
CERN Summer Student Project 2008

Likelihood estimator using self-adapting phase-space binning

(PDEFoam)

Alexander Voigt∗

Technische Universität Dresden

Supervised by
Tancredi Carli and Andreas Höcker

September 25, 2008

Abstract

The PDEFoam method is an extension of the
PDERS algorithm [2] used for multi-variate
probability density estimation. It divides a
multi-dimensional phase space in a finite num-
ber of hyper-rectangles (cells) of constant event
density. This “foam” of cells is filled with aver-
aged probability-density information sampled
from a training event sample. For a given num-
ber of cells, the binning algorithm adjusts the
size and position of the cells inside the multidi-
mensional phase space based on a binary-split
algorithm, minimizing the variance of the event
density in the cell. The binned event density
information of the final foam is stored in cells,
organised in a binary tree, allowing for a fast
and memory-efficient storage and retrieval of
the event density information necessary for the
classification of events.

Contents

1 Introduction 1

∗Can be reached via Alexander.Voigt2@gmx.de

2 Description and implementation
of the foam algorithm 2
2.1 Foam build-up algorithm 2
2.2 Summary 3

3 Classification 3
3.1 Separate Signal and Back-

ground Foams 3
3.2 Single Signal and Background

foam 5

4 Regression 5
4.1 Mono target regression 6
4.2 Multi target regression 6

5 Performance 7

6 Acknowledgements 7

Bibliography 7

1 Introduction

The implementation of PDEFoam within
TMVA, a toolkit for multi-variate analysis (see
ref. [4]), is based on the Monte-Carlo integra-

1

tion package TFoam [5] included in the analysis
package ROOT [1].

The PDEFoam method (see ref. [3]) can be
used for classification of signal and background
events. In this case the algorithm makes bins of
constant density of events of signal and back-
ground events or the ratio of signal over back-
ground. Furthermore, it can be used to recon-
struct event variables. In this case the algo-
rithm provides cells in which the event quan-
tity to be reconstructed (target) is constant. In
the following, we use the term density (ρ) for
the event density in case of classification or for
the target variable density in case of regression.

2 Description and implemen-
tation of the foam algorithm

2.1 Foam build-up algorithm

The general foam build-up from an arbitrary
event sample works in the following way:

1. Setup of binary search trees: A binary
search tree is created and filled with the
D-dimensional observable vectors from
the given event sample as it is done in the
PDERS method (see ref. [2]).

2. Initialisation phase: A foam is cre-
ated, which at first consists of one D-
dimensional hyper-rectangle (base cell).
The coordinate system of the foam is nor-
malised such that the base cell extends
from 0 to 1 in each dimension. The coor-
dinates of the events in the corresponding
training tree are linearly transformed into
the coordinate system of the foam.

3. Growing phase: A binary splitting algo-
rithm iteratively splits cells of the foam
along hyperplanes until the maximum
number of cells, set by the parameter
nCells, is reached. The splitting algo-
rithm minimizes the relative variance of

the density σρ/〈ρ〉 across each cell (see ref.
[5]). For each cell nSampl random points
uniformly distributed over the cell volume
are generated. For each of these points a
small box centered around this point is de-
fined. The box has a size of VolFrac times
the size of the base cell in each dimension.
The density is estimated as the number
of events found in the binary search tree
that are contained in this box divided by
the volume of the box1. The obtained den-
sities for all sampled points in the cell are
projected on the D axes of the cell and the
projected values are filled in histograms
with nBin bins. The cell to be split next
and the corresponding division edge (bin)
for the split are selected as the ones that
have the largest relative variance. The two
new daughter cells are marked as ‘active’
cells and the old mother cell is marked as
‘inactive’. A detailed description of the
splitting algorithm can be found in ref.
[5]. The geometries of the final foams re-
flect the distribution of the training sam-
ples: Phase-space regions where the den-
sity is constant are combined in large cells,
while in regions with large gradients in
density many small cells are created. In
Fig. 1(a) a foam, based on training events
distributed according to a 2-dimensional
Gaussian distribution, is shown.

4. Filling phase: Each active cell is filled
with values, which classify the event dis-
tribution within this cell and allow the
later calculation of i.e. the discriminator
(see classification and regression methods
for more details). The total number of
cells, nCells, as well as the normalisation
constant Nsig/Nbg (needed in case of sig-
nal and background samples of different
size) calculated from the total number of

1or in case of regression the average target divided
by the box volume

2

signal and background training events are
also stored with the PDEFoam object.

5. Evaluation phase: The estimator for a
given event is evaluated based on the in-
formation stored in the foam cells. The
corresponding foam cell, in which the
event variables (D-dimensional vector) of
a given event are contained, are found us-
ing a binary search algorithm2.

The initial trees, which contain the training
events, needed to evaluate the densities for the
foam build-up, are discarded after the train-
ing phase. The memory consumption for the
foam is 160 bytes per foam cell plus an over-
head of 1.4 kbytes for the PDEFoam object
on a 64 architecture. Note that in the foam
all cells created during the growing phase are
stored within a binary tree structure. Cells
which have been split are marked as inactive
and remain empty. To reduce memory con-
sumption, the geometry of a cell is not stored
with the cell, but rather obtained recursively
from the information about the division edge of
the corresponding mother cell. This way only
two short integer numbers per cell contain the
information about the entire foam geometry:
the division coordinate and the bin number of
the division edge.

2.2 Summary

The PDEFoam algorithm has a few parame-
ters to be optimised to the specific problem.
However, the variation of the performance on
the exact values of these parameters is not so
large. The most important parameters to be
optimised, are the minimal number of events
in a cell and the total number of cells. The
recommended strategy is to set the number of

2For events outside the foam boundaries, the cells
with the smallest cartesian distance to the event are
chosen.

cells to a large value and the minimal number
of events to values between 10−100 depending
on the size of the training sample. The other
parameters can remain at their default values.

3 Classification

To classify an event in a D-dimensional phase
space as being either of signal or of background
type, a local estimator of the probability that
this event belongs to either class can be ob-
tained from the foam’s hyper-rectangular cells.
The foams are created and filled based on sam-
ples of signal and background training events.
For classification two possibilities are imple-
mented. One foam can be used to separate the
S/B probability density or two separate foams
are created, one for the signal events and one
for background events.

3.1 Separate Signal and Background
Foams

If the option SigBgSeparate = True is set
(default), the method PDEFoam treats the
signal- and background distributions sepa-
rately and performs the following steps to build
the two foams and to calculate the classifier
discriminator for a given event:

1. Setup of training trees: Two binary search
trees are created and filled with the D-
dimensional observable vectors of all sig-
nal and background training events, re-
spectively.

2. Initialisation phase: Two independent
foams for signal and background are cre-
ated.

3. Growing phase: The growing is performed
independently for the two foams. The
density of events is estimated as the num-
ber of events found in the corresponding
tree that are contained in the sampling

3

Variable 1
-4 -2 0 2 4

Va
ria

bl
e

2

-3

-2

-1

0

1

2

3

0

50

100

150

200

250

300

350

400

450

Event density

(a) foam projection without kernel

Variable 1
-4 -2 0 2 4

Va
ria

bl
e

2

-3

-2

-1

0

1

2

3

0

50

100

150

200

250

300

350

400

Event density

(b) foam projection with Gaussian kernel

Figure 1: Projections of a 2-dimensional foam with 500 cells for a Gaussian distribution on a
2-dimensional histogram. The foam was created with 5000 events from the input tree. (a) shows
the reconstructed distribution without using kernel weighting and (b) shows the distribution
with a Gaussian kernel. The colors indicate the event density of the drawn cell.

box divided by the volume of the box
(see VolFrac option). The geometries of
the final foams reflect the distribution of
the training samples: Phase-space regions
where the density of events is constant are
combined in large cells, while in regions
with large gradients in density many small
cells are created.

4. Filling phase: Both for the signal and
background foam each active cell is filled
with the number of training events con-
tained in the corresponding cell volume.

5. Evaluation phase: The estimator for a
given event is evaluated based on the num-
ber of events stored in the foam cells. The
two corresponding foam cells that contain
the event are found. The number of events
(nsig and nbg) is read from the cells. The

estimator yPDEFoam(i) is then given as

yPDEFoam(i) =
nsig/Vsig

nbg

Vbg

Nsig

Nbg
+ nsig

Vsig

, (1)

where Vsig and Vbg are the respective
cell volumes and Nsig, Nbg are the total
number of signal and background training
events.

Steps 1-4 correspond to the training phase
of the method. Step 5 is performed during
the testing phase. In contrast to the PDERS
method the memory consumption and com-
putation time for the testing phase does not
depend anymore on the number of training
events, but only on the number of foam cells,
nCells.

The described implementation with two sep-
arate foams for signal and background allows
the foam algorithm to adapt the foam geome-
tries to the individual shapes of the signal and
background event distributions. It is therefore

4

well suited for cases where the shapes of the
two distributions are very different.

3.2 Single Signal and Background
foam

If the option SigBgSeparate = False is set,
the PDEFoam method creates only one foam,
which holds directly the estimator instead of
the number of signal and background events.
The differences with respect to the default
method for are:

1. Setup of training trees: Fill only one bi-
nary search tree with both signal events
and background events. This is possible,
since the binary search tree has the in-
formation whether a event is of signal or
background type.

2. Initialisation phase: Only one foam is cre-
ated. The cells of this foam will contain
the estimator yPDEFoam(i) (see eq. (1)).

3. Growing phase: The splitting algorithm
in this case minimizes the variance of the
estimator density σρ/〈ρ〉 across each cell.
The estimator density ρ is sampled as the
number of signal events nsig over the total
number of events nsig +nbg in a small box
around the sampling points, normalised to
the total number of signal and background
events in the training sample:

ρ =
nsig

nsig + nbg
Nsig

Nbg

1
VolFrac

(2)

In this case the geometries of the final
foams reflect the distribution of the es-
timator density in the training sample:
Phase-space regions where the signal to
background ratio is constant are com-
bined in large cells, while in regions where
the signal-to-background ratio changes
rapidly many small cells are created.

4. Filling phase: Each active cell is filled
with the estimator given as the ratio of
signal events contained in the cell to the
total number of events in the cell and nor-
malised to the total number of signal and
background evens in the training tree:

yPDEFoam(i) =
nsig

nsig + nbg
Nsig

Nbg

. (3)

The statistical error of the estimator also
is stored in the cell.

5. Evaluation phase: The estimator for a
given event is directly obtained as the dis-
criminator that is stored in the cell which
contains the event. (For events outside the
foam boundaries, the cells with the small-
est cartesian distance to the event are cho-
sen.)

Having only one foam instead of two reduces
the total number of cells and therefore the
memory consumption by about a factor of two.
The single foam can give better results if the
distributions for signal and background have
similar shapes. Furthermore, it is less sensi-
tive to steep gradients in absolute event num-
bers that affect both the signal and background
distributions. However, for most studied ex-
amples, the default method with two foams re-
sulted in a better estimator performance.

4 Regression

The foam can also be used to reconstruct event
quantities (regression). Two different ways are
possible: First, one uses the possibility of the
foam to save the target value in every foam
cell. Second, one saves the target values in fur-
ther foam dimensions. Since the first method
can only be used if one target is given, it is
called ’Mono target regression’. In order to do
regression with multiple targets one has to use

5

the second method, called ’Multi target regres-
sion’. Note, that the second method also can
be used if only one target is given.

4.1 Mono target regression

In this method, the density, used for the foam
build up, is given by the mean target density in
a given box. Let us assume, that an input event
has the form ~x = (x1, . . . , xnvar , t), consisting
of nvar variables xj (j = 1, . . . , nvar) and one
target t.

In particular, the Mono target regression
now works in the following way:

1. Fill one binary search tree with all training
events.

2. Build up one nvar-dimensional foam: The
density ρ, needed by the foam during its
buildup, is given by the mean target value
〈t〉 within the sampling box, divided by
the box volume (given by the VolFrac op-
tion):

ρ =
〈t〉

VolFrac
≡

∑Nbox
i=1 t(i)

Nbox × VolFrac
, (4)

whereas the sum goes over all events
Nbox within the sampling box and t(i) is
the target value of the event ~x(i) (i =
1, . . . , Nbox).

3. Fill every foam cell with the average target
value 〈t〉 =

∑Nbox
i=1 t(i)/Nbox.

4. Estimate the target value, when an event
~x = (x1, . . . , xnvar) is given: Find the cor-
responding foam cell in which ~x is situated
and read the average target value 〈t〉 from
the cell.

4.2 Multi target regression

In order to do regression with more than one
target, we put the information about all targets

into further dimensions of the foam. Assume
an event ~x = (x1, . . . , xnvar , t1, . . . , tntar) con-
sists of nvar variables and ntar targets. Then
we can build an (nvar+ntar)-dimensional foam,
which cells contain numbers of events.

In order to finally calculate the targets, we
need the coordinates of the cell center in ev-
ery foam dimension. Thus, may CC(i, k) be
the coordinate of the cell center of cell i in
the kth dimension. Note, that the event vari-
ables occupy the dimensions k = 1, . . . , nvar,
and the targets occupy the dimensions k =
nvar + 1, . . . , nvar + ntar.

To build the foam and read out the targets,
the following steps are done:

1. Fill one binary search tree with all training
events.

2. Build up one (nvar + ntar)-dimensional
foam: The event density ρ, needed by the
foam during its buildup, is estimated by
the number of events Nbox within a pre-
defined box of the dimension (nvar +ntar),
divided by the box volume, whereas the
box volume is given by the VolFrac op-
tion

ρ =
Nbox

VolFrac
. (5)

3. Fill every foam cell with the number of
corresponding training events.

4. Estimate the target value, when an event
~x = (x1, . . . , xnvar) is given: Find all
corresponding foam cells Ncells in which
the coordinates (x1, . . . , xnvar) of the event
vector are situated. Depending on the
TargetSelection option, the target value
tk (k = 1, . . . , ntar) is

(a) the coordinate of the cell center in di-
rection of the target dimension nvar+
k of the cell j (j = 1, . . . , Ncells),

6

which has the maximum event den-
sity

tk = CC(j, nvar + k) , (6)

if TargetSelection = Mpv is set.

(b) the mean cell center in direction
of the target dimension nvar + k
weighted by the event densities
dev(j) (j = 1, . . . , Ncells) of the cells

tk =

∑Ncells
j=1 CC(j, nvar + k)× dev(j)∑Ncells

j=1 dev(j)
(7)

if TargetSelection = Mean is set.

5 Performance

Like PDERS (see ref. [2]), this method is
a powerful classification tool for problems
with highly non-linearly correlated observ-
ables. Furthermore PDEFoam is a fast re-
sponding classifier, because of its limited num-
ber of cells, independent of the size of the train-
ing samples.

An exception is the Multi target regression
with Gauss kernel because the time scales with
the number of cells squared. Also the train-
ing can be slow, depending on the number of
training events and number of cells one wishes
to create.

6 Acknowledgements

At first I would like to thank both of my su-
pervisors, Tancredi Carli and Andreas Höcker
and Dominik Dannheim for helping me to un-
derstand the TFoam algorithm and for lots
of discussions about the improvement ideas of
the algorithm. I also would like to thank Pe-
ter Speckmayer for his patience to answer all
my technical questions concerning the imple-
mentation of the PDEFoam algorithm into the

TMVA package and C++ in general. And last
but not least, I would like to thank the CERN
administration and the summer student team
for organising such a fantastic summer student
program.

References

[1] R. Brun and F. Rademakers, “ROOT –
An Object Oriented Data Analysis Frame-
work”, Nucl. Inst. Meth. in Phys. Res. A
389, 81 (1997).

[2] T. Carli and B. Koblitz, Nucl. In-
strum. Meth. A501, 576 (2003) [hep-
ex/0211019].

[3] T. Carli, D. Dannheim, A. Voigt,
P. Speckmayer, “PDE-FOAM – a
probability-density estimation method
based on self-adapting phase-space bin-
ning”, in preparation

[4] A. Höcker, P. Speckmayer, J. Stelzer,
et. al. “TMVA Toolkit for Multivari-
ate Data Analysis with ROOT”, CERN-
OPEN-2007-007, physics/0703039

[5] S. Jaddach, “Foam: A General-Purpose
Cellular Monte Carlo Event Generator”,
CERN-TH/2002-059, physics/0203033

7

