The anomalous magnetic moment of the muon and supersymmetry

Alexander Voigt

RWTH Aachen

Mainz, 19.06.2017

Contents

1 Definition and SM prediction

2 Properties of BSM contributions

3 Status of the MSSM calculation

Opposition of public programs

Magnetic moment

$$ec{m}=grac{Qe}{2m_{\mu}}ec{s}$$

g ... gyromagnetic ratio

$$a_{\mu}=\frac{g-2}{2}$$

 a_{μ} ... anomalous magnetic moment

Anomalous magnetic moment in QFT

In QFT a_{μ} can be extracted from the μ - $\bar{\mu}$ - A^{ρ} 3-point function

$$\bar{u}(p')\Gamma_{\mu\bar{\mu}A^{\rho}}u(p) = e\bar{u}(p')\left[\gamma_{\rho}F_{V}(q^{2}) + (p+p')_{\rho}F_{M}(q^{2}) + \ldots\right]u(p)$$

in the limit of vanishing photon momentum, $q^2
ightarrow 0$:

$$g=2\left[1-2m_{\mu}F_{M}(0)
ight] \qquad \Rightarrow \qquad a_{\mu}=-2m_{\mu}F_{M}(0)$$

 $a_\mu=0$ at tree-level \Rightarrow a_μ^{1L} is leading order!

SM contribution

$$\begin{aligned} a_{\mu}^{\text{SM}} &= a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}} \\ a_{\mu}^{\text{QED}} &= 11658471.895(0.008) \cdot 10^{-10} \\ a_{\mu}^{\text{weak}} &= 15.4(0.1) \cdot 10^{-10} \\ a_{\mu}^{\text{had}} &= (692.3(4.2)^{\text{LO}} + 0.7(2.6)^{\text{NLO}}) \cdot 10^{-10}_{\text{[1010.4180.0901.0306]}} \\ \Rightarrow \quad a_{\mu}^{\text{SM}} &= 11659180.3(0.1)(4.2)(2.6) \cdot 10^{-10} \end{aligned}$$

Measurement

 \Rightarrow

Spin precession in magnetic field \vec{B} relative to momentum

$$ec{\omega} = rac{e}{m_{\mu}} \left[a_{\mu} ec{B} - \left(a_{\mu} - rac{1}{\gamma^2 - 1}
ight) ec{eta} imes ec{E}
ight]$$

vanishes for "magic" momentum p = 3.094 GeV.

$$a_{\mu}^{\mathsf{exp}} = 11659208.9(6.3) \cdot 10^{-10}$$
[E821@BNL]

$$a_{\mu}^{\exp} - a_{\mu}^{\mathsf{SM}} = \begin{cases} (28.7 \pm 8.0) \cdot 10^{-10} & (3.6\sigma)_{\text{[1010.4180]}} \\ (26.1 \pm 8.0) \cdot 10^{-10} & (3.2\sigma)_{\text{[1105.3149]}} \end{cases}$$

Contents

1 Definition and SM prediction

2 Properties of BSM contributions

3 Status of the MSSM calculation

Opposition of public programs

BSM contributions

generic expected scaling:

$$a_{\mu}^{
m BSM} \propto C rac{m_{\mu}^2}{M_{
m BSM}^2}$$

Reason: F_M corresponds to chirality flip of muon

$$\bar{\mu}\mu = \mu_R\mu_L + \bar{\mu}_L\bar{\mu}_R$$

Terms in \mathcal{L} corresponding to chirality flip $\propto m_{\mu}$ include:

$$\mu_L \longrightarrow \mu_R \propto m_\mu$$
$$\tilde{\mu}_L \longrightarrow \tilde{\mu}_R \propto m_\mu \tan \beta$$

Potential enhancement factors: $C \propto \tan \beta$, $\log \left(\frac{M_{\text{BSM}}}{m_{\mu}}\right)$

Contents

Definition and SM prediction

2 Properties of BSM contributions

3 Status of the MSSM calculation

Opposition of public programs

MSSM contribution – 1-loop

$$a_{\mu}^{ ext{MSSM}, ext{1L}} pprox 13 \cdot 10^{-10} \left(rac{100 ext{ GeV}}{M_{ ext{SUSY}}}
ight)^2 ext{tan} eta ext{ sign}(\mu M_2)$$

Properties:

- enhanced by $\tan\beta$
- suppressed by $1/M_{\rm SUSY}^2$
- can explain deviation for e.g. $M_{\rm SUSY} = 500 \, {\rm GeV}$, tan $\beta = 50$

MSSM contribution – 2-loop

$$a_\mu^{ ext{2L}} = a_\mu^{ ext{2L(a)}} + a_\mu^{ ext{2L(b)}}$$

where

$$a^{2L(a)}_{\mu}=$$
 2-loop correction to SM 1-loop diagram
 $a^{2L(b)}_{\mu}=$ 2-loop correction to MSSM 1-loop diagram

MSSM contribution – $a_{\mu}^{2L(a)}$

$$a_{\mu}^{2L,(a)} = a_{\mu}^{2L,\chi} + a_{\mu}^{2L,\tilde{f}} + a_{\mu}^{2L,f} + a_{\mu}^{2L,bos}$$

$$a_{\mu}^{2L,\chi} + a_{\mu}^{2L,\tilde{f}} = \underbrace{h \quad \bigvee}_{f \quad V} + \underbrace{h \quad \bigvee}_{f \quad V} = O(10 \cdot 10^{-10})$$

$$a_{\mu}^{2L,f} = \underbrace{H \quad \bigvee}_{f \quad V} < 10^{-10}$$

$$a_{\mu}^{2L,bos} = \underbrace{H \quad \bigvee}_{f \quad V} < 10^{-10}$$

MSSM contribution – $a_{\mu}^{2L(b)}$

$$a_\mu^{2\mathsf{L}(\mathsf{b})} = a_\mu^{2\mathsf{L},\gamma} + a_\mu^{2\mathsf{L},f/ ilde{f}} + a_\mu^{2\mathsf{L},\mathsf{rest}}$$

known incomplete

Contents

Definition and SM prediction

2 Properties of BSM contributions

3 Status of the MSSM calculation

Opposition of public programs

Comparision of public codes

Program	$a_{\mu}^{MSSM,1L}$	$a_{\mu}^{2L,\chi,}$	$a_{\mu}^{{ m 2L}, ilde{f}}$	$a_{\mu}^{{ m 2L},f}$	$a_{\mu}^{ m 2L,bos}$
GM2Calc	1	\checkmark	\checkmark	X	X
FeynHiggs	 Image: A second s	1	1	\checkmark	\checkmark
FlexibleSUSY	1	X	X	X	X
SARAH/SPheno	1	×	×	×	×
Program	$a_{\mu}^{2L,\gamma}$	$a_{\mu}^{{ m 2L},f/ ilde{f}}$	$a_\mu^{ m 2L,rest}$	t_{β} –res.	scheme
GM2Calc	 Image: A second s	\checkmark	X	1	OS/\overline{DR}
FeynHiggs	\checkmark	×	×	×	OS/\overline{DR}
FlexibleSUSY	\checkmark	X	X	X	DR
SARAH/SPheno	X	×	×	X	DR

 \checkmark = full, \checkmark = approximated, \checkmark = missing

Impact of t_{β} resummation

BM1 [arXiv:0808.1530]

Remaining theory uncertainty

GM2Calc (conservative):

$$\begin{split} \Delta a_{\mu}^{\text{MSSM}} &= \Delta \big[a_{\mu}^{\text{2L},\chi}, + a_{\mu}^{\text{2L},\tilde{f}} \big] + \Delta \big[a_{\mu}^{\text{2L},f} + a_{\mu}^{\text{2L},\text{bos}} \big] + \Delta \big[a_{\mu}^{\text{2L},\text{rest}} \big] \\ &= 0.3 \left(\big| a_{\mu}^{(\chi\gamma H)} \big| + \big| a_{\mu}^{(\tilde{f}\gamma H)} \big| \right) + 0.3 \cdot 10^{-10} + 2 \cdot 10^{-10} \\ &= 0.3 \left(\big| a_{\mu}^{(\chi\gamma H)} \big| + \big| a_{\mu}^{(\tilde{f}\gamma H)} \big| \right) + 2.3 \cdot 10^{-10} \end{split}$$

Remaining theory uncertainty

BM1 [arXiv:0808.1530]

Sources of uncertainties in public codes

1-loop calculations suffer from:

 uncertainty from choice of renormalization scheme for important parameters (α_{em}, m_{μ̃i}, ...), because 1L = LO → (partially) resolved at 2-loop level

DR calculations suffer from:

- renormalization scale uncertainty, because 1L = LO \rightarrow (partially) resolved at 2-loop level
- potentially large 2-loop corrections from quadratically enhanced smuon self-energy contributions \rightarrow avoided in the OS scheme

DR–**OS conversion** can suffer from large corrections!

DR-OS conversion

BM4' from [1309.0980] with $\overline{\text{DR}}$ input parameters $t_{\beta}(Q) = 50$, $\mu(Q) = -160$, $M_1(Q) = 140$, $A_f(Q) = 0$ at Q = 454.7 GeVNote: scale variation = **lower bound** of uncertainty

Summary and conclusions

Facts:

- 3–4 σ deviation between a_{μ}^{exp} and a_{μ}^{SM} \rightarrow might be due to by BSM physics!
- $a_{\mu}^{
 m BSM} \propto C rac{m_{\mu}^2}{M_{
 m BSM}^2}$
 - large for low BSM masses
 - can be enhanced by model-dependent factors $C \propto \tan \beta, \log(\frac{M_{\rm BSM}}{m_{\mu}}), \ldots$

Recommendations:

- prefer 2-loop calculations over 1-loop calculations (1-loop = LO, with many ambiguities)
- prefer on-shell calculations over $\overline{\text{DR}}$ calculations in the MSSM (to avoid large corrections to the smuon mass)
- avoid DR–OS parameter conversions, if large corrections present

Backup

$\tan\beta$ resummation

$$\begin{split} & [a_{\mu}]_{\tan\beta-\text{res.}} = [a_{\mu}]_{y_{f} \to \tilde{y}_{f}}, \\ & \tilde{y}_{f} = \frac{y_{f}}{1 + \Delta_{f}} (f = \mu, \tau, b) \\ & \Delta_{f} = \tan\beta\text{-enhanced contributions to } f \text{ self energy} \end{split}$$

Contributions to a_{μ}

