
Boosting PDE-Foam
—

Summer project at CERN Jul–Aug 2010

Alexander Voigt∗
Technische Universität Dresden

November 13, 2010

PDE-Foam is a multivariate probability density estimator, which di-
vides a multi-dimensional phase space into a finite number of hyper-
rectangles (cells) of constant event or discriminant density. When used
for event classification, a reasonable PDE-Foam (∼ 500 cells) performs
moderately compared to a neural network (NN) or boosted decision tree
(BDT). As to improve this, we study the general idea of classifier boost-
ing on the PDE-Foam method within the TMVA framework for multi-
variate analysis.

∗Alexander.Voigt@physik.tu-dresden.de

1

Contents

Contents

1 Introduction 3

2 Boosting PDE-Foam 4
2.1 AdaBoost . 4

2.1.1 The algorithm . 4
2.1.2 PDE-Foam boosting results 4

2.2 MVA value dependent event reweighing 7
2.2.1 HighEdgeGauss . 8
2.2.2 HighEdgeCoPara . 9

2.3 Alternative classifier weighting . 9
2.3.1 ROC integral . 9
2.3.2 Inverse overlap integral . 9

3 Comparison PDE-Foam – decision tree 11
3.1 Difference between PDE-Foam and decision tree 11
3.2 New PDE-Foam options to make PDE-Foam behave like a decision tree 12
3.3 Boosting a decision tree-like PDE-Foam 13

4 Conclusions 14

5 Acknowledgments 14

A Framework for parameter studies in TMVA 24

References 26

2

1 Introduction
PDE-Foam [1] is a multivariate probability density estimator, which was developed
as an advancement of PDE-RS [2] in face of reduction of the sensitivity on statistical
fluctuations in the training sample as well as memory consumption and speed during
the classification phase. It is based on the self-adapting binning algorithm TFoam
[3, 4], which divides the multi-dimensional phase space in a finite number of hyper-
rectangles (cells).
It was found that for most classification problems a standard PDE-Foam with
∼ 500 cells performs moderately compared to a neural network (NN) or boosted
decision tree (BDT). A way of improving this is to “boost” the classifier [5]. In
this process a set of weak classifiers (PDE-Foams) is created, which, in combination,
form a more powerful classifier. The aim of this project was to

1. Study the behavior of PDE-Foam under the boosting algorithm AdaBoost [5].

2. Develop and study alternative event and classifier weightings for the boosting
algorithm.

3. Technical comparison of PDE-Foam and decision tree (DT).

4. Show that, with certain modifications, a (boosted) PDE-Foam behaves like a
(boosted) decision tree (BDT).

5. Write a framework for parameter scans of TMVA classifiers using a batch
system.

For the following studies we use three different event samples:

Example 1: Two-dimensional Gaussian ring distribution (see Figure 1), as was
used in [1]. This example is challenging, because both PDE-Foam and BDT
use rectangular cells/nodes to approximate the ring distributions.

Example 2: Sine distribution in the first variable and exponential in the second
variable (see Figure 2).

Example 3: Five moderately correlated observables constructed from Gaussian
distributions, as was used in [1].

For every example we use 5 · 105 events for training and 5 · 105 events for testing to
get numerical results with sufficient precision.
As a measure of the average estimator performance of the trained classifier we

use the Receiver operating characteristic (ROC). A value of 0.5 is obtained for a
random classification of signal and background. A value of 1.0 is obtained for a
perfect discrimination between signal and background.

3

2 Boosting PDE-Foam

variable 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

va
ri

ab
le

 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Signal

variable 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

va
ri

ab
le

 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Background

Figure 1: Signal and background distributions of example 1.

2 Boosting PDE-Foam
The idea of boosting is to combine a set of weak classifiers to give a more powerful
ensemble [5]. There are various boosting algorithms, e.g. GentleBoost [6], Logit-
Boost [6] and AdaBoost [5, 6]. The latter is popular in HEP applications and as of
version 4.0.7 the only one implemented in TMVA [7].

2.1 AdaBoost
2.1.1 The algorithm

The AdaBoost was first proposed in 1995 by Y. Freund [5]. It is intended for
classifiers, which give a discrete output Y ∈ {−1, 1}. However, since there exist
many likelihood classifiers which give continuous results, extensions were developed
[6], which consider real-valued classifier output, e.g. Y ∈ [0, 1]. Since PDE-Foam
uses the discriminant

D = Nsig

Nsig +Nbkg
(1)

to classify an event x (Nsig is the number of signal, and Nbkg is the number of
background events in the PDE-Foam cell corresponding to the event x), the real
AdaBoost algorithm is most suited for boosting PDE-Foam. It is described in Al-
gorithm 1 on page 6.

2.1.2 PDE-Foam boosting results

Here and in the following we use the standard PDE-Foam option string

4

2.1 AdaBoost

variable 1
0 5 10 15 20 25

va
ri

ab
le

 2

-10

-8

-6

-4

-2

0

Signal

variable 1
0 5 10 15 20 25

va
ri

ab
le

 2

-20

-15

-10

-5

0

Background

Figure 2: Signal and background distributions of example 2.

SigBgSeparate =F: VolFrac =0.0333: TailCut =0.001: nBin =5:
↪→ nSampl =2000: Nmin =100: Kernel=None:
↪→ FillFoamWithOrigWeights =F: MaxDepth =0: UseYesNoCell =F:
↪→ DTLogic =None: PeekMax =T

until stated otherwise. We use the single foam approach (SigBgSeparate=F), which
holds directly the discriminant, instead of treating signal and background distribu-
tions separately. The root cell geometry is adjusted such that 0.1 % of the train-
ing data (outlier events) is not included. The probe volume for the density sam-
pling is set to 1/30d (VolFrac=0.0333), where d is the number of variables in the
training event sample. The number of MC samplings per cell (nSampl) is set to
2000 and the number of bins in the cell edge histograms (nBin) to 5. For the cell
splitting we always choose the cell with the highest separation gain (PeekMax=T),
which contains more than 100 events (Nmin=100). The cell tree depth is not lim-
ited (MaxDepth=0). After the build-up the foam is filled with the full event weights
(FillFoamWithOrigWeights=F). During the classification phase it returns the dis-
criminant (UseYesNoCell=F), instead of discrete values for signal and background
events. See also [7] and Table 3 for a more detailed description of the PDE-Foam
options.
The behavior of a standard PDE-Foam under AdaBoost for example 3 with dif-

ferent number of active cells is shown in Figure 3. One finds a sufficient convergence
of the boosting algorithm after 20 boosts and a performance gain up to 15 %. Con-
cerning the number of active cells, in general foams with more cells perform better
than the ones with fewer. Note also that foams with less than six cells tend to break
boosting at a very early stage, because the misclassification rate of the last trained
classifier exceeds 0.5, i.e. it performs worse than random guessing. The maximum

5

2 Boosting PDE-Foam

Algorithm 1 real AdaBoost, as implemented in TMVA
Assume that a classifier G(x) shall be boosted M times. The training sample ~x =
(x1, . . . , xN) consists of N events xi with known classification result yi and weight
wi for every xi (i = 1, . . . , N).

1. For m = 1 to M do
a) Train a classifier Gm(x) on the training sample.
b) Compute misclassification rate

errm =
∑N

i=1 wiI(yi 6= Gm(xi))∑N
i=1 wi

,

where I(true) = 1 and I(false) = 0. If errm ≥ 0.5 set M ← m, i.e. stop
the loop after this iteration.

c) Compute classifier weight αm = log((1− errm)/errm).
d) Reweight training sample

wi ← wi exp
[
αmI(yi 6= Gm(xi))

]
for i = 1, . . . , N .

2. Output G(x) = ∑M
m=1 αmGm(x)

ROC integrals for PDE-Foams with 500 active cells for the different event samples
are listed in Table 1. The table also shows the ROC integrals obtained with a
standard boosted decision tree (BDT) with the option string

NTrees =400: nEventsMin =400: MaxDepth =3: BoostType = AdaBoost
↪→ : SeparationType = GiniIndex :nCuts =20: PruneMethod =
↪→ NoPruning

In example 1 the standard BDT performs significantly worse than PDE-Foam, which
is due to the small number of BDT leaf nodes (23 = 8). Increasing the BDT tree
depth to 5 (equates to 32 leaf nodes) would increase the ROC integral to 0.700, which
is approximately the PDE-Foam result. The same argument holds for example 2.
Increasing the BDT tree depth to 5 here yields a ROC integral of 0.811, which
is equal to the PDE-Foam result. Concerning example 3 one finds that the BDT
performs nearly optimal for a small number of leaf nodes. Even with 500 active
cells the standard PDE-Foam is not able to reach the BDT result. In Section 3.3 a
modification of PDE-Foam is presented, which yields ROC integrals similar to the
ones from BDT.

6

2.2 MVA value dependent event reweighing

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 5 10 15 20 25 30

R
O

C
 i
n

te
g

ra
l

number of boosts

nActiveCells=4
nActiveCells=10
nActiveCells=20
nActiveCells=50

nActiveCells=100
nActiveCells=500

Figure 3: Standard PDE-Foam boosted with real AdaBoost for different number
of active cells for example 3. The used option string is listed in Section 2.1.2.

A limiting factor of this study is the CPU time needed for a single boost. For
the used event samples and a standard PDE-Foam with 500 active cells it takes
∼ 5 . . . 10 min on 2.0 GHz 64-bit processor. However, in practice one could speed up
the boosting by not creating all boosting control plots.

2.2 MVA value dependent event reweighing
In the AdaBoost algorithm all weights of misclassified events are scaled by the same
factor. In other words, there is no distinction between events which are classified
“very wrong” and those which are classified “slightly wrong”. In the following other

Table 1: Maximum ROC integrals for a standard PDE-Foam with 500 active cells
boosted with real AdaBoost for examples 1, 2 and 3. The third column shows the
number of boosts needed for PDE-Foam to reach the maximum ROC integral. In
the last column the ROC integrals for the standard BDT (see option string above)
are listed.

Example max. ROC (PDE-Foam) number of boosts max. ROC (BDT)
1 0.694 11 0.619
2 0.811 22 0.808
3 0.887 20 0.905

7

2 Boosting PDE-Foam

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

w
e
ig

h
t
 w

(G
m

)

classifier response Gm

AdaBoostBeta=1
AdaBoostBeta=0.02

(a) HighEdgeGauss weight function for
Cm = 0.5 and different values of Ada-
BoostBeta

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

w
e
ig

h
t

 w
(G

m
)

classifier response Gm

signal background

(b) HighEdgeCoPara weight function
for signal and background, AdaBoost-
Beta=2

Figure 4: Event weight functions (a) HighEdgeGauss and (b) HighEdgeCoPara (see
Eq. (2)–(3))

boosting algorithms are studied, which adjust the individual boost weights based on
the corresponding discriminant values.

2.2.1 HighEdgeGauss

The HighEdgeGauss method strongly weights all events, which yield discriminant
values close to the signal/background cut value Cm of the classifier Gm. The events
are reweighted by the Gaussian function

wi ← exp
[
− (Gm(xi)− Cm)2

0.1 · AdaBoostBeta

]
, (2)

which peeks at Cm. The parameter AdaBoostBeta can be set by the user to adjust
the “strength” of the boosting (see Figure 4a). The boosting results for a PDE-
Foam with different number of active cells and different values of AdaBoostBeta for
example 3 are shown in Figure 5. It was found that the value AdaBoostBeta=0.02
gives the best classification results for this event sample. For a PDE-Foam with
500 active cells the HighEdgeGauss event reweighting yields a maximum ROC in-
tegral of 0.885 in case of AdaBoostBeta=1, and 0.900 in case of the optimal value
AdaBoostBeta=0.02. The maximum ROC integrals for the examples 1, 2 and 3 are
also listed in Table 2.

8

2.3 Alternative classifier weighting

2.2.2 HighEdgeCoPara

The HighEdgeCoPara boost type reweights all those events strongly, which have
discriminant values close to 1 in case of background, and close to 0 in case of signal
events. The weighting function reads

wi ←

(1.0−Gm(xi))AdaBoostBeta if xi is a signal event,
Gm(xi)AdaBoostBeta if xi is a background event.

(3)

Again the parameter AdaBoostBeta can be set by the user to influence the strength
of the boosting (see Figure 4b). The boosting results of a standard PDE-Foam
with HighEdgeCoPara for example 3 is shown in Figure 6. It was found that the
value AdaBoostBeta=1 gives the best classification results for this event sample. The
maximum ROC integral of 0.897 is reached for a PDE-Foam with 500 active cells.
For a lower number of active cells this boosting algorithm performs worse than the
optimized HighEdgeGauss, except for a foam with 4 active cells. Though this effect
can be sample dependent. The maximum ROC integrals for all event samples are
shown in Table 2.

2.3 Alternative classifier weighting

The AdaBoost algorithm weights a single classifier Gm according to the misclassi-
fication rate errm of Gm on the reweighted training sample. Classifiers with values
errm ≈ 0 get a high weight and the ones with errm / 0.5 get a weight close to zero.
We studied the following alternative classifier weightings.

2.3.1 ROC integral

In case one is interested in maximising the ROC integral of the classifier G(x) it
makes sense to weight a single classifier Gm proportional to the ROC integral on the
original training sample, i.e.

αm = ROC(orig. train.). (4)

This option has been made available in TMVA by the name ByROC.

2.3.2 Inverse overlap integral

Since one is interested in separating the signal and background MVA distributions
MVAsig(D), MVAbkg(D), it makes sense to choose the classifier weight as the inverse

9

2 Boosting PDE-Foam

overlap integral of these two distributions, i.e.

αm =
 ∫ 1

0
dD min

[
MVAsig(D),MVAbkg(D)

]

×Θ
(
MVAsig(D)MVAbkg(D)

)−1

,

(5)

where

Θ(x) =

1 for x ≥ 0,
0 else.

(6)

This option is called ByOverlap.
The ROC integrals of a standard PDE-Foam boosted ByROC and ByOverlap for

example 3 are shown in Figures 7–8 for different event weightings and different
number of active cells. The performance curves of ByROC and ByOverlap nearly
coincide for all event weighting types. Furthermore, they are very similar in shape
to the curves in Figure 3, 5 and 6, where the original AdaBoost classifier weighting
(ByError) was used. Table 2 shows the maximal ROC integrals for a PDE-Foam
with 500 active cells for different event and classifier weightings. One finds that the
differences in the classifier weighting methods for a fixed event weighting are smaller
than 0.3 %.

Table 2: Maximum ROC integrals for a standard PDE-Foam with 500 active cells
for different event and classifier weightings. The combination AdaBoost–ByError
corresponds to Algorithm 1. For HighEdgeGauss and HighEdgeCoPara the optimal
values of AdaBoostBeta found in Sec. 2.2 were used.

AdaBoost HighEdgeGauss HighEdgeCoPara

Example 1 ByError 0.694 0.701 0.697
ByOverlap 0.693 0.701 0.700

Example 2 ByError 0.811 0.813 0.810
ByOverlap 0.811 0.812 0.812

Example 3
ByError 0.887 0.900 0.897
ByROC 0.888 0.900 0.898
ByOverlap 0.890 0.900 0.898

10

3 Comparison PDE-Foam – decision tree

3.1 Difference between PDE-Foam and decision tree

The PDE-Foam structure is formally equivalent to a decision tree (DT). However,
the foam build-up and the classification differs from the DT in three points.

Cell split algorithm

The first difference is in the way PDE-Foam and DT split a single cell/node.
PDE-Foam does a range searching in the cell (nSampl times) with a box with

volume VolFrac. For the set events found within the box the discriminant Eq. (1)
is calculated and projected onto the cell edges. After this the foam uses a two-
pointer algorithm [3, 4] to determine the best cell division point, which maximal
reduces the variance of the discriminant distribution (SigBgSeparate=F).
The decision tree projects all events in a node onto the node edges and uses

a one-pointer algorithm to determine the best node division point, which maxi-
mal reduces a specified separation quantity (GiniIndex, MisClassificationError,
CrossEntropy) [7].
It is obvious that these two approaches are not identical. First of all the gain

measure is different. While PDE-Foam uses the variance of the discriminant distri-
bution, the DT uses the purity of a node concerning signal or background. Second
the edge distribution of the foam is smeared because of the MC sampling. Finally,
the one-pointer algorithm might not find the same division point as the two-pointer
one.

Choosing the next cell to split

Per default PDE-Foam chooses the cell with the maximum separation gain for the
next split. Thus an arbitrarily shaped cell tree can be generated. In contrast, the
DT splits all cells until the maximum tree depth (set by the user) is reached. Thus
a completely balanced tree is generated.

Classification value

Per default the DT returns 1 for an event which is classified as signal, and −1 for
background. On the contrary, PDE-Foam returns the discriminant D ∈ [0, 1] for
a given event. If D exceeds a certain cut value, the event is classified as signal,
otherwise background.

11

3 Comparison PDE-Foam – decision tree

3.2 New PDE-Foam options to make PDE-Foam behave
like a decision tree

In order to study the difference between PDE-Foam and a DT in more detail ad-
ditional PDE-Foam options were build into PDE-Foam, which, in a certain com-
bination, can simulate the behavior of a decision tree. They are listed in Table 3.

The UseYesNoCell option can be set to true in order to return −1 for events with
discriminant D < 0.5 (background-like) and 1 for events with D ≥ 0.5 (signal-like),
instead of D.
Since the PDE-Foam cells are filled with events after the splitting, it is in principle

possible to use different event weights for the filling than for the foam build-up. The
option FillFoamWithOrigWeights was created to choose either the original or the
full event weight (including the boost weight) to be filled into the foam cells after the
build-up. This option is only relevant for boosting, because for non-boosted classi-
fiers the boost weights are always 1. When setting FillFoamWithOrigWeights=T,
one would only boost the foam geometry, instead of the cell content. This would
slow down the boosting process, because the boost weights are ignored in the clas-
sification. In most cases studied FillFoamWithOrigWeights=T leads to worse clas-
sification results than FillFoamWithOrigWeights=F. However, when using stronger
boosting by choosing AdaBoostBeta accordingly, filling the original weights into the
foam can improve the performance.
In analogy to the decision tree, the option MaxDepth was added. When given an

integer value greater than zero, the cell tree will not be deeper than MaxDepth. By
convention the root node has depth 1, which implies that a foam with 2 active cells
(3 cells in total) has depth 2. If nActiveCells ≥ 2MaxDepth−1 the resulting cell tree
will be completely balanced, as in the case of a decision tree. When MaxDepth is set
to 0, the cell tree depth is not limited.
In order to emulate a decision tree-like cell splitting algorithm, the option DTLogic

was introduced. When set to GiniIndex, MisClassificationError or CrossEn-
tropy, the algorithm projects all events in a cell onto the cell edges and probes
nBin-1 division points such that the separation gain

gain(parent cell)− gain(daughter cell 1)− gain(daughter cell 2) (7)

is maximal. For a given separation type and a given cell the gain is defined as

GiniIndex : gain(cell) = p(1− p), (8)
MisClassificationError : gain(cell) = 1−max(p, 1− p), (9)
CrossEntropy : gain(cell) = −p log p− (1− p) log(1− p), (10)

where p = Nsig/(Nsig +Nbkg) in the considered cell. It was found that nBin=20 yields
sufficient classification results. When DTLogic is set to None, the original PDE-

12

3.3 Boosting a decision tree-like PDE-Foam

Foam cell splitting algorithm is used, which reduces the variance of the sampled
discriminator density.
In order to emulate the decision tree behavior even more, it is now possible to

choose the last created cell for the next split, instead of the one with maximum
separation gain. The corresponding option is PeekMax=F. Note that adequate classi-
fication results are only achieved, if simultaneously the maximum tree depth is less
than infinity, i.e. MaxDepth > 0.
Certain DT options were found to have an equivalent in PDE-Foam. These are

listed in Table 4. In order to completely emulate a decision tree one would have
to adjust the PDE-Foam options to their DT analogon. An adequate PDE-Foam
option string is for example

SigBgSeparate =F: TailCut =0: nActiveCells =100000: nBin =20:
↪→ Nmin =400: Kernel=None: FillFoamWithOrigWeights =F:
↪→ MaxDepth =4: UseYesNoCell =T: DTLogic = GiniIndex : PeekMax =F

3.3 Boosting a decision tree-like PDE-Foam

Figure 9–11 and Table 5 show a direct comparison of a BDT and a boosted decision
tree-like PDE-Foam for example 3. For the BDT we use the option string

nEventsMin =400: NNodesMax =100000: BoostType = AdaBoost :
↪→ nCuts =19: PruneMethod = NoPruning : UseYesNoLeaf =T

and for PDE-Foam the equivalent

SigBgSeparate =F: TailCut =0: nActiveCells =100000: nBin =20:
↪→ Nmin =400: Kernel=None: FillFoamWithOrigWeights =F:
↪→ UseYesNoCell =T: PeekMax =F: Boost_Type = AdaBoost

For all implemented separation types one finds an agreement between the BDT
and PDE-Foam ROC integrals within 0.6 % precision after 100 boost steps. This
remaining deviation mainly results from the different handling of events, which are
close to the cell/node edges. Due to the strong weighting of wrong classified events,
these edge events might affect the cell splitting point, which can lead to different
ROC integrals. This effect then propagates through the boosting iterations. The
highest ROC integral value of about 0.906 for both classifiers is obtained for the Mis-
ClassificationError separation type and a tree depth of 3 (BDT) and 4 (PDE-
Foam). This corresponds to a BDT/PDE-Foam with only 8 leaf nodes/active cells.
One also finds that greater and smaller tree depth yield worse classification results
for this event sample, independent of the separation type.

13

5 Acknowledgments

4 Conclusions
It was shown that boosting a standard PDE-Foam can lead to an improvement
of the average classification results (ROC integral) up to 15 %, depending on the
number of active foam cells. Alternative event weighting methods (HighEdgeGauss,
HighEdgeCoPara) were studied and, after optimization, found to improve the clas-
sification even further. The studied alternative classifier weightings ByROC and
ByOverlap did not lead to significant improvements compared to the standard Ad-
aBoost (ByError) for the here studied event samples.
The analogy between BDT and PDE-Foam was examined in detail and additional

PDE-Foam options were created to emulate the behavior of a decision tree. The
boosting results of a BDT and a analog PDE-Foam were found to coincide up to
0.6 %. The so obtained maximum ROC integrals exceed the ones obtained with the
standard PDE-Foam algorithm up to 2 %.

5 Acknowledgments
I am heartily thankful to my supervisors Dominik Dannheim and Tancredi Carli as
well as Lorenzo Moneta and Pere Mato Vila for making this project possible. For
the many helpful suggestions and countless hours of discussion and I am grateful
to Dominik Dannheim, Tancredi Carli, Helge Voss, Jan Therhaag and the TMVA
developers team.

14

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 5 10 15 20 25 30

R
O

C
 i
n

te
g
ra

l

number of boosts

AdaBoostBeta=1.0
nActiveCells=4

nActiveCells=10
nActiveCells=20
nActiveCells=50

nActiveCells=100
nActiveCells=500

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 5 10 15 20 25 30

R
O

C
 i
n
te

g
ra

l

number of boosts

AdaBoostBeta=0.02
nActiveCells=4

nActiveCells=10
nActiveCells=20
nActiveCells=50

nActiveCells=100
nActiveCells=500

Figure 5: Standard PDE-Foam boosted with HighEdgeGauss for different number
of active cells for example 3. The upper plot uses AdaBoostBeta=1 and the one
below AdaBoostBeta=0.02. The latter was found to be an optimal value for this
event sample.

15

5 Acknowledgments

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 5 10 15 20 25 30

R
O

C
 i
n

te
g
ra

l

number of boosts

AdaBoostBeta=1.0
nActiveCells=4

nActiveCells=10
nActiveCells=20
nActiveCells=50

nActiveCells=100
nActiveCells=500

Figure 6: Standard PDE-Foam boosted with HighEdgeCoPara for different number
of active cells for example 3. We set AdaBoostBeta=1, which was found to be an
optimal value for this event sample.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 5 10 15 20 25 30

R
O

C
 i
n

te
g
ra

l

number of boosts

AdaBoost,AdaBoostBeta=1.0
ByROC, nActiveCells=4

ByOverlap, nActiveCells=4
ByROC, nActiveCells=10

ByOverlap, nActiveCells=10
ByROC, nActiveCells=20

ByOverlap, nActiveCells=20
ByROC, nActiveCells=50

ByOverlap, nActiveCells=50
ByROC, nActiveCells=100

ByOverlap, nActiveCells=100
ByROC, nActiveCells=500

ByOverlap, nActiveCells=500

Figure 7: Standard PDE-Foam boosted with AdaBoost for different number of ac-
tive cells and different method weight types for example 3. We set AdaBoostBeta=1,
as required for the real AdaBoost algorithm.

16

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 5 10 15 20 25 30

R
O

C
 i
n

te
g
ra

l

number of boosts

HighEdgeGauss,AdaBoostBeta=0.02
ByROC, nActiveCells=4

ByOverlap, nActiveCells=4
ByROC, nActiveCells=10

ByOverlap, nActiveCells=10
ByROC, nActiveCells=20

ByOverlap, nActiveCells=20
ByROC, nActiveCells=50

ByOverlap, nActiveCells=50
ByROC, nActiveCells=100

ByOverlap, nActiveCells=100
ByROC, nActiveCells=500

ByOverlap, nActiveCells=500

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 5 10 15 20 25 30

R
O

C
 i
n
te

g
ra

l

number of boosts

HighEdgeCoPara,AdaBoostBeta=1.0
ByROC, nActiveCells=4

ByOverlap, nActiveCells=4
ByROC, nActiveCells=10

ByOverlap, nActiveCells=10
ByROC, nActiveCells=20

ByOverlap, nActiveCells=20
ByROC, nActiveCells=50

ByOverlap, nActiveCells=50
ByROC, nActiveCells=100

ByOverlap, nActiveCells=100
ByROC, nActiveCells=500

ByOverlap, nActiveCells=500

Figure 8: Standard PDE-Foam boosted with HighEdgeGauss (upper plot) and
HighEdgeCoPara (lower plot) for different number of active cells and different
method weight types for example 3. We set AdaBoostBeta to the optimal values for
each boost type.

17

5 Acknowledgments

T
ab

le
3:

N
ew

PD
E-

Fo
am

op
tio

ns

N
am

e
Va

lu
es

D
ef
au

lt
D
es
cr
ip
tio

n
Us

eY
es

No
Ce

ll
tr

ue
,

fa
ls

e
fa

ls
e

W
he
n

tr
ue

re
tu
rn

D
∈
{1
,−

1}
fo
r
sig

na
l

an
d
ba

ck
gr
ou

nd
re
sp
ec
tiv

el
y,
w
he
n

fa
ls

e
re
-

tu
rn

th
ed

isc
rim

in
an

tD
=
N

si
g/

(N
si

g+
N

bk
g)

as
cl
as
sifi

ca
tio

n
ou

tp
ut
.

Fi
ll

Fo
am

Wi
th

Or
ig

We
ig

ht
s

tr
ue

,
fa

ls
e

fa
ls

e
Fi
ll

or
ig
in
al

(t
ru

e)
or

fu
ll

ev
en
t

we
ig
ht
s

(f
al

se
)
in
to

PD
E-

Fo
am

ce
lls
.

Ma
xD

ep
th

≥
0

0
M
ax

im
um

de
pt
h

of
ce
ll

tr
ee

(r
oo

t
ce
ll

ha
s

de
pt
h
1)
.
If
se
tt

o
0,

th
e
de
pt
h
is
un

lim
ite

d.
DT

Lo
gi

c
No

ne
,

Gi
ni

In
de

x,
Mi

sC
la

ss
if

ic
at

io
nE

rr
or

,
Cr

os
sE

nt
ro

py

No
ne

Sp
ec
ifi
es

de
ci
sio

n
tr
ee

al
go
rit

hm
us
ed

to
sp
lit

a
ce
ll.

If
se
tt

o
No

ne
,t
he

or
ig
in
al

PD
E-

Fo
am

al
go
rit

hm
is

us
ed
.

Pe
ek

Ma
x

tr
ue

,
fa

ls
e

tr
ue

Pe
ek

ce
ll

w
ith

m
ax

im
um

se
pa

ra
tio

n
ga
in

(t
ru

e)
,
or

la
st

ce
ll
cr
ea
te
d
(f

al
se

)
fo
r
th
e

ne
xt

sp
lit
.

18

Table 4: Analogous PDE-Foam and Boosted decision tree (BDT) options

PDE-Foam BDT Description
UseYesNoCell UseYesNoLeaf Return D ∈ {1,−1} for signal and back-

ground respectively, or the discriminant
D = Nsig/(Nsig + Nbkg) as classification
output.

MaxDepth MaxDepth+1 Maximum depth of node/cell tree
DTLogic SeparationType Separation criterion for node/cell

splitting
nBin nCuts+1 Number of steps during node/cell cut

optimization
Nmin nEventsMin Minimum number of events required in

a leaf node/active cell
2*nActiveCells-1 NNodesMax Total number of nodes/cells
Boost_Num NTrees Number of boosts
Boost_Type BoostType Boosting type

19

5 Acknowledgments

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 10 20 30 40 50 60 70 80 90 100

R
O

C
 i
n

te
g
ra

l

number of boosts

BDT MaxDepth=1
PDEFoam MaxDepth=2

BDT MaxDepth=3
PDEFoam MaxDepth=4

BDT MaxDepth=5
PDEFoam MaxDepth=6

BDT MaxDepth=7
PDEFoam MaxDepth=8

BDT MaxDepth=9
PDEFoam MaxDepth=10

0.85

0.86

0.87

0.88

0.89

0.90

0.91

 0 10 20 30 40 50 60 70 80 90 100

R
O

C
 i
n
te

g
ra

l

number of boosts

BDT MaxDepth=1
PDEFoam MaxDepth=2

BDT MaxDepth=3
PDEFoam MaxDepth=4

BDT MaxDepth=5
PDEFoam MaxDepth=6

BDT MaxDepth=7
PDEFoam MaxDepth=8

BDT MaxDepth=9
PDEFoam MaxDepth=10

Figure 9: BDT and boosted DT-like PDE-Foam with GiniIndex as separation
type for different tree depth (example 3). Note that the BDT MaxDepth option
corresponds to MaxDepth+1 for PDE-Foam.

20

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 10 20 30 40 50 60 70 80 90 100

R
O

C
 i
n

te
g
ra

l

number of boosts

BDT MaxDepth=1
PDEFoam MaxDepth=2

BDT MaxDepth=3
PDEFoam MaxDepth=4

BDT MaxDepth=5
PDEFoam MaxDepth=6

BDT MaxDepth=7
PDEFoam MaxDepth=8

BDT MaxDepth=9
PDEFoam MaxDepth=10

0.85

0.86

0.87

0.88

0.89

0.90

0.91

 0 10 20 30 40 50 60 70 80 90 100

R
O

C
 i
n
te

g
ra

l

number of boosts

BDT MaxDepth=1
PDEFoam MaxDepth=2

BDT MaxDepth=3
PDEFoam MaxDepth=4

BDT MaxDepth=5
PDEFoam MaxDepth=6

BDT MaxDepth=7
PDEFoam MaxDepth=8

BDT MaxDepth=9
PDEFoam MaxDepth=10

Figure 10: BDT and boosted DT-like PDE-Foam with MisClassificationError
as separation type for different tree depth (example 3). Note that the BDT MaxDepth
option corresponds to MaxDepth+1 for PDE-Foam.

21

5 Acknowledgments

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0 10 20 30 40 50 60 70 80 90 100

R
O

C
 i
n

te
g
ra

l

number of boosts

BDT MaxDepth=1
PDEFoam MaxDepth=2

BDT MaxDepth=3
PDEFoam MaxDepth=4

BDT MaxDepth=5
PDEFoam MaxDepth=6

BDT MaxDepth=7
PDEFoam MaxDepth=8

BDT MaxDepth=9
PDEFoam MaxDepth=10

0.85

0.86

0.87

0.88

0.89

0.90

0.91

 0 10 20 30 40 50 60 70 80 90 100

R
O

C
 i
n
te

g
ra

l

number of boosts

BDT MaxDepth=1
PDEFoam MaxDepth=2

BDT MaxDepth=3
PDEFoam MaxDepth=4

BDT MaxDepth=5
PDEFoam MaxDepth=6

BDT MaxDepth=7
PDEFoam MaxDepth=8

BDT MaxDepth=9
PDEFoam MaxDepth=10

Figure 11: BDT and boosted DT-like PDE-Foam with CrossEntropy as separation
type for different tree depth (example 3). Note that the BDT MaxDepth option
corresponds to MaxDepth+1 for PDE-Foam.

22

Table 5: Comparison of ROC integrals of BDT and the analog decision tree-like
PDE-Foam after 100 boosts for example 3 for different separation types and tree
depth

SeparationType MaxDepth (BDT) ROC (BDT) ROC (PDE-Foam)

GiniIndex

1 0.888682 0.888517
3 0.904329 0.903888
7 0.894016 0.900856
5 0.896398 0.895599
9 0.891258 0.892929

MisClassificationError

1 0.899144 0.899039
3 0.905796 0.905674
5 0.905544 0.904788
7 0.904496 0.903631
9 0.904007 0.901067

CrossEntropy

1 0.888426 0.888399
3 0.900675 0.898336
5 0.901119 0.895094
7 0.894982 0.898072
9 0.893152 0.892344

23

A Framework for parameter studies in TMVA

A Framework for parameter studies in TMVA
In order to make parameter scans of TMVA classifiers using a batch system, a job
submission framework was written. It consists of four files:

scan.py The job submission script. Here the user specifies the classifier, the option
string, the event sample, the signal and background tree, the variables and the
TMVA factory options.

analysis.cxx The job. This C++ program books a single TMVA classifier and
writes the output to a given location. It is submitted from scan.py to the
batch system with the corresponding command line options. Before usage it
must be compiled using the makefile.

makefile The makefile. The user must edit this file to set the location of the TMVA
directory.

vary.py Helper functions. This python module contains helper functions used by
scan.py to parse the classifier option string.

The syntax of the classifier option string, which is set in scan.py, is extended to
contain ranges and lists of parameter values for the scan.

Parameter range: Ranges are specified via

x=[〈start〉,〈stop〉,〈step〉] (11)

where x is the parameter name, 〈start〉 is the start value, 〈stop〉 is the end value
and 〈step〉 is the step size. Note, that the end value is included in the range.

Parameter list: Lists of possible parameter values are set via

x={〈value1〉,〈value2〉,〈value3〉, ...} (12)

Both the parameter ranges and lists can be combined. For example the option
string

x=[1,3,1]{10,20} (13)

would expand to the set of option strings

x=1, x=2, x=3, x=10, x=20 (14)

When the option string contains two or more variables, all possible combinations of
their values are generated. For example the option string

x=[1,3,1]{10,20}:y={T,F} (15)

24

would expand to the set of option strings

x=1:y=T, x=2:y=T, x=3:y=T, x=10:y=T, x=20:y=T,
x=1:y=F, x=2:y=F, x=3:y=F, x=10:y=F, x=20:y=F

(16)

25

References

References
[1] D. Dannheim, A. Voigt, K.-J. Grahn, P. Speckmayer, and T. Carli, PDE-Foam:

A probability density estimation method using self-adapting phase-space bin-
ning, Nucl. Instrum. Meth. A606, 717 (2009).

[2] T. Carli and B. Koblitz, A multi-variate discrimination technique based on range-
searching, Nucl. Instrum. Meth. A501, 576 (2003), hep-ex/0211019.

[3] S. Jadach, Foam: Multi-Dimensional General Purpose Monte Carlo Generator
With Self-Adapting Symplectic Grid, Comput. Phys. Commun. 130, 244 (2000),
physics/9910004.

[4] S. Jadach, Foam: A general purpose cellular Monte Carlo event generator, Com-
put. Phys. Commun. 152, 55 (2003), physics/0203033.

[5] Y. Freund, Boosting a weak learning algorithm by majority, Inf. Comput. 121,
256 (1995).

[6] J. Friedman, T. Hastie, and R. Tibshirani, Additive Logistic Regression: a Sta-
tistical View of Boosting, Annals of Statistics 28, 2000 (1998).

[7] A. Höcker et al., TMVA: Toolkit for multivariate data analysis, PoS ACAT,
040 (2007), physics/0703039.

26

	Introduction
	Boosting PDE-Foam
	AdaBoost
	The algorithm
	PDE-Foam boosting results

	MVA value dependent event reweighing
	HighEdgeGauss
	HighEdgeCoPara

	Alternative classifier weighting
	ROC integral
	Inverse overlap integral

	Comparison PDE-Foam – decision tree
	Difference between PDE-Foam and decision tree
	New PDE-Foam options to make PDE-Foam behave like a decision tree
	Boosting a decision tree-like PDE-Foam

	Conclusions
	Acknowledgments
	Framework for parameter studies in TMVA
	References

