# Light DM @ $\nu$ Experiments & & Heavy DM @ DAMPE

### Shao-Feng Ge

(gesf02@gmail.com)

#### Kavli IPMU (WPI), UTIAS, The University of Tokyo, Japan

#### 2017-12-12

SFG, Ian Shoemaker [arXiv:1710.10889 [hep-ph]]

SFG, Hong-Jian He [arXiv:1712.02744 [astro-ph.HE]]

- Symmetric
- Relic density fully determined by annihilation cross section

$$ho_{\chi} \propto rac{1}{\langle \sigma m{v} 
angle}$$

 $\Rightarrow \langle \sigma {\it v} \rangle \sim 1$  pb, the typical size of cross sections at LHC

• Characteristic scale of EW

$$\langle \sigma v 
angle \propto rac{g_{\chi}^4}{m_{\chi}^2}$$

corresponding to  $m\sim 100$  GeV for EW coupling.

### **Current Status of DM Search**

• DM can be light if its coupling is small:  $\langle \sigma v \rangle \propto g_{\chi}^4/m_{\chi}^2$ 



# Light DM

- Relic Density  $m_\chi \propto g_\chi^2$
- DM has no SM gauge coupling
- Renormalizable portables limited

$$\mathcal{L}_{\text{portal}} = \begin{cases} \epsilon F_{\mu\nu} F_h^{\prime\mu\nu} & \text{(photon portal)} \\ h|H^2||H_h^2| & \text{(Higgs portal)} \\ y(LH)N & \text{(neutrino portal)} \end{cases}$$

where  $F'_{\mu\nu}$ ,  $H_h$ , and N are hidden sector fields.

Full Lagrangian

$$i\bar{\chi}\not{D}\chi - m_{\chi}\bar{\chi}\chi - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m^{2}_{V'}V'^{\mu}V'_{\mu} - \epsilon F_{\mu\nu}F'^{\mu\nu}$$

#### Reactor Compton-like Production of DM

•  $\gamma e^- \rightarrow V' e^-$  with prompt  $\gamma$ -rays from nuclear fissions

 $p' \int k' \frac{dN\gamma}{dE\gamma} = 0.58 \times 10^{21} \left(\frac{P}{GW}\right) \exp\left(-\frac{E\gamma}{0.91 MeV}\right)$ p' k'p+k + k $\int \frac{\mathrm{dN}_{\mathbf{V}'}}{\mathrm{dE}_{\mathbf{V}'}} = \int \frac{1}{\sigma_{tot}} \frac{\mathrm{d}\sigma_{\gamma \to \mathbf{V}'}}{\mathrm{dE}_{\mathbf{V}'}} \frac{\mathrm{dN}_{\gamma}}{\mathrm{dE}_{\gamma}} dE_{\gamma}$  $\frac{\mathrm{d}\sigma_{\gamma \to \mathsf{V}'}}{\mathrm{d}\mathsf{E}_{\mathsf{V}'}} = \frac{\epsilon^2 \alpha m_e}{(s - m_e^2)^2}$ 1022  $m_{V'} = 0 MeV$ 10<sup>21</sup>  $\left[\frac{3m_e^4 - m_e^2(t - 3m_{V'}^2) + s(2m_e^2 - u)}{(s - m_e^2)^2}\right]$ 0 5MeV 1MeV <sup>00</sup> M<sup>A</sup>/dE<sup>A</sup>/<sub>1</sub> [We<sup>A</sup>/<sub>2</sub>]<sup>2</sup> <sup>10</sup> 2MeV - $+\frac{3m_e^4-m_e^2(t-3m_{V'}^2)+u(2m_e^2-s)}{(u-m_e^2)^2}$  $+ 2 \frac{m_e^2 (4m_e^2 + m_{V'}^2) - (m_e^2 + m_{V'}^2)t}{(s - m_e^2)(u - m_e^2)} \bigg]$ 1017 10<sup>16</sup>  $rac{1}{5}$  typical power reactor is  $P \sim \mathcal{O}(GW)$ 1 2 3 4 ٥ E<sub>v</sub>, [MeV]

Shao-Feng Ge (IPMU); CosPA @ Kyoto, 2017-12-12

Light DM @  $\nu$  Experiments & Heavy DM @ DAMPE

#### Constraint on Unstable V'

•  $m_{V'} > 2m_{\chi} \Rightarrow$  Prompt decay  $V' \rightarrow \chi \bar{\chi}$  with Br  $\approx 1$ • Elastic Scattering:  $\sigma(\chi e^- \rightarrow V'^* \rightarrow \chi e^-) \propto \epsilon^2 g_{\chi}^2$ 



- Energy threshold *E<sub>e</sub>* > 3 MeV @ TEXONO
- Mainly sensitive to  $m_{V'} \lesssim 1 \, {
  m MeV}$

SFG & Ian Shoemaker [arXiv:1710.10889 [hep-ph]]

# **TEXONO** Constraint

• 187kg Csl(Tl) @ 28m from the core of a 2.9GW reactor

![](_page_6_Figure_2.jpeg)

SFG & Ian Shoemaker [arXiv:1710.10889 [hep-ph]]

# **COHERENT** data

• 308.1 live-days (Beam ON) with 7.48 GWhr ( $\sim 1.76 \times 10^{23}$ POT)

![](_page_7_Figure_2.jpeg)

COHERENT [arXiv:1708.01294]

![](_page_7_Figure_4.jpeg)

![](_page_7_Figure_5.jpeg)

Liao & Marfatia [arXiv:1708.04255]

#### **COHERENT Constraint on Light DM**

•  $\pi^0 \to \gamma V'$  with  $f_{\pi^0} \approx f_{\pi^{\pm}}$ 

$$\mathsf{Br}_{\pi^0 \to \gamma V'} pprox 2\epsilon^2 \left(1 - rac{m_{V'}^2}{m_{\pi^0}^2}
ight)^2$$

•  $V' \rightarrow \chi \bar{\chi}$  &  $\chi N \rightarrow \chi N$  via V' mediation

![](_page_8_Figure_4.jpeg)

SFG & Ian Shoemaker [arXiv:1710.10889 [hep-ph]]

Shao-Feng Ge (IPMU); CosPA @ Kyoto, 2017-12-12 Light DM @

Light DM @  $\nu$  Experiments & Heavy DM @ DAMPE

#### **COHERENT Sensitivity on Light DM**

![](_page_9_Figure_1.jpeg)

SFG & Ian Shoemaker [arXiv:1710.10889 [hep-ph]]

### **Constraints on Light DM**

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_1.jpeg)

**Hidden Excess** 

![](_page_12_Figure_2.jpeg)

with  $\Phi_0 = 244 \text{ GeV}^{-1}$ ,  $\gamma = 3.1$ ,  $E_{br,2} = 493 \text{ GeV}$ ,  $(\Delta \gamma_1, \Delta \gamma_2) = (0.1, -0.57)$ . Shao-Feng Ge (IPMU); CosPA @ Kyoto, 2017-12-12 Light DM @  $\nu$  Experiments & Heavy DM @ DAMPE

#### Hidden Excess from $\mu/\tau$ Decay

![](_page_13_Figure_1.jpeg)

$$\frac{1}{\Gamma}\frac{d\Gamma}{dE_e} \simeq \frac{4}{E_{\mu}} \left(\frac{5}{12} - \frac{3E_e^2}{4E_{\mu}^2} + \frac{E_e^3}{3E_{\mu}^3}\right)$$

•  $\mu \rightarrow e (100\%)$ •  $\tau \rightarrow e (17.83\%)$ •  $\tau \rightarrow \mu \rightarrow e (17.4\%)$ 

SFG, Hong-Jian He [arXiv:1712.02744 [astro-ph.HE]]

#### Flavor Structure of DAMPE Excesses

![](_page_14_Figure_1.jpeg)

SFG, Hong-Jian He [arXiv:1712.02744 [astro-ph.HE]]

# Summary

- Light DM @ Neutrino Experiments
  - Reactor prompt gamma ray @ TEXONO
    - Compton-like ( $\gamma e 
      ightarrow V' e$ )
    - Inverse Compton-like processes ( $\chi e 
      ightarrow \chi e$ )
  - Coherent scattering @ COHERENT
    - Neutral pion decay  $(\pi^0 \rightarrow V' \gamma)$
    - Coherent scattering  $(\chi N \rightarrow \chi N)$
- Heavy DM @ DAMPE
  - Hidden excess in (0.6-1.1)TeV region
  - Muon/Tau decay of 1.4TeV DM
  - $\bullet\,$  SAME 1.4TeV DM annihilation  $\rightarrow$  2 different excesses

# **Thank You!**