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Expensive functions

D-dimensional parameter space, P, with points ~p

Exact but (CPU) expensive function f (~p)

e.g. P: underlying event
model parameter space
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Expensive functions

D-dimensional parameter space, P, with points ~p

Exact but (CPU) expensive function f (~p)

e.g. P: mean number of
pile-up vertices in events

http://inspirehep.net/record/1424838
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Expensive functions

D-dimensional parameter space, P, with points ~p

Exact but (CPU) expensive function f (~p)

e.g. P: gain, noise in
digitisation of SCT simulation
(Akanksha Vishwakarma,
DESY Zeuthen)

https://indico.cern.ch/event/485903/session/13/

contribution/202/attachments/1227683/1798196/

DPGTalk.pdf

ATLAS work in progress
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Expensive functions

D-dimensional parameter space, P, with points ~p

Exact but (CPU) expensive function f (~p)

e.g. P: BSM parameter space,
e.g. dim 6 operators in HEFT
http://inspirehep.net/record/1405105
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Optimisation

Typical tasks:
1 Minimise χ2 measure between f (~p) and data to find best point ~vbest

(e.g. MC tuning)
2 Limit setting: find collection of points (parameter sub-space) that is

not excluded by data (BSM)

Common problem: CPU time for evaluating f (~p) too large for
meaningful processing of higher dimensional parameter spaces
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Professor approach

Replace exakt f (~p) by analytic approximation I (~p)

Thus replace CPU time for evaluation from hours . . . days to
milliseconds

Basic work cycle
1 Define and sample M-times from d-dimensional parameter space P
2 For each of the M points ~pi : evaluate exact f (~pi )

N.b. this step is trivially parallelisable

3 Fit polynomial I (~p) through
[(~p1, f (~p1)), (~p2, f (~p2)), · · · , (~pM , f (~pM)) ]

e.g. I (p1, p2) = α0 + β1p1 + β2p2 + γ11p
2
1 + γ12p1 · p2 + γ22p

2
2

Store coefficients in text file

4 Validate I (~p)
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Parametrisation validation
E.g. histogram H with N bins:

I (~p)→ {Ib(~p)}b=1...N

Thus ~H(~p) = ( I1(~p), I2(~p), . . . , IN(~p) )T

Calculate difference of fb(~pi ) and Ib(~pi )

Order 1
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Order 4
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Technicalities

Core functionality (parametrisation) written in C++

Allows for usage in programs such as GFitter

Arbitrary polynomial order and first derivative automatically

Dependency: Eigen3 (≥ v2.6)

Platform independent storage of parametrisation (ASCII)

Tuning system: set of factorised python scripts (via cython)

Minimisation done using iminuit https://github.com/iminuit/

ROOT support via YODA

professor.hepforge.org

Current version: Professor 2.1.3

Bootstrap script

Exhaustive documentation with videos
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Advantages

I (~p) fast, analytical → suitable for numerical applications
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Advantages

I (~p) fast, analytical → suitable for numerical applications

Fitting against data
cheap, can bias
minimisation e.g. if f (~p)
known to be imperfect
(AMBT2 and AUET2)

χ2(~p) =
Nbins∑
b

wb ·
(

Ib(~p)−Db

∆(~p)

)2
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Advantages

I (~p) fast, analytical → suitable for numerical applications

Interactive parametrisation
explorer
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Advantages

I (~p) fast, analytical → suitable for numerical applications

Sensitivity and correlation
analysis cheap → find
parameters that do
nothing → reduce
dimensionality
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Advantages

I (~p) fast, analytical → suitable for numerical applications

Can exploit χ2 valley to
get error-tunes http:

//inspirehep.net/record/1407839
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Advantages

I (~p) fast, analytical → suitable for numerical applications

Validation of
parametrisation allows to
catch errors early on

Improve quality by

Throwing and exact
evaluation for more
points
Using higher order
polynomials
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Limitations

Required number of exact f (~p) grows rapidly with order of polynomial

Parameter space can be “too big“ i.e. polynomial not a meaningful
approximation

Next design goals

Better sampling

Deal with more complicated
parameter spaces

I.e. how to partition P cleverly
into S sub spaces to
automatically evaluate:
~Ib(~p) =(
~I 1
b (~p), ~I 2

b (~p), · · · , ~I Sb (~p)
)T
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http://inspirehep.net/record/1081561
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