The Leptonic CP Phases: Dirac vs Majorana

Shao-Feng Ge

(gesf02@gmail.com)

IPMU & UC Berkeley

2019-1-4

Jarah Evslin, SFG, Kaoru Hagiwara, JHEP 1602 (2016) 137 [arXiv:1506.05023] SFG, Pedro Pasquini, M. Tortola, J. W. F. Valle, PRD 95 (2017) No.3, 033005 [arXiv:1605.01670] SFG, Alexei Smirnov, JHEP 1610 (2016) 138 [arXiv:1607.08513] SFG [arXiv:1704.08518] SFG, Manfred Lindner, PRD 95 (2017) No.3, 033003 [arXiv:1608.01618]

Why neutrino mass & oscillation?

- Higgs boson \Rightarrow electroweak symmetry breaking & mass.
- Chiral symmetry breaking \Rightarrow majority of mass.
- The world seems not affected by the tiny neutrino mass?
 - Neutrino mass \Rightarrow Mixing
 - 3 Neutrino \Rightarrow possible **CP violation**
 - CP violation \Rightarrow Leptogenesis
 - Leptogenesis \Rightarrow Matter-Antimatter Asymmetry
 - There is something left in the Universe.
 - Baryogenesis from quark mixing is not enough.
- Majorana $\nu \Leftrightarrow$ Lepton Number Violation

• Residual
$$\mathbb{Z}_2$$
 Symmetries: $\cos \delta_{\mathsf{D}} = \frac{(s_s^2 - c_s^2 s_r^2)(\mathbf{c}_a^2 - \mathbf{s}_a^2)}{4c_a s_a c_s s_s \mathbf{s}_r}$ 1108.0964
1104.0602

ν Oscillation Data

(for NH)	-1σ	Best Value	$+1\sigma$
$\Delta m_{s}^{2} \equiv \Delta m_{12}^{2} \left(\mathbf{10^{-5} eV^{2}} ight)$	7.37	7.56	7.75
$\left \Delta m_{\rm a}^2 \equiv \Delta m_{13}^2\right \ (10^{-3} {\rm eV}^2)$	2.51	2.55	2.59
$\sin^2 oldsymbol{ heta_s} \left(oldsymbol{ heta_s} \equiv oldsymbol{ heta_{12}} ight)$	0.305 (33.5°)	0.321 (34.5 °)	0.339 (35.6°)
$\sin^2 {oldsymbol{ heta}}_{\sf a} \; ({oldsymbol{ heta}}_{\sf a} \equiv {oldsymbol{ heta}}_{23})$	0.412 (39.9°)	0.430 (41.0 °)	0.450 (42.1°)
$\sin^2 heta_{ m r} \; (heta_{ m r} \equiv heta_{13})$	0.02080 (8.29°)	0.02155 (<mark>8.44</mark> °)	0.02245 (8.62°)
δ_{D}, δ_{Mi}	?, ??	?, ??	?, ??
Salas, Forero, Ternes, Tortola & Valle, arXiv:1708.01186			

Dirac CP Phase Measurement

Jarah Evslin, SFG, Kaoru Hagiwara, JHEP 1602 (2016) 137 [arXiv:1506.05023] SFG, Pedro Pasquini, M. Tortola, J. W. F. Valle, PRD 95 (2017) No.3, 033005 [arXiv:1605.01670] SFG, Alexei Smirnov, JHEP 1610 (2016) 138 [arXiv:1607.08513] SFG [arXiv:1704.08518]

CP Measurement @ Accelerator Exps

ΝΟνΑ

DUNE/T2KII/T2HK/T2HKK/T2KO; MOMENT/ADS-CI/DAEδALUS; Super-PINGU

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

The Dirac CP Phase δ_D @ Accelerator Exp

• To leading order in $\alpha = \frac{\delta M_{21}^2}{|\delta M_{31}^2|} \sim 3\%$, the oscillation probability relevant to measuring δ_D @ T2(H)K,

$$\begin{aligned} P_{\substack{\nu\mu\to\nue\\\overline{\nu}\mu\to\overline{\nu}e}} &\approx 4s_a^2 c_r^2 s_r^2 \sin^2 \phi_{31} \\ &- 8c_a s_a c_r^2 s_r c_s s_s \sin \phi_{21} \sin \phi_{31} \left[\cos \delta_D \cos \phi_{31} \pm \sin \delta_D \sin \phi_{31} \right] \end{aligned}$$

for
$$u$$
 & $\overline{
u}$, respectively. $[\phi_{ij} \equiv rac{\delta m_{ij}^2 L}{4 E_{
u}}]$

• $\nu_{\mu} \rightarrow \nu_{\mu}$ Exps measure $\sin^2(2\theta_a)$ precisely, but not $\sin^2 \theta_a$.

• Run both $\nu \& \overline{\nu}$ modes @ first peak $[\phi_{31} = \frac{\pi}{2}, \phi_{21} = \alpha \frac{\pi}{2}],$ $P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}} + P_{\nu_{\mu} \to \nu_{e}} = 2s_{a}^{2}c_{r}^{2}s_{r}^{2},$ $P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}} - P_{\nu_{\mu} \to \nu_{e}} = \alpha \pi \sin(2\theta_{s})\sin(2\theta_{r})\sin(2\theta_{a})\cos\theta_{r}\sin\delta_{D}.$

The Dirac CP Phase δ_D @ Accelerator Exp

Accelerator experiment, such as T2(H)K, uses off-axis beam to compare $\nu_e \& \overline{\nu}_e$ appearance @ the oscillation maximum.

- Disadvantages:
 - Efficiency:
 - Proton accelerators produce ν more efficiently than $\overline{\nu} (\sigma_{\nu} > \sigma_{\overline{\nu}})$.
 - The $\overline{\nu}$ mode needs more beam time $[\mathbf{T}_{\overline{\nu}} : \mathbf{T}_{\nu} = \mathbf{2} : \mathbf{1}].$
 - Undercut statistics \Rightarrow Difficult to reduce the uncertainty.
 - Degeneracy:
 - Only $\sin \delta_{\rm D}$ appears in $P_{\nu_{\mu} \to \nu_{e}} \& P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}$.
 - Cannot distinguish $\delta_{\rm D}$ from $\pi \delta_{\rm D}$.
 - CP Uncertainty $\frac{\partial P_{\mu e}}{\partial \delta_D} \propto \cos \delta_D \Rightarrow \Delta(\delta_D) \propto 1/\cos \delta_D$.

• Solution:

Measure $\overline{\nu}$ mode with μ^+ decay **@** rest (μ DAR)

$\mu \text{DAR}~\bar{\nu}$ Oscillation Experiments

- A cyclotron produces 800 MeV proton beam @ fixed target.
- Produce π^{\pm} which stops &
 - π^- is absorbed,
 - π^+ decays @ rest: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$.
- μ^+ stops & decays @ rest: $\mu^+ \rightarrow \mathbf{e}^+ + \overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}} + \boldsymbol{\nu}_{\mathbf{e}}.$

• $\overline{\nu}_{\mu}$ travel in all directions, oscillating as they go.

• A detector measures the $\overline{\nu}_e$ from $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$ oscillation.

Accelerator + μ DAR Experiments

Combining $\nu_{\mu} \rightarrow \nu_{e}$ @ accelerator [narrow peak @ 550 MeV] & $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ @ μ DAR [wide peak ~ 45 MeV] solves the 2 problems:

• Efficiency:

- $\overline{\nu}$ @ high intensity, $\mu {\rm DAR}$ is plentiful enough.
- Accelerator Exps can devote all run time to the ν mode. With same run time, the statistical uncertainty drops by $\sqrt{3}$.

• Degeneracy: (decomposition in propagation basis [1309.3176])

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

DAE δ ALUS

- It's the **FIRST** proposal along this line:
 - 3 μ DAR with 3 high-intensity cyclotron complexes.
 - 1 detector.
 - Different baselines: 1.5, 8 & 20 km to break degeneracies.

• Disadvantages:

- The scattering lepton from IBD @ low energy is isotropic.
- **Cannot** distinguish $\overline{\nu}_e$ from different sources
- Baseline cannot be measured.
- Cyclotrons cannot run simultaneously (20~25% duty factor).
- Large statistical uncertainty.
- Higher intensity is necessary.
- Expensive & Technically challenging.

New Proposals

 $\mathbf{1}~\mu \mathsf{DAR}$ source + $\mathbf{2}$ detectors

Advantages

- Full (100%) duty factor!
- Lower intensity: \sim 9mA [\sim 4× lower than DAE δ ALUS]
- Not far beyond the current state-of-art technology of cyclotron [2.2mA @ Paul Scherrer Institute]
- MUCH cheaper & technically easier.
 - Only one cyclotron.
 - Lower intensity.

Disadvantage?

 A second detector! Tokai 'N Toyama to(2) Kamioka (TNT2K) [Evslin, Ge & Hagiwara, 1506.05023]

TNT2K

• T2(H)K + μ SK + μ HK

• μ DAR is also useful for material, medicine industries in Toyama

Lowest Atmospheric Neutrino Background

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

Backgrounds to IBD ($\overline{\nu}_e + p \rightarrow e^+ + n$)

- Reactor $\overline{\nu}_e$: $E_{\nu} < 10$ MeV
- Accelerator ν_e : $E_{\nu} > 100 \text{ MeV}$
- Spallation: $E_{\nu} \lesssim 20 \text{ MeV}$
- Supernova Relic Neutrino: $E_{
 u} \lesssim 20$ MeV

Cut with 30 MeV $< E_{
u} <$ 55 MeV

- Accelerator $\nu_{\mu} \rightarrow$ Invisible muon
- Atmospheric Neutrino Background
 - Invisible muon (below Cherenkov limit)

•
$$E_\mu \lesssim 1.5 imes m_\mu$$
, $\mu^\pm o e^\pm$

•
$$E_\pi \lesssim 1.5 imes m_\pi$$
, $\pi^+ o \mu^+ o e^+$

- 1 neutron
- No prompt photon
- Irreducible $\overline{
 u}_e$: 30 MeV $\lesssim E_{
 u} \lesssim$ 55 MeV
- Reducible ν_{e} : 60 MeV $\lesssim E_{\nu} \lesssim$ 100 MeV
 - 1 neutron
 - No prompt photon
- Lowest at µDARTS & TNT2K sites

Event Shape @ TNT2K

Evslin, Ge & Hagiwara [1506.05023]

Simulated by NuPro, http://nupro.hepforge.org/

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

$\delta_{\rm D}$ Precision @ TNT2K

Simulated by NuPro, http://nupro.hepforge.org/

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

Non-Unitarity Mixing (NUM)

$$N = N^{NP} U = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ |\alpha_{21}| e^{i\phi} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} U.$$

$$\begin{split} P^{NP}_{\mu e} &= \alpha_{11}^2 \left\{ \alpha_{22}^2 \left[c_a^2 |S_{12}'|^2 + s_a^2 |S_{13}'|^2 + 2 c_a s_a (\cos \delta_{\rm D} \mathbb{R} - \sin \delta_{\rm D} \mathbb{I}) (S_{12}' S_{13}'^*) \right] + |\alpha_{21}|^2 P_{ee} \right. \\ &+ 2 \alpha_{22} |\alpha_{21}| \left[c_a \left(c_{\phi} \mathbb{R} - s_{\phi} \mathbb{I} \right) (S_{11}' S_{12}'^*) + s_a \left(c_{\phi + \delta_{\rm D}} \mathbb{R} - s_{\phi + \delta_{\rm D}} \mathbb{I} \right) (S_{11}' S_{13}'^*) \right] \right\} \,. \end{split}$$

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

• Heavy neutrinos

$$\bar{\nu}M_D\mathcal{N} + h.c. + \overline{\mathcal{N}}M_N\mathcal{N} = \begin{pmatrix} \bar{\nu} & \overline{\mathcal{N}} \end{pmatrix} \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} \begin{pmatrix} \nu \\ \mathcal{N} \end{pmatrix}$$

• Seeaw Mechanism

$$M_{\nu} = -M_D M_N^{-1} M_D^T, \qquad \nu' = \nu + M_D M_N^{-1} \mathcal{N}$$

 $P^{NP}_{\mu e}(L
ightarrow 0) = lpha^2_{11} |lpha_{21}|^2 P_{ee} pprox lpha^2_{11} |lpha_{21}|^2 pprox |lpha_{21}|^2$

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

$TNT2K + \mu Near$

Ge, Pasquini, Tortola & Valle [1605.01670]

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

$$\mathcal{H} \equiv \frac{1}{2\mathsf{E}_{\nu}} U \begin{pmatrix} 0 \\ \Delta m_{s}^{2} \\ & \Delta m_{a}^{2} \end{pmatrix} U^{\dagger} + V_{cc} \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^{*} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^{*} & \epsilon_{\mu\tau}^{*} & \epsilon_{\tau\tau} \end{pmatrix}$$

- Standard Interaction V_{cc} (also V_{nc})
- Non-Standard Interaction $\epsilon_{\alpha\beta}$
 - Diagonal $\epsilon_{\alpha\alpha}$ are real
 - Off-diagonal $\epsilon_{\alpha \neq \beta}$ are complex
 - Both can fake CP
- Z' in LMA-Dark model with $L_{\mu} L_{\tau}$ gauged as U(1)
 - $M_{Z'} \sim \mathcal{O}(10) \text{MeV}$
 - $g_{Z'} \sim 10^{-5}$

Faked CP with NSI

SFG & Alexei Smirnov [arXiv:1607.08513]

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

CP Sensitivity at T2K & μ SK

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

Summary (1)

• Better CP measurement than T2K

- Much larger event numbers
- Much better CP sensitivity around maximal CP
- Solve degeneracy between δ_D & $\pi-\delta_D$
- Guarantee CP sensitivity against NUM
- Guarantee CP sensitivity against NSI

• Better configuration than DAE δ ALUS

- Only one cyclotron
- 100% duty factor
- Much lower flux intensity
- Much easier
- Much cheaper
- Single near detector

Majorana CP Phase Measurement

SFG, Manfred Lindner, PRD 95 (2017) No.3, 033003 [arXiv:1608.01618]

0 u2eta Decay

• Mediated by Majorana Neutrino + Lepton # Violation

 $\bullet \ \ \text{Helicity Suppression} \rightarrow Mass \ \ \text{Suppression}$

$$\mathcal{M} \propto \sum_{i} U_{ei} rac{i}{\not p - m_i} U_{ei} pprox \sum_{i} U_{ei} rac{m_i}{p^2} U_{ei}$$

• Effective Electron Neutrino Mass

$$\langle m \rangle_{ee} \equiv \left| \sum_{i} m_i U_{ei}^2 \right| = \left| c_s^2 c_r^2 m_1 e^{i\delta_{M1}} + s_s^2 c_r^2 m_2 + s_r^2 m_3 e^{i\delta_{M3}} \right|$$

see also SFG & Werner Rodejohann [1507.05514]

Cosmological Data on Mass Sum

Hannestad & Schwetz [1606.04691]

Preference of NH \Rightarrow **Non-Observation of** $0\nu 2\beta$ **?**

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

Any chance of obtaining some information?

$$\langle m \rangle_{ee} \equiv L_1' + L_2' + L_3',$$

with

$$\overrightarrow{L_1} \equiv m_1 U_{e1}^2 = m_1 c_r^2 c_s^2 e^{i\delta_{\mathbf{M1}}} ,$$

$$\overrightarrow{L_2} \equiv m_2 U_{e2}^2 = \sqrt{m_1^2 + \Delta m_s^2} c_r^2 s_s^2 ,$$

$$\overrightarrow{L_3} \equiv m_3 U_{e3}^2 = \sqrt{m_1^2 + \Delta m_a^2} s_r^2 e^{i\delta_{\mathbf{M3}}}$$

Determine 2 Majorana Phases Simultaneously

Shao-Feng Ge (IPMU & UC Berkeley) @ ITP, 2019-1-4

The Leptonic CP Phases: Dirac & Majorana

(b)

Uncertainties from Oscillation Parameters

The Leptonic CP Phases: Dirac & Majorana

Uncertainties from Oscillation Parameters

The Leptonic CP Phases: Dirac & Majorana

Uncertainties from $\langle m \rangle_{ee}$

The Leptonic CP Phases: Dirac & Majorana

Majorana Pyramid

Prey of Leptonic CP Phases

Summary

• CP is fundamentally important

- Matter-Antimatter Asymmetry
- Test of Discrete Symmetries

• Better Dirac CP measurement at TNT2K

- Much larger event numbers
- Much better CP sensitivity around maximal CP
- Solve degeneracy between δ_D & $\pi \delta_D$
- Guarantee CP sensitivity against NUM
- Guarantee CP sensitivity against NSI

• Elusive Majorana CP Phases

- Observing nothing is not bad at all
- Even better: fixing two Majorana CP phases simultaneously

Thank You!