
Rivet/Professor

Holger Schulz
IPPP Durham

SLAC, 12 May 2017

rivet.hepforge.org

professor.hepforge.org

1/23

rivet.hepforge.org
professor.hepforge.org

Introduction

I Recent big changes in LHC
experiment/theory interaction
⇒ more direct collaboration to improve

methods and modelling, starting from SM &
QCD, now also Top, Higgs, and BSM

I Rivet analysis library is part of this: a
lightweight way to exchanging analysis
details and ideas

I Implementing a Rivet analysis to
complement the data analysis is increasingly
expected of LHC analyses. Everyone
benefits!

2/23

Introduction
Rivet is an analysis system for MC events, and lots of analyses
427 built-in, at today’s count! 54 are pure MC, and some double/triple-counting

I Generator-agnostic for physics & pragmatics
I A quick, easy and powerful way to get

physics plots from lots of MC gens
Only requirement: use HepMC event record
Usually via ASCII, but in-memory exchange is faster

I Rivet has become the LHC standard for
archiving LHC data analyses

Focus on unfolded measurements, esp. QCD
and EW+QCD, rather than searches
But there are BSM studies using it! And
detector simulation now possible
Key input to MC validation and tuning –
increasingly comprehensive coverage
Also “recasting” of SM and BSM data results
on to new/more general BSM model spaces
Add your analyses, too!

3/23

Design philosophy / pragmatics
Rivet operates on HepMC events, intentionally unaware of who made
them. . . so don’t “look inside” the event graph.
⇒ reconstruct resonances, dress leptons, avoid partons, etc.

cf. q/g jet discrimination: LO picture is an implementation-dependent cartoon;
a useful motivator but incomplete and ill-defined until after hadronization

This “hard work” way is actually simpler – fewer gotchas.
Makes you think about physics & helps find analysis bugs/ambiguities

Tech stuff:

I C++ library with Python interface & scripts
I “Plugins”⇒ write your analyses without needing to rebuild Rivet

Trivial from user / analysis author point of view

I Tools to make “doing things properly” easy and default
I Computation caching for efficiency
I Histogram syncing: keep code clean and clear

+ helpful developers! New contributors always welcome

4/23

Why wouldn’t we want to look at the event graph?!
A Pythia8 t̄t event!

Most of this is not standardised: Herwig and Sherpa look very different.
But final states and decay chains have to have equivalent meaning.

5/23

Why wouldn’t we want to look at the event graph?!
A Pythia8 t̄t event!

Most of this is not standardised: Herwig and Sherpa look very different.
But final states and decay chains have to have equivalent meaning.

5/23

Basic principle

HepMC events

R I V E T

Histograms (YODA)

User: specify analyses

6/23

Basic principle

HepMC events

R I V E T

Histograms (YODA)

User: specify analyses
Sherpa

0 1 2 3 4 5 6

1

10 1

10 2

10 3

Exclusive jet multiplicity

Njet

σ
(N

je
t)

[p
b]

6/23

Basic principle

HepMC events

R I V E T

Histograms (YODA)

User: specify analyses

bbbbbb

Datab

Sherpa

10−3

10−2

10−1

1
tt̄ cross-section vs. 3rd jet pT

d
σ

/
d

p T
[p

b/
G

eV
]

10 2
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

3rd jet pT [GeV]

E
xp

ec
te

d
/D

at
a

6/23

Getting Rivet

Rivet is readily available on the MC4BSM virtual machine.
Some event files are available in tutorial/Rivet/Events

Easy to install using our bootstrap script:

wget http://rivet.hepforge.org/hg/bootstrap/raw-file/2.5.3/rivet-bootstrap

bash rivet-bootstrap

Latest version is 2.5.3 Requires C++11

Docker image available:
docker pull hepstore/rivet:2.5.3

http://rivet.hepforge.org/trac/wiki/Docker

CVMFS installations on lxplus.

7/23

http://rivet.hepforge.org/trac/wiki/Docker

Getting Rivet

I rivet command line tool to query
available analyses

I Can be used as a library (e.g. in big
experiment software frameworks)

I Can also be used from the command
line to read HepMC ASCII
files/pipes: very convenient

I Helper scripts like rivet-mkanalysis,
rivet-buildplugin

I Histogram comparisons, plot web
albums, etc. very easy

Docs online at http://rivet.hepforge.org – PDF manual, HTML list of
existing analyses, and Doxygen. Entries in HEPdata point to existing
rivet analyses.

7/23

http://rivet.hepforge.org

Writing an analysis
Writing an analysis is of course more involved. But the C++ interface is
pretty friendly: most analyses are short, simple, and readable – details
handled in the library + expressive API functions.

A single C++ file is sufficient. Rivet comes with scripts that generate
analysis templates and compile the new code into a shared library
(plugin).

Mostly “normal”:
I Typical init/exec/fin structure
I Histogram titles, labels, etc.: use .plot file
I Rivet’s own Particle, Jet and FourMomentum classes: some nice

things like abseta() and abspid(), sorting and filtering
I Use of projections for computations, with a bit of magic – this is

where the caching happens
I Projections are declared with a string name, and later are applied

using the same name
I Final state projections are central: compute from final state or

physical decayed particles
8/23

Projections

Major idea: projections. They are just observable calculators: given an
Event object, they project out physical observables.

They also automatically cache themselves, to avoid recomputation.
This leads to slightly unfamiliar calling code.

Projections were declared with a name in init() they are then applied to
the current event in analyze(), by the same name.

E.g.

I Final states (Identified, Charged, Visible, . . .)
I Jets (All native FastJet algorithms)
I Event shapes (Thrust etc.)
I Missing momentum and DIS kinematics

9/23

Selection cuts

Combinable Cut objects:

I FinalState(Cuts::pT > 0.5*GeV && Cuts::abseta < 2.5)

I fs.particles(Cuts::absrap < 3 || (Cuts::absrap > 3.2 &&

Cuts::absrap < 5), cmpMomByEta)

Can also use cuts on PID and charge:

I fs.particlesByPt(Cuts::abspid == PID::ELECTRON), or
I FinalState(Cuts::charge != 0)

Use of functions/functors for ParticleFinder filtering is coming. . .

10/23

Rivet + fast-sim for BSM searches

11/23

BSM analysis coverage
Currently∼ 427 analyses total &∼ 230 LHC alone

I Until recently only 27 dedicated
BSM searches – and
BSM-sensitive SM measurements ,
cf. CONTUR talk

I SM focus on unfolded
observables, not sufficient for
most BSM studies

I Rivet 2.5.0 introduced detector
smearing machinery. For BSM only!

2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

0

50

100

150

200

250

300

350

400

an

al
ys

es

NB. glitch is Rivet 1.x→ 2.x migration.
Note recent acceleration!

I ⇒ 9 more BSM routines in last few months:
ATLAS: ICHEP 2016 3-lepton & same-sign 2-lepton, 1-lepton + jets,
1-lepton + many jets, jets + MET; 2015 jets + MET and monojet
CMS: ICHEP 2016 jets + MET; 8 TeV αT + b-jets
Partially validated – not many cutflows available!
Also added tools to help with object filtering, cutflows, etc.
Important as real-world examples of how to write BSM routines

I Rivet is in good shape for preserving new physics searches! 12/23

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth

Detector hits
Digitization

Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

13/23

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

13/23

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

13/23

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation

13/23

BSM & detector effects

Explicit fast detector simulation vs. smearing/efficiencies

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis

Triggers
Efficiencies

Smearing

I Explicit fast-sim takes the “long way round”.
I Reco already reverses most detector effects!
I Reco calibration to MC truth: smearing is a few-percent effect
I (Lepton) efficiency & mis-ID functions dominate – and are

tabulated in both approaches
I Smearing is more flexible: effs change with phase-space, reco

version, run, . . . and need to guarantee stability for preservation
13/23

Smearing vs. fast sim vs. MC truth
CMSSM eff/smearing effects from Rivet, in turn using some DELPHES
and paper/note calibration functions:

Electron multiplicity Leading electron pT

10−4

10−3

10−2

10−1

100

1/
N

ev
d
N

ev
/d

n e Truth
Smear
Delphes

0 1 2 3 4
ne

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es 0.0

0.5
1.0

1.5
2.0

2.5

3.0

3.5

4.0

1/
N

ev
d
N

ob
j/

d
p T

[1
/G
eV

] ×10−3

Truth
Smear
Delphes

0 50 100 150 200
Electron1 pT [GeV]

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es

Note major lepton shifts from blue truth to green smeared: difference
w.r.t red DELPHES very small

14/23

Smearing vs. fast sim vs. MC truth
CMSSM eff/smearing effects from Rivet, in turn using some DELPHES
and paper/note calibration functions:

Muon multiplicity Leading muon pT

10−4

10−3

10−2

10−1

100

1/
N

ev
d
N

ev
/d

n µ Truth
Smear
Delphes

0 1 2 3 4
nµ

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es 0

1

2

3

4

5

6

1/
N

ev
d
N

ob
j/

d
p T

[1
/G
eV

] ×10−3

Truth
Smear
Delphes

0 50 100 150 200
Muon1 pT [GeV]

0.90
0.95
1.00
1.05

Si
m
/D
el
ph

es

Note major lepton shifts from blue truth to green smeared: difference
w.r.t red DELPHES very small

14/23

BSM & detector effects (II)⇒ Rivet 2.5

In addition to last slides, flexibility of det-sim is important:

I “Global” fast-sims hence difficult for coverage of multiple
experiments, multiple runs, multiple reco calibrations, etc.

I Analysis-specific efficiencies and smearings are more precise and
allow use of multiple jet sizes, tagger & ID working points,
isolations, . . .⇒many variations in real analyses

⇒ Rivet det-sim as effs+smearing, localised per-analysis
Rivet internally caches results, so global effect sim still efficient

I Functions for generic ATLAS & CMS performance in Runs 1 & 2
I Inline or analysis-specific functions easy to write & chain
I Eff/smearing functions can be used directly, e.g. for object filtering
I Working on embeddability for multithreaded fitters/samplers.

15/23

Selection tools for search analyses
Search analyses typically do a lot more “object filtering” than
measurements. Rivet 2.5 provides a lot of tools to make this complex
logic expressive:

I Filtering functions: filter_select, filter_discard + ifilter_*
in-place variants

I Lots of functors for common “stateful” filtering criteria:
PtGtr(10*GeV), EtaLess(5), AbsEtaGtr(2.5), DeltaRGtr(mom, 0.4)

I Cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

1 Particles elecs = apply<ParticleFinder>(event, "Electrons").particles(Cuts::pT > 10∗GeV);
Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(Cuts::pT > 20∗GeV && Cuts::abseta < 2.8);

3 // Remove electrons within dR = 0.2 of a b−tagged jet
for (const Jet& j : jets)

5 if (j.abseta() < 2.5 && j.pT() > 50∗GeV && j.bTagged(Cuts::pT > 5∗GeV))
ifilter_discard(elecs, deltaRLess(j, 0.2, RAPIDITY));

7 // Remove any |eta| < 2.8 jet within dR = 0.2 of a remaining electron
for (const Particle& e : elecs)

9 ifilter_discard(jets, deltaRLess(e, 0.2, RAPIDITY));

16/23

Professor

I Established tool for MC generator tuning, heavily taylored to
Rivet

I Replace MC generator response with polynomials in χ2

minimisation using Minuit

I χ2(~p) =
Nbins∑

b
wb ·

(
Ib(~p)−Db

∆(~p)

)2

b

b b
b
b
b b

b b
b
b b b b b

b b b b b b b b b b b b b b b b b b b b
b
b b b b

b
b b

b b
b
b b b

b

Datab

Untuned
Tuned

4

4.5

5

5.5

6

6.5

7

Charged particle η at 7 TeV, track p⊥ > 100 MeV, for Nch ≥ 2

1/
N

ev
d

N
ch

/
d

η

-2 -1 0 1 2

0.6

0.8

1

1.2

1.4

η

M
C

/D
at

a

17/23

Getting Professor

I Prerequisits: Eigen3 headers, C++ 11 compiler, Python 2.7
I professor.hepforge.org

I Docker image: docker pull iamholger/professor:2.2.1

I Try out at http://mybinder.org/repo/iamholger/professor

18/23

professor.hepforge.org
http://mybinder.org/repo/iamholger/professor

Professor technicalities
I C++ core functionality, python bindings for everything else
I Least-squares fits of general polynomials to input data in a certain

parameter space
I Technically, solving of matrix equation by means of Singular

Value Decomposition
I In case of MC, input generation trivial to do in parallel (different

points in parameter space)
I Result is fast analytic pseudo-generator

2 4 6 8 10
Dimension of parameter space

101

102

103

Nu
m

be
r o

f c
oe

ffi
cie

nt
s

Polynomial order = 1
Polynomial order = 2
Polynomial order = 3
Polynomial order = 4

2 4 6 8 10
Dimension of parameter space

10 4

10 3

10 2

10 1

100

101

102

Pa
ra

m
et

ris
at

io
n

tim
e

[s
]

Polynomial order = 1
Polynomial order = 2
Polynomial order = 3
Polynomial order = 4

19/23

Professor beyond tuning
I Instead of fiddling with say hadronisation model parameters,

explore BSM parameter space
I Lots of experience can be transferred from tuning to BSM

TopFitter
HEFT

20/23

Professor beyond collider physics

I Recently got foothold in neutrino MC community, Genie
I Triggered containerisation of Professor with Docker
I Similarly, Dark Matter direct detection codes: Professor in

likelihood evaluation (MultiNest)

1.8 2.4 3.0 3.6
log10(mχ/GeV)

−4.8

−4.4

−4.0

−3.6

lo
g 1

0
(c

0 1
m

2 v
)

Best-fit point

2σ region

1σ region

1.8 2.4 3.0 3.6
log10(mχ/GeV)

4.8

4.4

4.0

3.6

lo
g

10
(c

0 1
m

2 v
)

Best-fit point

2σ region

1σ region

21/23

BSM challenges for Professor

I More careful checks of validity of polynomial approximation.

Partitioning of parameter space in case parameter space too big

Need to allow to drop inputs in case of vanishing cross-sections
(avoid discontinuities in polynomial fit)

Resolutions, jack-knifing

I Usage of other parameterisations, e.g. Gaussian Processes for 1
x ,

exponential behaviour

22/23

Summary
I Rivet is a user-friendly MC analysis system for prototyping and preserving

data analyses
I Allows theorists to use analyses for model development & testing, and BSM

recasting: impact beyond “get a paper out”
I Also a very useful cross-check: quite a few ATLAS analysis bugs have been found

via Rivet!
I Strongly encouraged/required by ATLAS (and CMS?) physics groups. Integrated

with ATLAS and CMS software
I Now supports detector simulation for BSM search preservation
I Multi-weights, NLO counter-events, and multi-threading all in the pipeline
I Feedback, questions and getting involved in development all very welcome!

I Professor:

Parametrisation of computationally expensive functions
Inputs can always be parallelised in a trivial way
Seamless integration into numerical tools iminuit, pymultinest
through python bindings
Immediately available through docker

I Professor development used to be driven by Rivet/YODA and MC tuning needs.
I BSM requires more care in parametrisation than tuning.

23/23

	Rivet + fast-sim for BSM searches

