465e-06,-6.200238305e-07,1.17197548732e-06,6.25338021898e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.2462204787,-4.8891265135,10.6715734922,-18.897308981) p_j = (23.0665188729,-5.07591707319,11.0788537114,-19.5846460071) p_k = (3.30887024865e-09,1.92177625898e-09,1.25953803318e-09,2.38095921647e-09) p_ij -> (45.3127498882,-9.96504766753,21.75043248,-38.4819673918) p_k -> (-1.05331923166e-05,4.08275776032e-06,-5.2751699382e-06,1.24060761379e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.7888814496,-2.43812140281,2.90550225272,44.6279903445) p_j = (0.126316319878,-0.00687692015643,0.00818894206087,0.125862869285) p_k = (1.01261494972e-08,5.73457514485e-09,-1.61629386596e-09,8.18786660359e-09) p_ij -> (44.9151994945,-2.44499841718,2.91369130679,44.7538549327) p_k -> (-1.71494965784e-06,9.9943666898e-08,-1.13633189081e-07,-1.71078281497e-06) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609896755,-0.372424443919,0.876995475566) b = (0,0,1) a' = (0.191552874255,-0.383637037147,0.903399203062) -> rel. dev. (inf,-inf,-0.0966007969377) m_ct = 0.876995475566 m_st = -0.480498632502 m_n = (-0,8.41240906796e-07,3.57240927285e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609897312,-0.372424444695,0.876995475044) b = (0,0,1) a' = (0.191552874748,-0.38363703798,0.903399202604) -> rel. dev. (inf,-inf,-0.096600797396) m_ct = 0.876995475044 m_st = -0.480498633455 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609895631,-0.372424444905,0.876995475537) b = (0,0,1) a' = (0.191552875473,-0.383637037925,0.903399202474) -> rel. dev. (inf,-inf,-0.0966007975262) m_ct = 0.876995475537 m_st = -0.480498632555 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609895631,-0.372424444905,0.876995475537) b = (0,0,1) a' = (0.191552875473,-0.383637037925,0.903399202474) -> rel. dev. (inf,-inf,-0.0966007975262) m_ct = 0.876995475537 m_st = -0.480498632555 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609896472,-0.3724244448,0.87699547529) b = (0,0,1) a' = (0.191552875111,-0.383637037952,0.903399202539) -> rel. dev. (inf,-inf,-0.0966007974611) m_ct = 0.87699547529 m_st = -0.480498633005 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609897312,-0.372424444695,0.876995475044) b = (0,0,1) a' = (0.191552874748,-0.38363703798,0.903399202604) -> rel. dev. (inf,-inf,-0.096600797396) m_ct = 0.876995475044 m_st = -0.480498633455 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609895631,-0.372424444905,0.876995475537) b = (0,0,1) a' = (0.191552875473,-0.383637037925,0.903399202474) -> rel. dev. (inf,-inf,-0.0966007975262) m_ct = 0.876995475537 m_st = -0.480498632555 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609895631,-0.372424444905,0.876995475537) b = (0,0,1) a' = (0.191552875473,-0.383637037925,0.903399202474) -> rel. dev. (inf,-inf,-0.0966007975262) m_ct = 0.876995475537 m_st = -0.480498632555 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609895631,-0.372424444905,0.876995475537) b = (0,0,1) a' = (0.191552875473,-0.383637037925,0.903399202474) -> rel. dev. (inf,-inf,-0.0966007975262) m_ct = 0.876995475537 m_st = -0.480498632555 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609897312,-0.372424444695,0.876995475044) b = (0,0,1) a' = (0.191552874748,-0.38363703798,0.903399202604) -> rel. dev. (inf,-inf,-0.096600797396) m_ct = 0.876995475044 m_st = -0.480498633455 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Poincare::Poincare(): Inaccurate rotation { a = (-0.303609897312,-0.372424444695,0.876995475044) b = (0,0,1) a' = (0.191552874748,-0.38363703798,0.903399202604) -> rel. dev. (inf,-inf,-0.096600797396) m_ct = 0.876995475044 m_st = -0.480498633455 m_n = (-0,8.41240907157e-07,3.57240928395e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00352838009537,-0.000920311218822,-0.000830070809025,0.00330355502602) p_j = (42.4273138172,-11.1508951923,-10.3983425093,39.593041904) p_k = (1.77953460401e-08,7.69098197788e-09,7.64991703881e-09,-1.41068032022e-08) p_ij -> (42.4308435753,-11.1518159347,-10.3991729848,39.5963469162) p_k -> (-1.36018816832e-06,4.38785556334e-07,4.12313623244e-07,-1.47120634608e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.2855568401,12.3063172318,-6.85867430698,-2.36437669814) p_j = (31.0753957162,26.7697888906,-14.9198389984,-5.1436393665) p_k = (4.46509686533e-06,3.89753807079e-06,-2.0707761595e-06,-6.76884850466e-07) p_ij -> (45.361045008,39.0761857225,-21.7785577533,-7.5080314184) p_k -> (-8.79866072125e-05,-7.57025473739e-05,4.23771271052e-05,1.46768795108e-05) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247595458,-0.0147058606672,0.882411999367) b = (0,0,1) a' = (0.000260505325851,-0.0166632121989,0.999861125105) -> rel. dev. (inf,-inf,-0.000138874895024) m_ct = 0.882411999367 m_st = -0.470477484448 m_n = (-0,1.35588651684e-06,2.25965628431e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596427,-0.0147058595053,0.882411998871) b = (0,0,1) a' = (0.000260505284309,-0.0166632108921,0.999861125127) -> rel. dev. (inf,-inf,-0.000138874873234) m_ct = 0.882411998871 m_st = -0.470477485379 m_n = (-0,1.35588651662e-06,2.25965610667e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596359,-0.0147058606592,0.882411998888) b = (0,0,1) a' = (0.000260505325211,-0.0166632121989,0.999861125105) -> rel. dev. (inf,-inf,-0.000138874895024) m_ct = 0.882411998888 m_st = -0.470477485348 m_n = (-0,1.35588651684e-06,2.25965628431e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247594558,-0.0147058606752,0.882411999847) b = (0,0,1) a' = (0.000260505326491,-0.0166632121989,0.999861125105) -> rel. dev. (inf,-inf,-0.000138874895024) m_ct = 0.882411999847 m_st = -0.470477483548 m_n = (-0,1.35588651684e-06,2.25965628431e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596599,-0.0147058606667,0.88241199876) b = (0,0,1) a' = (0.000260505325382,-0.0166632122099,0.999861125105) -> rel. dev. (inf,-inf,-0.000138874895206) m_ct = 0.88241199876 m_st = -0.470477485588 m_n = (-0,1.35588651595e-06,2.25965628431e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596427,-0.0147058595053,0.882411998871) b = (0,0,1) a' = (0.000260505284309,-0.0166632108921,0.999861125127) -> rel. dev. (inf,-inf,-0.000138874873234) m_ct = 0.882411998871 m_st = -0.470477485379 m_n = (-0,1.35588651662e-06,2.25965610667e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596359,-0.0147058606592,0.882411998888) b = (0,0,1) a' = (0.000260505325211,-0.0166632121989,0.999861125105) -> rel. dev. (inf,-inf,-0.000138874895024) m_ct = 0.882411998888 m_st = -0.470477485348 m_n = (-0,1.35588651684e-06,2.25965628431e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596359,-0.0147058606592,0.882411998888) b = (0,0,1) a' = (0.000260505325211,-0.0166632121989,0.999861125105) -> rel. dev. (inf,-inf,-0.000138874895024) m_ct = 0.882411998888 m_st = -0.470477485348 m_n = (-0,1.35588651684e-06,2.25965628431e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596359,-0.0147058606592,0.882411998888) b = (0,0,1) a' = (0.000260505325211,-0.0166632121989,0.999861125105) -> rel. dev. (inf,-inf,-0.000138874895024) m_ct = 0.882411998888 m_st = -0.470477485348 m_n = (-0,1.35588651684e-06,2.25965628431e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596427,-0.0147058595053,0.882411998871) b = (0,0,1) a' = (0.000260505284309,-0.0166632108921,0.999861125127) -> rel. dev. (inf,-inf,-0.000138874873234) m_ct = 0.882411998871 m_st = -0.470477485379 m_n = (-0,1.35588651662e-06,2.25965610667e-08) } Poincare::Poincare(): Inaccurate rotation { a = (-0.470247596427,-0.0147058595053,0.882411998871) b = (0,0,1) a' = (0.000260505284309,-0.0166632108921,0.999861125127) -> rel. dev. (inf,-inf,-0.000138874873234) m_ct = 0.882411998871 m_st = -0.470477485379 m_n = (-0,1.35588651662e-06,2.25965610667e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.3623494675,-0.766311808129,-4.32421374798,3.07713072294) p_j = (12.3014649586,-1.76889430574,-9.91463357817,7.06378751623) p_k = (5.44898184624e-10,-3.08433177504e-11,2.54222048325e-10,-4.80971906981e-10) p_ij -> (17.6638237312,-2.53520754668,-14.2388562515,10.1409252119) p_k -> (-9.30453151504e-06,1.43277529063e-06,8.92557968779e-06,-6.97317289688e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (19.8413379979,-12.6082966551,-2.9353531561,-15.0363975358) p_j = (17.4911864484,-11.114908388,-2.5875633978,-13.2553736485) p_k = (3.65888041169e-10,2.16471134237e-10,3.91247496543e-11,-2.92373786419e-10) p_ij -> (37.3327638638,-23.7233571829,-5.52295197302,-28.2919526224) p_k -> (-0.000239417177475,0.00015213999705,3.5419163225e-05,0.000181437906576) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.1066377752,5.60384889199,-4.95171255108,19.7374663668) p_j = (0.866203393781,0.229953722587,-0.203245902746,0.810012782543) p_k = (2.44957986547e-09,-1.34555223082e-09,-1.25494304359e-09,-1.61711258343e-09) p_ij -> (21.9728474069,5.8338042712,-5.15495991715,20.5474849835) p_k -> (-6.23555068557e-06,-1.65796608265e-06,1.46207103446e-06,-5.83580026436e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.7486591706,14.5466863363,-1.11603942298,-18.7389216616) p_j = (7.7427691109,4.74267213885,-0.364013189384,-6.1094213217) p_k = (3.87835180945e-08,1.89312537431e-09,-1.10065310415e-08,3.71407255942e-08) p_ij -> (31.4914283525,19.2893585191,-1.48005261554,-24.8483430405) p_k -> (-3.22701723121e-08,-4.2011283341e-08,-7.82760800622e-09,9.43896214523e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.0656216098,11.1496561674,27.7805610722,11.4947676395) p_j = (0.04890952502,0.0168608778076,0.0423180381416,0.017805507156) p_k = (1.23819116478e-08,9.67002921106e-09,7.71699042019e-09,5.0032656426e-10) p_ij -> (32.1145503299,11.1665212133,27.8228971465,11.5125818676) p_k -> (-1.9182621088e-05,-4.15850102087e-06,-1.80283727911e-05,-8.7204243604e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.9284131611,20.0615505402,-5.85898083103,6.63790910681) p_j = (23.6249312417,21.611845166,-6.30730451002,7.16124531881) p_k = (2.21449061531e-08,-1.38807532335e-08,1.26648302069e-08,1.1718514663e-08) p_ij -> (45.5533457729,41.6733981994,-12.1662863817,13.7991546587) p_k -> (-1.34783994099e-06,-2.50710311889e-06,1.05334331391e-06,-2.21310022752e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.5836968011,-11.9647121487,-19.080894857,1.66987300689) p_j = (11.261607841,-5.96836844103,-9.51360899383,0.83284646166) p_k = (1.61764368533e-08,-3.87745235968e-09,-1.55286689092e-08,-2.34582946166e-09) p_ij -> (33.8453081855,-17.9330831551,-28.5945065716,2.50272024963) p_k -> (-3.52716456931e-06,2.56142474697e-06,2.70524379431e-06,-7.83431800322e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.03634378473,-0.704230642182,-0.11962505114,-0.750837858588) p_j = (39.2946864434,-26.7080688269,-4.53492264504,-28.4637650149) p_k = (1.34388435967e-07,-1.04666764386e-07,4.58885355616e-08,-7.07061691549e-08) p_ij -> (40.3310324792,-27.4123009823,-4.65454803351,-29.2146045378) p_k -> (-2.11670504768e-06,1.40853599007e-06,3.83213703881e-07,1.59355956875e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.8649854228,10.546128175,5.22128167674,7.33179506955) p_j = (0.0457292320683,0.0341976952991,0.0174300008144,0.0248570990543) p_k = (8.28455671157e-10,7.59171932901e-10,-1.09473745011e-10,3.13070289113e-10) p_ij -> (13.9107238428,10.5803235034,5.23874568917,7.35666609283) p_k -> (-9.18717054166e-06,2.36771459861e-06,-3.40117228501e-05,-1.39239139902e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0318548122603,0.0117108133667,0.00236588371644,-0.0295294515471) p_j = (43.8880689503,16.1567476002,3.07702459176,-40.6897287141) p_k = (5.40197677536e-08,-1.64503600197e-08,1.41064839404e-08,4.9482599857e-08) p_ij -> (43.9199238905,16.1684585575,3.07939045695,-40.7192585497) p_k -> (-7.39081933432e-08,-1.60387973125e-07,3.26383997606e-08,4.33443918979e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.1763995402,11.3708605093,-1.87996161549,-11.350998973) p_j = (0.164845876699,0.115914625637,-0.0190763179277,-0.115646256846) p_k = (7.30907455434e-08,1.20238073244e-08,2.76171511658e-08,6.65956252972e-08) p_ij -> (16.3412455295,11.4867752233,-1.89903795493,-11.4666453364) p_k -> (-3.95168697764e-08,-7.63117942171e-08,4.912713647e-08,1.73111199153e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00182369098396,-0.000130393028251,0.0011231779505,0.00143084511904) p_j = (33.198292025,-5.11483720194,20.8682965833,25.3076911529) p_k = (1.59434637532e-09,4.5612418435e-10,1.52697873941e-09,-4.72022500022e-11) p_ij -> (33.2002234738,-5.11499065381,20.8694826684,25.3092157617) p_k -> (-0.000107756141166,2.30593020301e-05,-6.29056807728e-05,-9.3763746488e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (38.7791556693,34.5598311707,1.05236797757,-17.5594278244) p_j = (0.00287597922283,0.00257162821291,-5.57269520618e-05,-0.00128642113303) p_k = (3.2363830286e-08,1.49159026003e-08,-1.91825370668e-09,2.86575263819e-08) p_ij -> (38.7820322654,34.5624047228,1.05231254329,-17.5607187986) p_k -> (-5.84449765029e-07,-1.90897013752e-06,-2.94585958738e-07,4.5816908294e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.8294348207,-6.41300035373,-18.7929427196,-20.9005990939) p_j = (0.411994310851,-0.0916585590325,-0.268549109415,-0.298696160943) p_k = (5.47596290151e-08,1.23611285919e-08,-3.51940689208e-08,-4.00898611399e-08) p_ij -> (29.2414369164,-6.50466064727,-19.0614969037,-21.1993008986) p_k -> (-7.73008002497e-06,1.74686415377e-06,5.03953486763e-06,5.60367723423e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.4276383374,18.5210237028,-28.5226004288,15.6288533582) p_j = (3.0754806788,1.52567582519,-2.344229244,1.2788604043) p_k = (4.80766707059e-09,8.24089754695e-10,3.45430271807e-09,-3.24072996166e-09) p_ij -> (40.5031232498,20.0467028355,-30.8668384465,16.9077196194) p_k -> (-4.22878003903e-06,-3.30673231019e-06,8.77712966663e-06,-5.86012052217e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (17.0065592205,-2.11530950985,4.05139734534,16.3809249356) p_j = (21.0176907768,-2.6145206325,5.00672662016,20.2445127381) p_k = (4.32237999009e-07,-5.63942740455e-08,8.95376210734e-08,4.19085179951e-07) p_ij -> (38.0247806776,-4.7298961362,9.05825047277,36.6259488135) p_k -> (-0.000530248047163,6.59374621401e-05,-0.000126417729361,-0.000510720697314) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00200768552869,-0.00148283887293,0.000521113823714,0.00124917190241) p_j = (42.8917770219,-20.0788712895,16.9236898603,33.9135988263) p_k = (4.91171754059e-10,-2.41455331988e-10,-4.49162107625e-11,-4.25362358073e-10) p_ij -> (42.8938519103,-20.0803836977,16.9242766831,33.9150347345) p_k -> (-6.72023717989e-05,2.95691810894e-05,-6.57090589762e-05,-0.000186736721499) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.52651622969,-0.846413288189,4.3040346814,-6.11615210428) p_j = (36.070177333,-4.03387575752,20.6186838913,-29.3198808626) p_k = (1.28874560527e-08,-5.99554634113e-09,-1.00051909212e-08,5.48052323128e-09) p_ij -> (43.5966938693,-4.88028876534,24.9227199488,-35.436034319) p_k -> (-2.93792940198e-07,-2.86365079649e-07,-1.38612357325e-06,1.35761989384e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (32.5525006466,-6.06127655552,3.19309313982,-31.8234250367) p_j = (10.6008384731,-1.97672445878,1.03826988736,-10.3630271826) p_k = (3.37026795519e-08,-2.21134441293e-09,1.31656543075e-08,3.09458637741e-08) p_ij -> (43.1533401327,-8.03800122794,4.23136306603,-42.1864536015) p_k -> (-9.79364340736e-07,2.11430102759e-07,-2.56857912717e-08,1.41321557834e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.36867938785,1.58581672528,-0.739944975611,1.59634231583) p_j = (11.3216959654,7.58088838017,-3.5363378763,7.62923622154) p_k = (2.73120922215e-11,-1.68058961907e-11,-1.79313418964e-11,-1.19155087412e-11) p_ij -> (13.6905533864,9.16682432554,-4.27633845811,9.22569852117) p_k -> (-0.000178033206699,-0.000119220096737,5.56061790444e-05,-0.000119983814931) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (4.48555355571,-1.13726989307,-2.76870817886,3.34081770107) p_j = (41.1064344977,-10.4647132301,-25.2693279222,30.6869646672) p_k = (5.33744683728e-09,1.0524402605e-09,4.77935201484e-09,2.13037495301e-09) p_ij -> (45.5919889214,-11.6019906466,-28.0380610561,34.0277886301) p_k -> (-8.62622982822e-07,7.5245511999e-06,2.49598606032e-05,-6.25968980117e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.4469239375,0.88292565215,-1.30118418117,-1.87477966048) p_j = (42.3667043378,15.3046267951,-22.5045466534,-32.4692379805) p_k = (4.35846499085e-09,1.50594991982e-09,-1.20040478144e-09,-3.90990530312e-09) p_ij -> (44.8140697989,16.187712174,-23.8059692878,-34.3443540161) p_k -> (-0.000441519223369,-0.000159725228151,0.000238451986636,0.000336371195658) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.38425790619,-0.337471571092,-1.87211102375,5.037017615) p_j = (40.1882494664,-2.54618953273,-13.9080892657,37.618843244) p_k = (1.00243462319e-08,-4.38678411961e-09,-8.67224246486e-09,-2.45679647309e-09) p_ij -> (45.57251243,-2.88365805466,-15.7801973708,42.6558762229) p_k -> (-5.04738432383e-06,-3.05355408736e-06,-2.92734481366e-06,-1.53664146083e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.4862210615,-25.0927117865,-12.8430649356,35.698848787) p_j = (0.00566619962448,-0.00304223198324,-0.00182826440886,0.00441679657625) p_k = (1.79677723408e-08,-1.74023760123e-08,-1.8504075633e-09,4.07113159189e-09) p_ij -> (45.4919107634,-25.095758447,-12.8449035091,35.7032954602) p_k -> (-2.34843217264e-05,4.41113510696e-06,1.03071932722e-05,-2.98725849319e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.5291633279,13.5419468024,-12.7428245312,24.2129286389) p_j = (3.56081064816,1.57941250682,-1.48644104889,2.82406119154) p_k = (5.88835841517e-07,2.4801676638e-07,-2.17750727977e-07,4.87647364715e-07) p_ij -> (34.0900478966,15.1213921464,-14.2292965373,27.0370483818) p_k -> (-7.33316595465e-05,-3.25892483763e-05,3.07394597865e-05,-5.80636936984e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.1610370727,9.65420914009,6.02539087631,-17.8404148119) p_j = (1.21965473158,0.556408875134,0.347268554112,-1.02828565062) p_k = (2.36983200791e-10,-6.01228236988e-11,2.29220733951e-10,-1.75896087079e-12) p_ij -> (22.3807473518,10.2106433579,6.3726752465,-18.8687472941) p_k -> (-5.55472993753e-05,-2.53427068513e-05,-1.5815844745e-05,4.68315762934e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.270122056704,0.148633950431,0.0842015854062,0.209246188286) p_j = (40.4540534245,22.2607417906,12.6102185944,31.3364356685) p_k = (1.12917939903e-07,-7.06585919076e-08,-8.03440902579e-08,-3.60922955944e-08) p_ij -> (40.724175656,22.4093758373,12.6944202344,31.5456819922) p_k -> (-6.18494020443e-08,-1.66909343235e-07,-1.3489267392e-07,-1.71545758931e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.3991838651,-2.31929852393,14.6612528515,6.97149557994) p_j = (0.511421333171,-0.0721353811347,0.457229300034,0.217461798947) p_k = (1.47178883069e-08,-2.30513898674e-09,1.17194626602e-08,8.59981196631e-09) p_ij -> (16.9106847776,-2.39144512595,15.118553509,7.18899086459) p_k -> (-7.95646009895e-05,1.12185792447e-05,-7.13457257611e-05,-3.3477103246e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.624167650686,0.339703728327,-0.479948143131,-0.209371471381) p_j = (14.5196888989,7.90198113535,-11.1650228619,-4.87055688323) p_k = (2.23347101618e-09,6.8580883328e-10,-7.35628113467e-10,-1.99421937677e-09) p_ij -> (15.1438738397,8.24169427364,-11.6449843008,-5.07993415392) p_k -> (-1.72878566778e-05,-9.4092728018e-06,1.3295035509e-05,5.79732005734e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.055398990823,0.0216387970494,-0.00489128162004,0.0507630378381) p_j = (18.6311671164,7.19556290909,-1.61880058455,17.1091714354) p_k = (2.26615818185e-09,7.35181252505e-10,-1.45487655888e-09,1.5742670251e-09) p_ij -> (18.6866009486,7.21721540039,-1.62369275911,17.1599673281) p_k -> (-3.48391407865e-05,-1.36935083197e-05,8.91483757814e-07,-3.28532385421e-05) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824655,0.0158125577896,0.981207836001) b = (0,0,1) a' = (0.378043399269,0.014917505923,0.925667681345) -> rel. dev. (inf,inf,-0.0743323186553) m_ct = 0.981207836001 m_st = -0.192953835332 m_n = (0,1.32449357694e-06,-2.13447451792e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824963,0.0158125587012,0.981207835926) b = (0,0,1) a' = (0.378043399921,0.0149175067796,0.925667681065) -> rel. dev. (inf,inf,-0.0743323189352) m_ct = 0.981207835926 m_st = -0.192953835714 m_n = (0,1.32449357715e-06,-2.13447464148e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824983,0.0158125573869,0.981207835944) b = (0,0,1) a' = (0.378043399856,0.0149175055402,0.925667681111) -> rel. dev. (inf,inf,-0.0743323188888) m_ct = 0.981207835944 m_st = -0.192953835626 m_n = (0,1.32449357704e-06,-2.13447446384e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824983,0.0158125573869,0.981207835944) b = (0,0,1) a' = (0.378043399856,0.0149175055402,0.925667681111) -> rel. dev. (inf,inf,-0.0743323188888) m_ct = 0.981207835944 m_st = -0.192953835626 m_n = (0,1.32449357704e-06,-2.13447446384e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824963,0.0158125587012,0.981207835926) b = (0,0,1) a' = (0.378043399921,0.0149175067796,0.925667681065) -> rel. dev. (inf,inf,-0.0743323189352) m_ct = 0.981207835926 m_st = -0.192953835714 m_n = (0,1.32449357715e-06,-2.13447464148e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824963,0.0158125587012,0.981207835926) b = (0,0,1) a' = (0.378043399921,0.0149175067796,0.925667681065) -> rel. dev. (inf,inf,-0.0743323189352) m_ct = 0.981207835926 m_st = -0.192953835714 m_n = (0,1.32449357715e-06,-2.13447464148e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824983,0.0158125573869,0.981207835944) b = (0,0,1) a' = (0.378043399856,0.0149175055402,0.925667681111) -> rel. dev. (inf,inf,-0.0743323188888) m_ct = 0.981207835944 m_st = -0.192953835626 m_n = (0,1.32449357704e-06,-2.13447446384e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824983,0.0158125573869,0.981207835944) b = (0,0,1) a' = (0.378043399856,0.0149175055402,0.925667681111) -> rel. dev. (inf,inf,-0.0743323188888) m_ct = 0.981207835944 m_st = -0.192953835626 m_n = (0,1.32449357704e-06,-2.13447446384e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824983,0.0158125573869,0.981207835944) b = (0,0,1) a' = (0.378043399856,0.0149175055402,0.925667681111) -> rel. dev. (inf,inf,-0.0743323188888) m_ct = 0.981207835944 m_st = -0.192953835626 m_n = (0,1.32449357704e-06,-2.13447446384e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824963,0.0158125587012,0.981207835926) b = (0,0,1) a' = (0.378043399921,0.0149175067796,0.925667681065) -> rel. dev. (inf,inf,-0.0743323189352) m_ct = 0.981207835926 m_st = -0.192953835714 m_n = (0,1.32449357715e-06,-2.13447464148e-08) } Poincare::Poincare(): Inaccurate rotation { a = (0.192304824963,0.0158125587012,0.981207835926) b = (0,0,1) a' = (0.378043399921,0.0149175067796,0.925667681065) -> rel. dev. (inf,inf,-0.0743323189352) m_ct = 0.981207835926 m_st = -0.192953835714 m_n = (0,1.32449357715e-06,-2.13447464148e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.64355099227,1.04509686278,-4.60500503392,3.09052891707) p_j = (20.0955304604,3.72145218178,-16.3986688886,11.002944916) p_k = (2.56105636234e-10,1.3361243541e-10,2.15477683409e-10,3.61517015042e-11) p_ij -> (25.7391004035,4.76655254837,-21.0036894146,14.0934842165) p_k -> (-1.89506053996e-05,-3.50368761604e-06,1.54923066855e-05,-1.03833437972e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.65650091318,-0.533345100039,3.51285440851,0.863363096826) p_j = (36.918691089,-5.37473603848,35.4666785418,8.73021634655) p_k = (5.25762907962e-08,-1.05430171902e-08,1.43150561893e-08,4.94791905973e-08) p_ij -> (40.5751932843,-5.90808128666,38.979534665,9.59357925202) p_k -> (-1.22948729597e-06,1.37596456895e-07,-1.70041076686e-06,2.40833845311e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (40.3371709708,0.777566924729,-21.7516009769,33.9610159823) p_j = (4.41279918294,0.085101395723,-2.37948858771,3.71531808091) p_k = (1.51781641337e-07,-2.1181166961e-09,1.16327388263e-07,-9.74736834415e-08) p_ij -> (44.7499703576,0.862668324404,-24.1310896753,37.6763342358) p_k -> (-5.20620915268e-08,-6.06956696014e-09,2.27107031847e-07,-2.70071563335e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.79982193364,-0.706807875728,-1.35324134467,2.34694766665) p_j = (0.869036050866,-0.219484546034,-0.420017255221,0.728447456632) p_k = (8.14490582465e-09,4.74372435068e-09,-1.05032659355e-09,6.53707756257e-09) p_ij -> (3.66885811846,-0.926292464831,-1.77325866856,3.07539523596) p_k -> (-1.25806011164e-07,4.78125690706e-08,6.76178432135e-08,-1.06141282874e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.41338879955,-0.53654576241,-0.460998064175,-2.30738920155) p_j = (43.1568349512,-9.58874448125,-8.25097366992,-41.2612386603) p_k = (1.46102605915e-09,1.28567468625e-09,6.41509754288e-10,2.64770044263e-10) p_ij -> (45.5702279187,-10.1252912107,-8.71197255432,-43.5686318889) p_k -> (-4.16642965462e-06,9.68311668181e-07,8.20867151141e-07,4.02735170013e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (16.0493606136,11.2793171163,10.8982511124,3.40398357623) p_j = (29.3694302265,20.6388934191,19.9368174389,6.25482379228) p_k = (2.37992056717e-08,-1.62009013645e-08,1.30321209241e-08,-1.15800202301e-08) p_ij -> (45.418791051,31.9182155324,30.8350691547,9.658809864) p_k -> (-1.87130858365e-07,-5.0132079199e-06,-5.90410429879e-07,-2.50707345462e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (14.99937901,-2.66731858186,13.7271988589,5.42501555375) p_j = (14.4696034095,-2.56963773168,13.2431665691,5.23306067045) p_k = (2.92947985058e-09,8.31736264026e-10,1.93828652602e-09,2.0330063429e-09) p_ij -> (29.4690261885,-5.23696462882,26.9704057808,10.6580916676) p_k -> (-4.37660423103e-05,8.31611439533e-06,-4.03509458664e-05,-1.54413216364e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.01384809567,1.55552824276,4.7570156024,-0.299678445869) p_j = (29.0246823313,8.98565924866,27.5435944879,-1.74370725285) p_k = (9.84148211668e-09,-3.31427551822e-09,7.96375026925e-09,4.73804614575e-09) p_ij -> (34.0385432721,10.5411936159,32.3006227436,-2.04338826776) p_k -> (-1.28353439663e-05,-6.12777174691e-06,-1.26453808562e-05,2.57377522517e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (13.9068312911,5.18997372381,3.14302445081,-12.5134138671) p_j = (0.630137056339,0.235196709008,0.14204204373,-0.567079602575) p_k = (1.02798452703e-08,2.92572839012e-09,9.80242851035e-09,1.01376917338e-09) p_ij -> (14.536968853,5.42517063429,3.28506650345,-13.080494069) p_k -> (-4.95225126684e-07,-1.98551546315e-07,8.87913076397e-10,6.00397507711e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.5062708755,3.53293920381,-7.01603288137,-13.369295406) p_j = (19.4759549336,4.43716982295,-8.81238636388,-16.7918489485) p_k = (5.65156637693e-09,-1.96145865667e-09,4.25078407276e-09,-3.16602551417e-09) p_ij -> (34.9822325308,7.97011055888,-15.8284222881,-30.1611501503) p_k -> (-6.71611627467e-06,-1.53407870451e-06,3.04706780874e-06,5.79259532962e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.44754852369,0.47353158372,-2.03322579505,-8.18552605308) p_j = (37.1517552801,2.08219860309,-8.94209526513,-35.9993930732) p_k = (3.77712909819e-08,8.19324245699e-09,-2.09738751759e-08,-3.03255299908e-08) p_ij -> (45.5993059597,2.5557303069,-10.9753215776,-44.1849212161) p_k -> (-2.11810305473e-06,-1.11892934251e-07,4.96467098543e-07,2.05944821374e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.342912969,-1.06113220588,7.86504084846,-9.45318102296) p_j = (12.1502047606,-1.04516142436,7.74206890453,-9.30566936866) p_k = (6.83851804436e-08,3.05271971914e-08,5.9917364468e-08,1.24311157228e-08) p_ij -> (24.4931183206,-2.10629368808,15.6071101265,-18.7588508568) p_k -> (-5.22679878046e-07,8.83658184403e-08,-3.13565178267e-07,4.77594905846e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (30.303540749,30.2035486934,-0.86469826644,2.30272125087) p_j = (0.723978218479,0.721588925489,-0.0204264749208,0.0551057398751) p_k = (2.69133832292e-08,1.97604846594e-08,-9.44178275938e-09,1.56430874171e-08) p_ij -> (31.0275190224,30.9251377251,-0.885124679746,2.35782689587) p_k -> (-2.79603558084e-08,-8.63855902367e-08,-7.10561933737e-08,1.10517461405e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0572346832485,-0.0551256628528,-0.00905365458853,0.0124499638626) p_j = (32.1820964545,-30.9602264956,-5.30253437413,7.00248789759) p_k = (1.57369400503e-08,-1.41922530891e-08,-3.21828993318e-09,5.98947755182e-09) p_ij -> (32.2395315306,-31.0155497677,-5.31161785841,7.01496839948) p_k -> (-0.000200377112453,0.000197595021078,2.98264680199e-05,-3.05320345864e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.2458840668,26.6129684975,29.4892611118,-11.1065899035) p_j = (4.34014362739,2.79384841683,3.09968412028,-1.19298620469) p_k = (1.30578845936e-09,-2.76488711645e-10,-4.30569854751e-10,1.20135171007e-09) p_ij -> (45.5860647622,29.406876295,32.5890149746,-12.2996353632) p_k -> (-3.70666644471e-05,-5.93809875458e-05,-6.97428999068e-05,5.92562326514e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.4880074252,-7.07614596853,-1.49256961906,-20.234496714) p_j = (24.0634218317,-7.95733418862,-1.65801755428,-22.6490635712) p_k = (4.82027837877e-10,-2.34198428604e-10,-4.20797035611e-10,-2.07044420909e-11) p_ij -> (45.5516522857,-15.0335508946,-3.1505877978,-42.8837867964) p_k -> (-0.00022302832253,7.07372205264e-05,6.2404197787e-07,0.000226511109691) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (42.6001628252,-27.5557233993,-32.463217217,-1.26313443331) p_j = (0.561067009936,-0.363043895912,-0.427462084458,-0.0164768210178) p_k = (6.27697970779e-09,2.31622305643e-09,2.28316290905e-10,-5.82953310852e-09) p_ij -> (43.161235737,-27.9187711482,-32.8906838267,-1.279611398) p_k -> (-5.89560830022e-06,3.85531142477e-06,4.52551405772e-06,1.37840433623e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00465088182001,-0.00146666706841,-0.00173054897863,0.00406014650557) p_j = (39.9558317949,-12.9229908282,-16.3479239315,34.0912039331) p_k = (1.03299470356e-09,6.09539901173e-10,-8.27064151978e-10,1.07264041144e-10) p_ij -> (39.9605008798,-12.9244683982,-16.3496597787,34.0952837253) p_k -> (-1.82020463733e-05,1.0903528076e-05,5.29738706412e-06,-1.96456301111e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.6362672186,-10.9002511895,-23.3582631914,-32.6979328488) p_j = (3.83589568776,-1.00284677159,-2.15100563621,-3.0135641412) p_k = (1.40700822854e-08,3.53392314496e-09,-1.49898501239e-09,1.35363077848e-08) p_ij -> (45.4721654386,-11.9030987678,-25.5092703755,-35.7114994687) p_k -> (-2.51816455688e-06,8.10227563264e-07,1.54648927086e-06,2.49224050819e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (39.8648222687,-24.3526543949,5.6258181239,-31.0564397327) p_j = (0.00273287773954,-0.00167010034555,0.000387691752994,-0.00212816368724) p_k = (2.33004451707e-10,6.02189341848e-11,1.1948895609e-10,-1.90754981983e-10) p_ij -> (39.8683765533,-24.3548262788,5.62632173378,-31.0592078082) p_k -> (-0.000821406653614,0.00050178363044,-0.000115918010381,0.000639911589081) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (23.356739965,-15.877386082,0.630655182787,17.1186502691) p_j = (22.0399281653,-14.976292901,0.592342056836,16.1591526808) p_k = (4.52271205123e-09,-3.65346754221e-09,2.4955648141e-09,-9.37679875315e-10) p_ij -> (45.3966721382,-30.853681517,1.22299656986,33.2778072813) p_k -> (-4.00339493112e-06,2.53040357379e-06,6.72255066503e-07,-4.33239866027e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (6.40256665566,-0.99637791735,2.29997114577,5.89153830121) p_j = (37.8961909609,-5.88558360196,13.6076477524,34.8756808916) p_k = (1.52372636521e-09,-1.50107528318e-09,7.01754682144e-12,2.61658942349e-10) p_ij -> (44.298792826,-6.88196654919,15.9076317298,40.7672519923) p_k -> (-3.52079352446e-05,5.02837897853e-06,-1.28316437298e-05,-3.27992213478e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (21.8204021699,-9.51882250146,9.56674056945,17.1464119838) p_j = (0.0934435969917,-0.0410504003897,0.0407880075001,0.0733683098535) p_k = (1.72704449315e-09,-1.11789278711e-10,-2.13450645961e-10,-1.71015333625e-09) p_ij -> (21.913848065,-9.55987403447,9.60752978125,17.2197827212) p_k -> (-2.2964482298e-06,1.13250764144e-06,-1.20451113617e-06,-2.42927136718e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.43433224045,-0.611077174291,0.639105373745,1.12935290512) p_j = (38.7147950826,-16.4566072021,17.2264970527,30.5166059217) p_k = (4.1959405538e-08,-1.52172166184e-08,2.35067712067e-08,-3.12483563135e-08) p_ij -> (40.149127898,-17.0676846962,17.8656025431,31.6459611302) p_k -> (-5.32965959366e-07,3.04553021024e-07,-9.32270136644e-08,-2.33461310906e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (43.1180591667,9.15721382201,-42.0835881411,2.0697996259) p_j = (2.48040762813,0.526788168788,-2.42089217182,0.119152504497) p_k = (3.74328444583e-09,-1.32302131772e-09,2.80415433364e-09,2.09726377931e-09) p_ij -> (45.598477126,9.68400418534,-44.5044903976,2.18895262594) p_k -> (-1.03274177192e-05,-2.19586011685e-06,1.00874762552e-05,-4.93441718152e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.8677666853,8.49805779568,-13.9745068378,-15.9822065284) p_j = (0.349269030416,0.12974486634,-0.213470092986,-0.244101709675) p_k = (7.79682848237e-10,4.57055299929e-10,2.9674605607e-10,5.57624441485e-10) p_ij -> (23.2170634678,8.62781297444,-14.1879938933,-16.2263276384) p_k -> (-2.77513280924e-05,-1.03119573369e-05,1.69628532696e-05,1.94009583243e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.30443315122,1.99100575557,-0.332047335729,-2.61627962937) p_j = (0.0101731181145,0.00612736224434,-0.00101202456237,-0.00805751639054) p_k = (6.95335897494e-10,-5.41281128419e-10,1.3532179882e-10,4.14983918609e-10) p_ij -> (3.31460674702,1.99713340971,-0.333059409161,-2.62433752806) p_k -> (-4.76981755426e-07,-2.92432331572e-07,4.90049877344e-08,3.82716559777e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (28.1103469033,-13.6650491351,-23.5617081227,6.95010399189) p_j = (11.3342887678,-5.51231007832,-9.49925490111,2.80083840943) p_k = (1.75818415827e-09,8.10541543884e-10,-1.48606103248e-09,4.75240497919e-10) p_ij -> (39.4446540283,-19.1773687549,-33.0609784055,9.7509469243) p_k -> (-1.83554786233e-05,9.54224345584e-06,1.53802404483e-05,-4.52250908989e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.2011680731,-0.589424850218,3.02129866865,0.87852702465) p_j = (34.5739315824,-6.34206115583,32.6288909647,9.5126484103) p_k = (2.16813268208e-10,6.9356213293e-11,-1.69216730307e-10,1.16459951079e-10) p_ij -> (37.7752020658,-6.93150523414,35.6502877779,10.3912033787) p_k -> (-0.000102410071833,1.92281571683e-05,-9.81447190043e-05,-2.79436830537e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.4660939572,-1.35681069318,1.07553198357,8.28716131057) p_j = (1.31177945108,-0.210187134347,0.166655810213,1.28406095562) p_k = (8.7541132103e-09,3.93432934041e-09,5.95792167097e-09,5.0654440854e-09) p_ij -> (9.77787390481,-1.56699790808,1.24218785598,9.57122275286) p_k -> (-4.87771554702e-07,8.44811662848e-08,-5.62368709378e-08,-4.81605649583e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (9.46236850388,1.4216267658,-8.78770061447,3.2080699731) p_j = (0.00279020792163,0.000417494989831,-0.00259189112725,0.000945017758482) p_k = (3.95429829178e-09,1.83950132245e-09,2.98543041878e-09,1.82754325032e-09) p_ij -> (9.46515901546,1.42204430625,-8.79029278848,3.20901509375) p_k -> (-2.99706361062e-07,-4.36209111054e-08,2.85858575033e-07,-1.01060735114e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (18.8617040517,-6.3380888567,10.8702383622,14.0509938199) p_j = (2.95577040958,-0.993983671484,1.70453054857,2.20071597076) p_k = (1.69695048635e-09,-1.6915069459e-09,-8.77587723451e-12,-1.35524440208e-10) p_ij -> (21.8174872413,-7.33207640619,12.5747766437,16.2517198308) p_k -> (-1.27783684096e-05,3.87631258247e-06,-7.73290333989e-06,-1.00403530556e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.256569130097,-0.146506939353,0.0943927667533,0.188290841054) p_j = (16.7522977542,-9.56511246069,6.157742446,12.297573404) p_k = (5.46089822617e-09,-1.56738630127e-09,1.28491714536e-09,5.07086754621e-09) p_ij -> (17.0089389641,-9.71166063561,6.25216174513,12.4859171028) p_k -> (-7.2074405665e-05,4.12340031932e-05,-2.65310983827e-05,-5.28526054939e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.7232644733,25.7840626398,17.2113975604,-6.73167264872) p_j = (13.874927848,11.2951728698,7.5169766973,-2.90305941411) p_k = (2.04131280648e-09,-1.06747466654e-09,1.70844685574e-09,-3.29652007348e-10) p_ij -> (45.5982068647,37.0793236461,24.7283653175,-9.6347379804) p_k -> (-1.4541279878e-05,-8.81375929289e-05,8.94187240874e-06,5.917241789e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0468876498514,0.0432776394036,0.0150184268012,-0.00999722424743) p_j = (30.1522068502,27.8325079312,9.64582231994,-6.43934716939) p_k = (9.55312048114e-10,2.4103247432e-10,1.82749735893e-10,-9.06161426791e-10) p_ij -> (30.1992027954,27.8758855434,9.66087539269,-6.44936751158) p_k -> (-0.000108294476268,-9.99725601165e-05,-3.46457657185e-05,2.31170401919e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.217491564612,0.0238881623899,0.0991919835271,0.192075211256) p_j = (23.3218034992,2.48739811068,10.5938104697,20.6274222535) p_k = (3.93888959162e-09,-2.02164602493e-11,3.60779060021e-09,1.58059734297e-09) p_ij -> (23.5393131756,2.51128900413,10.6930073826,20.8195169356) p_k -> (-1.81078821786e-05,-2.73107835924e-06,-4.92575592048e-06,-1.94692706277e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (3.36186960777,1.80608010297,-1.70343908101,-2.26683418418) p_j = (36.9970920685,19.8692368721,-18.7475986461,-24.9504667822) p_k = (4.48072208371e-09,-3.49116715838e-09,2.77000204789e-09,4.64448292272e-10) p_ij -> (40.358962677,21.6753175633,-20.4510382776,-27.2173016713) p_k -> (-9.96255334229e-07,-5.91687744134e-07,5.53235841139e-07,7.05333423667e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.41863596227,1.33874716779,0.741535391172,-1.87288045597) p_j = (7.46438075206,4.12801296249,2.28943660692,-5.78229790102) p_k = (5.06427978438e-09,-3.54768109931e-09,-1.00414181201e-09,3.47168391154e-09) p_ij -> (9.88301675976,5.46676035163,3.03097209106,-7.6551786207) p_k -> (-4.03659692338e-08,-2.24891288259e-07,-9.3969260373e-08,2.67182861169e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.61756761655,-0.104175509688,-0.591588147269,0.143389986412) p_j = (44.9810965748,-6.93481481711,-43.0176482784,11.1664376196) p_k = (2.30255466479e-10,1.57853887525e-10,-9.94674398084e-11,-1.34928751554e-10) p_ij -> (45.5987944986,-7.03915429361,-43.6094508571,11.3100027667) p_k -> (-0.000130307082532,0.000163966975656,0.0002144313349,-0.000175160832069) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (29.7785169419,-12.0767024306,1.39437560312,-27.1839851078) p_j = (15.7755546474,-6.39785010039,0.738657247986,-14.4010424621) p_k = (6.0465670915e-06,-2.65369875407e-06,4.65063525024e-07,-5.4131850547e-06) p_ij -> (45.5540803821,-18.4745560937,2.13303325998,-41.5850355983) p_k -> (-2.74617539731e-06,9.0906523198e-07,5.61962250067e-08,2.61512836275e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (41.8723749427,-19.8688385349,-7.82276118707,36.0184597953) p_j = (0.194305177826,-0.0936857143425,-0.0367027581735,0.166223935101) p_k = (1.92102946809e-09,1.15066624254e-09,5.96749120464e-10,-1.41781258482e-09) p_ij -> (42.0666861177,-19.9625315597,-7.8594671346,36.1846955357) p_k -> (-5.99520717159e-06,7.31163873624e-06,3.18995013027e-06,-1.18066680308e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0022881709297,0.00165907098221,0.00157467002274,-6.01996594697e-05) p_j = (17.0547758777,12.4513230944,11.6488897872,-0.36510295131) p_k = (1.52237896495e-08,7.28006912175e-09,-5.64367094655e-09,1.21207795561e-08) p_ij -> (17.0570644868,12.4529825089,11.6504648555,-0.365163237202) p_k -> (-4.22897530328e-07,-3.36259009082e-07,-4.03946148531e-07,9.8353878375e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.22836258409,0.962571602331,-0.760166510925,0.0669135565312) p_j = (41.6847757174,32.6728371161,-25.786904133,2.26755741655) p_k = (2.08340224128e-08,-1.95536349694e-08,7.1067503244e-09,1.09816198968e-09) p_ij -> (42.9131394515,33.6354096686,-26.5470713825,2.33447103568) p_k -> (-1.12909646433e-06,-9.69772695925e-07,7.45729614948e-07,-6.15059352338e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.15937613831,0.240750416648,1.1000591458,0.275793659657) p_j = (16.1053591375,3.34473549334,15.2811165718,3.83181598554) p_k = (2.51696385463e-08,9.03834976313e-09,-6.67204034714e-09,2.2523380401e-08) p_ij -> (17.2647369156,3.58548625031,16.3811772751,4.10761003441) p_k -> (-1.61452914504e-06,-3.31282494548e-07,-1.56411234542e-06,-3.66695698695e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (37.110748703,5.00163387967,-11.1348866649,-35.0457647483) p_j = (6.60493686578,0.890269917817,-1.9816430842,-6.23744347961) p_k = (1.42888099075e-09,-3.52904359679e-10,-5.7196598036e-10,-1.26095778008e-09) p_ij -> (43.7163217556,5.89198954928,-13.1167206296,-41.2838090166) p_k -> (-0.000636185348302,-8.57521495208e-05,0.000190879920556,0.000600787383746) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (1.59786286796,0.260727790877,-0.761324483764,-1.38042449786) p_j = (0.260398099601,0.0423327882609,-0.124102758321,-0.224974689) p_k = (2.35781349341e-10,-5.90607314161e-11,-3.48609281997e-11,2.25580322126e-10) p_ij -> (1.85826111453,0.303060612938,-0.885427319927,-1.60539935711) p_k -> (-1.46739947859e-07,-3.38591471249e-08,7.78073490082e-08,1.70475814465e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (22.6750613745,-5.85766922228,-5.02069498375,21.3222592964) p_j = (22.9115817554,-5.91357488736,-5.0778880307,21.5449591259) p_k = (1.9731170949e-10,1.14666764182e-10,-1.64164987612e-11,-1.59731898347e-10) p_ij -> (45.5867225865,-11.7712648689,-10.098600656,42.8672936439) p_k -> (-7.94563259667e-05,2.07594006483e-05,1.76415176378e-05,-7.52218539404e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (24.6153964624,3.50676195391,-7.99709165993,-23.0144930116) p_j = (17.4636729846,2.48804348524,-5.67385661154,-16.3277942442) p_k = (8.50972351423e-09,-4.2874549694e-09,4.9349627496e-09,5.44786824734e-09) p_ij -> (42.0790756035,5.9948063167,-13.6709502723,-39.342293013) p_k -> (-6.14796618592e-06,-8.81834902877e-07,2.00574370801e-06,5.76264221763e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.514284129674,-0.0845382776888,-0.0509182529648,-0.504726437939) p_j = (30.7019109617,-5.04737397576,-3.04830990649,-30.1303693865) p_k = (1.62568072224e-08,7.68782145998e-10,-1.53027024091e-08,-5.43323113387e-09) p_ij -> (31.2162004785,-5.13191314633,-3.09922866548,-30.6351011334) p_k -> (-5.37083847618e-06,8.93646403988e-07,4.90726973501e-07,5.3035269687e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (25.7457120514,15.207510966,-5.39384801665,-20.0618967903) p_j = (1.44669144562,0.854458107554,-0.303229139744,-1.12732851028) p_k = (8.95700816658e-10,-2.7149263675e-10,-8.07288768565e-10,2.77219011991e-10) p_ij -> (27.1924530827,16.0619983689,-5.69708754034,-21.1892639469) p_k -> (-4.95847825874e-05,-2.92955970291e-05,1.0383137806e-05,3.86465537829e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.81901915915,-3.16026743148,-0.19601284858,4.88213812783) p_j = (39.7779753088,-21.5985358472,-1.34020387682,33.3765549824) p_k = (4.08789569492e-07,-4.55239761416e-08,8.28046178589e-08,3.97718335552e-07) p_ij -> (45.596995983,-24.7588042611,-1.53621686386,38.2586943319) p_k -> (-1.10632663208e-06,9.36877997404e-07,2.212655561e-07,-8.24030230717e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.585300025577,0.00380853633278,-0.111466643379,-0.574575323526) p_j = (10.850235451,0.069751341197,-2.06901710035,-10.650911338) p_k = (4.52594674983e-08,3.21161286421e-08,-2.71388779525e-08,-1.67467902088e-08) p_ij -> (11.4355356145,0.0735598526172,-2.18048375502,-11.2254868194) p_k -> (-9.26555809855e-08,5.7028693573e-08,-1.58465263134e-08,1.41075587656e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (5.43180670663,-0.671175248133,1.77633580334,-5.08907447364) p_j = (36.1932380241,-4.4722670897,11.8606996304,-33.9009308135) p_k = (9.67977507684e-11,3.56348690094e-11,-8.09550656062e-11,3.9329433376e-11) p_ij -> (41.6252845486,-5.14347232567,13.6371148411,-38.9902308918) p_k -> (-0.000239817740123,2.99878755752e-05,-7.94074260604e-05,0.000225604650637) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0639783704491,-0.0395372130417,-0.00631579017357,0.0499014174619) p_j = (44.1138714383,-27.251349232,-4.3394333846,34.4175382067) p_k = (1.36075469029e-08,-4.97006358337e-09,-2.32970730904e-09,1.24513561394e-08) p_ij -> (44.1779485245,-27.2909474681,-4.34575887346,34.4675166199) p_k -> (-9.87021628625e-05,6.10181154119e-05,9.69634802761e-06,-7.6983233928e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (8.42404282431,2.90072378605,-0.351002704345,-7.9010819591) p_j = (2.11159125412,0.726621093535,-0.0877041395905,-1.98069366506) p_k = (1.91761144078e-09,-9.4707148142e-10,8.21109100482e-10,1.45122037197e-09) p_ij -> (10.535635388,3.62734535933,-0.438706914656,-9.88177691083) p_k -> (-1.30761988082e-06,-4.80696579208e-07,7.1541931046e-08,1.288119857e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0340959984412,-0.0166556427219,0.0135400138381,0.0264914080503) p_j = (10.2810146609,-5.0121400624,4.09269042678,7.98921770411) p_k = (1.59468122358e-08,1.57886381309e-08,-1.73488350525e-09,1.4177304309e-09) p_ij -> (10.3151107168,-5.02879576602,4.10623047478,8.01570917213) p_k -> (-4.15110292806e-08,7.66877130687e-08,-3.58892404684e-08,-5.85488999505e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (45.3760405526,6.51336784962,-9.39536913798,-43.9122777165) p_j = (0.00210031820402,0.000607260576585,0.00091478321467,0.00179045882958) p_k = (5.97658543527e-11,1.37390070109e-11,2.02026778793e-11,-5.45448132401e-11) p_ij -> (45.3795183398,6.51196218563,-9.40869653478,-43.9132289324) p_k -> (-0.00137746890014,0.00201292457891,0.0142421800285,0.00274167471094) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.0467908592768,-0.00436876064616,-0.0282908250119,-0.0370125338558) p_j = (17.3265557408,-1.61597224964,-10.4747965191,-13.7068160202) p_k = (3.82610292299e-08,1.14224837228e-08,-2.52743915551e-08,-2.63559928893e-08) p_ij -> (17.3733494506,-1.62034127832,-10.5030890671,-13.7438308096) p_k -> (-2.81220425435e-06,2.79457733066e-07,1.69766712599e-06,2.22917992776e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (0.00146466626262,0.000109688292748,-0.000851661615397,-0.00118654466083) p_j = (30.3144259698,4.95824342186,-18.6177944004,-23.404229868) p_k = (3.55072232163e-09,-6.03885031993e-10,1.60663094484e-09,3.10832018474e-09) p_ij -> (30.3158933033,4.95835482616,-18.6186517916,-23.4054247913) p_k -> (-2.66373163171e-06,-1.71661020953e-06,5.73118338565e-06,8.38178433149e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (20.7021217179,4.30890522193,0.920634354229,-20.2277930531) p_j = (18.4012455415,3.82998952846,0.81854686255,-17.9796273244) p_k = (2.04887389855e-06,4.12295982595e-07,6.44916419253e-08,-2.00592549787e-06) p_ij -> (39.103475646,8.13891735921,1.73918613055,-38.2075262667) p_k -> (-0.000106337630211,-2.2196524303e-05,-4.84927501621e-06,0.000103883228434) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439162197,0.17792300203,-0.983825744372) b = (0,0,1) a' = (0.158681236265,-0.175706502044,0.971569601417) -> rel. dev. (inf,-inf,-0.0284303985835) m_ct = -0.983825744372 m_st = -0.179128179557 m_n = (0,-1.76865365109e-06,-3.19857626163e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439161812,0.177923003923,-0.98382574403) b = (0,0,1) a' = (0.158681238186,-0.175706503859,0.971569600775) -> rel. dev. (inf,-inf,-0.0284303992254) m_ct = -0.98382574403 m_st = -0.179128181433 m_n = (0,-1.76865365376e-06,-3.1985763016e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439162087,0.177923002182,-0.983825744344) b = (0,0,1) a' = (0.158681236427,-0.175706502191,0.971569601364) -> rel. dev. (inf,-inf,-0.0284303986363) m_ct = -0.983825744344 m_st = -0.179128179707 m_n = (0,-1.76865365198e-06,-3.19857626607e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439162289,0.177923002355,-0.983825744313) b = (0,0,1) a' = (0.158681236582,-0.175706502357,0.971569601308) -> rel. dev. (inf,-inf,-0.0284303986917) m_ct = -0.983825744313 m_st = -0.179128179882 m_n = (0,-1.7686536502e-06,-3.19857626607e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439161812,0.177923003923,-0.98382574403) b = (0,0,1) a' = (0.158681238186,-0.175706503859,0.971569600775) -> rel. dev. (inf,-inf,-0.0284303992254) m_ct = -0.98382574403 m_st = -0.179128181433 m_n = (0,-1.76865365376e-06,-3.1985763016e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439161812,0.177923003923,-0.98382574403) b = (0,0,1) a' = (0.158681238186,-0.175706503859,0.971569600775) -> rel. dev. (inf,-inf,-0.0284303992254) m_ct = -0.98382574403 m_st = -0.179128181433 m_n = (0,-1.76865365376e-06,-3.1985763016e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439162087,0.177923002182,-0.983825744344) b = (0,0,1) a' = (0.158681236427,-0.175706502191,0.971569601364) -> rel. dev. (inf,-inf,-0.0284303986363) m_ct = -0.983825744344 m_st = -0.179128179707 m_n = (0,-1.76865365198e-06,-3.19857626607e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439162087,0.177923002182,-0.983825744344) b = (0,0,1) a' = (0.158681236427,-0.175706502191,0.971569601364) -> rel. dev. (inf,-inf,-0.0284303986363) m_ct = -0.983825744344 m_st = -0.179128179707 m_n = (0,-1.76865365198e-06,-3.19857626607e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439162087,0.177923002182,-0.983825744344) b = (0,0,1) a' = (0.158681236427,-0.175706502191,0.971569601364) -> rel. dev. (inf,-inf,-0.0284303986363) m_ct = -0.983825744344 m_st = -0.179128179707 m_n = (0,-1.76865365198e-06,-3.19857626607e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439161812,0.177923003923,-0.98382574403) b = (0,0,1) a' = (0.158681238186,-0.175706503859,0.971569600775) -> rel. dev. (inf,-inf,-0.0284303992254) m_ct = -0.98382574403 m_st = -0.179128181433 m_n = (0,-1.76865365376e-06,-3.1985763016e-07) } Poincare::Poincare(): Inaccurate rotation { a = (0.0207439161812,0.177923003923,-0.98382574403) b = (0,0,1) a' = (0.158681238186,-0.175706503859,0.971569600775) -> rel. dev. (inf,-inf,-0.0284303992254) m_ct = -0.98382574403 m_st = -0.179128181433 m_n = (0,-1.76865365376e-06,-3.1985763016e-07) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (44.3575115242,27.4109330974,7.38572104388,-34.0834373269) p_j = (1.08182562325,0.66341636652,0.181319026282,-0.835074137101) p_k = (6.00921961467e-09,-2.66081188251e-09,-1.44780046082e-09,5.18986281022e-09) p_ij -> (45.4393376966,28.0743599803,7.56704407133,-34.9185275466) p_k -> (-5.43067642411e-07,-1.05190141557e-05,-4.00260701472e-06,1.60878263351e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.9408145516,0.588287407141,-7.86552359333,0.918690520374) p_j = (21.4195509207,1.58872139286,-21.2160670777,2.48024670836) p_k = (9.07740156093e-10,-1.93825485874e-10,8.53181995324e-10,-2.41879722285e-10) p_ij -> (29.3604019912,2.1770115155,-29.0816268949,3.39894146662) p_k -> (-3.65180175503e-05,-2.71569531285e-06,3.62247081451e-05,-4.23813003647e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.8546817964,-3.43186652419,9.04877861593,25.0502661085) p_j = (5.32494776559,-0.671665552581,1.79281101457,4.96887942677) p_k = (8.69790687974e-10,-7.19800316545e-11,4.87867968783e-10,-7.16480224729e-10) p_ij -> (32.1796709512,-4.1035375404,10.8416026457,30.0191914324) p_k -> (-4.13883875474e-05,5.46355791942e-06,-1.30147291086e-05,-4.58979109812e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (11.7931583781,-2.65183003186,-0.401366808778,11.4841319523) p_j = (29.9180546238,-6.72840712573,-1.01882821888,29.1338380425) p_k = (1.32303852125e-08,-1.79970789968e-09,6.54012386255e-09,-1.13591787793e-08) p_ij -> (41.7112178716,-9.38023825304,-1.42019519537,40.6179747434) p_k -> (-4.85650186022e-06,1.09365064649e-06,1.74244986662e-07,-4.76004174388e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (2.16856830436,0.674695492618,-0.547113003891,1.98699316654) p_j = (43.3389721016,13.4656609483,-10.9420431721,39.7141557794) p_k = (4.49112245191e-07,1.38952278967e-07,-1.04051970377e-07,4.14206784604e-07) p_ij -> (45.5086044016,14.1406883306,-11.4894447507,41.7021182608) p_k -> (-0.0010635464583,-0.000331750664724,0.000288470655412,-0.000968900643368) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (15.040784064,0.590501506892,2.72916698417,-14.7793146256) p_j = (27.9701552324,1.09772057785,5.07694944786,-27.4836165298) p_k = (3.11350028462e-08,-1.91529637008e-08,1.42044227142e-08,-2.00196592086e-08) p_ij -> (43.0109481566,1.68822247546,7.80611802206,-42.2629398839) p_k -> (-8.82912978284e-06,-4.09871286022e-07,-1.57582915161e-06,8.70844161938e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (26.9439627834,11.0478230932,24.4747375238,-2.21584261944) p_j = (18.5393645424,7.60333781824,16.8397497379,-1.52319415039) p_k = (2.8186232696e-09,-1.73153992146e-09,1.04734817891e-09,-1.96200596916e-09) p_ij -> (45.4833564444,18.651172952,41.3145137639,-3.73903910368) p_k -> (-2.91158908539e-05,-1.20422790335e-05,-2.65011211624e-05,2.33189118082e-06) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (12.0318970587,-3.88043901717,3.84094582713,-10.7217477595) p_j = (33.568082898,-10.8122359023,10.8987429549,-29.8517863158) p_k = (1.8910596855e-10,1.82674432563e-10,1.66666157482e-12,4.88729264347e-11) p_ij -> (45.6005344411,-14.6929764634,14.7398980069,-40.5741369704) p_k -> (-0.000554484169847,0.000301544085069,-0.00020922483046,0.000602895201112) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (34.9037841939,-10.7350347653,-29.1938922701,-15.835082373) p_j = (10.6848150451,-3.28597373727,-8.94646753023,-4.82994491444) p_k = (3.17516988384e-09,3.13254110733e-10,-2.13074490571e-09,2.33313071508e-09) p_ij -> (45.5886037302,-14.0210171203,-38.1403665071,-20.6650504884) p_k -> (-4.48805702646e-06,8.61800297347e-06,6.70458378238e-06,2.32033145497e-05) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (31.9435577789,-17.8416357267,4.70395678567,-26.0756535628) p_j = (12.6843584213,-7.08480738095,1.86763155508,-10.3542457624) p_k = (1.90180913047e-07,1.35920574024e-07,-7.68041712257e-08,-1.08607074045e-07) p_ij -> (44.627916394,-24.9264432189,6.57158837056,-36.429899484) p_k -> (-3.66017260944e-09,2.47109369411e-07,-1.0661211558e-07,5.01885608628e-08) } Dipole_Kinematics::Evaluate(): Negative energy in FF { p_i = (7.84402310846,1.2359606815,3.71006871587,6.79974189535) p_j = (37.7218658365,5.94146776889,17.839711559,32.7014191501) p_k = (9.67044729939e-09,1.77210983687e-09,2.13028559357e-09,9.26493707061e-09) p_ij -> (45.5659948448,7.17744511325,21.5498305378,39.5012527857) p_k -> (-0.000105890209063,-1.66610829759e-05,-5.02608671926e-05,-9.17309426818e-05) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;0;0 Phase_Space_Handler::Check4Momentum(): { p_0 = (45.5867377542,0,0,45.5867377542) (-1.36424205266e-12) p_1 = (45.0684131957,0,0,-45.0684131957) (-6.8212102633e-13) p_2 = (-nan,-nan,-nan,-nan) (-nan) p_3 = (5.93422360807e-07,-2.40831781032e-08,1.32427336038e-08,-5.92785567338e-07) (5.04870979341e-29) p_4 = (-nan,-nan,-nan,-nan) (-nan) p_5 = (-nan,-nan,-nan,-nan) (-nan) p_in = (90.6551509499,0,0,0.518324558421) (8218.0877334) p_out = (-nan,-nan,-nan,-nan) (-nan) diff = (-nan,-nan,-nan,-nan) (-nan) } Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-5.04870979341e-29 Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Anisotropic2Weight produces a nan! MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 2.495232e-08 < -nan < nan sexp = 0.714285714286 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-5.04870979341e-29;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.75 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 MasslessPropWeight produces a nan: nan smin,s,smax = 8.31744e-09 < -nan < nan sexp = 0.001 Channel_Basics::SqLam argument -nan <0 in Channel_Basics::sqlam() s;s1;s2: -nan;-nan;-nan Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS LF_VVV1_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FFV_FFE|CF_QCDE") Splitting_Function_Base::operator:("Invalid weight in CSS F_FVF_FFE|CF_QCDE") Exception_Handler::GenerateStackTrace(..): Generating stack trace  { 0x7f1ab1d88560 in 'ATOOLS::Terminate()' (Exception_Handler.C:135) 0x7f1ab033f34b in 'YODA::Histo1D::fill(double, double)' 0x7f1aa4230f9a in 'Rivet::OPAL_2001_S4553896::analyze(Rivet::Event const&)' 0x7f1ab062b70a in 'Rivet::AnalysisHandler::analyze(HepMC::GenEvent const&)' 0x7f1ab0962386 in 'SHERPARIVET::Rivet_Interface::Run(ATOOLS::Blob_List*)' (Rivet_Interface.C:535) 0x7f1ab309dd95 in 'SHERPA::Analysis_Phase::Treat(ATOOLS::Blob_List*, double&)' (stl_iterator.h:777) 0x7f1ab30841c3 in 'SHERPA::Event_Handler::AnalyseEvent(double&)' (Event_Handler.C:146) 0x7f1ab308781a in 'SHERPA::Event_Handler::GenerateStandardPerturbativeEvent(SHERPA::eventtype::code&)' (Event_Handler.C:288) 0x7f1ab3088e35 in 'SHERPA::Event_Handler::GenerateEvent(SHERPA::eventtype::code)' (Event_Handler.C:128) 0x7f1abe755097 in 'SHERPA::Sherpa::GenerateOneEvent(bool)' (Sherpa.C:209) 0x4019ed in 'main' (Main.C:27) } Exception_Handler::Terminate(): Pre-crash status saved to '/scratch/MxvMDmq6b2qnXk5IKnL2N00mABFKDmABFKDmZRKKDmABFKDmawcG5m/Status__Thu_Aug_17_17-04-17_2017'. Event 179642 ( 1290 s total ) = 12030810.396 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(/mt/home/hschulz/Grid/MEPSNLO_5jets/default/Rivet.yoda){ ************************************************** ** Total XS = ( 2.08018e+07 +- 1.7242e+06 ) pb ** ************************************************** Rivet.Analysis.Handler: INFO Finalising analyses Rivet.Analysis.Handler: INFO Processed 179643 events The MCnet usage guidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES Please acknowledge plots made with Rivet analyses, and cite arXiv:1003.0694 (http://arxiv.org/abs/1003.0694) } +------------------------------------------------------------+ | | | Total XS is 2.08018e+07 pb +- ( 1.7242e+06 pb = 8.28 % ) | | | +------------------------------------------------------------+ ------------------------------------------------------------------------ Please cite the publications listed in 'Sherpa_References.tex'. Extract the bibtex list by running 'get_bibtex Sherpa_References.tex' or email the file to 'slaclib2@slac.stanford.edu', subject 'generate'. ------------------------------------------------------------------------ Exception_Handler::Exit: Exiting Sherpa with code (0)[?25h Thanks for using LHAPDF 6.1.6. Please make sure to cite the paper: Eur.Phys.J. C75 (2015) 3, 132 (http://arxiv.org/abs/1412.7420) ******************************************* * C O L L I E R * * * * Complex One-Loop Library * * In Extended Regularizations * * * * by A.Denner, S.Dittmaier, L.Hofer * * * * version 1.0 * * * *******************************************