Spires | arXiv:0806.1699 | Phys.Rev.D78:072005,2008
A measurement of the shapes of $b$-jets using 300 pb$^{-1}$ of data obtained with CDF II in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV. The measured quantity is the average integrated jet shape, which is computed over an ensemble of jets. This quantity is expressed as $\Psi(r/R) = \langle\frac{p_\perp(0 \rightarrow r)}{p_\perp(0 \rightarrow R)}\rangle$, where $p_\perp(0 \rightarrow r)$ is the scalar sum of the transverse momenta of all objects inside a sub-cone of radius $r$ around the jet axis. The integrated shapes are by definition normalized such that $\Psi(r/R =1) = 1$. The measurement is done in bins of jet pT in the range 52 to 300\;GeV/$c$. The jets have $|\eta| < 0.7$. The $b$-jets are expected to be broader than inclusive jets. Moreover, $b$-jets containing a single $b$-quark are expected to be narrower than those containing a $b \bar{b}$ pair from gluon splitting.
Analysis for bookkeeping of the total cross section, number of generated events and the ratio of events with positive and negative weights.
Generated at Saturday, 23. July 2016 10:24PM