Update: Higgs mass prediction in BSM models with FlexibleSUSY using an EFT calculation with M_h matching

Higgs mass prediction in the THDM from high-scale SUSY

Peter Athron, Emanuele Bagnaschi, Georg Weiglein, Jae-hyeon Park, Tom Steudtner, Dominik Stöckinger, Alexander Voigt

KUTS 2016 Madrid

15.-17.06.2016

Contents

What is FlexibleSUSY?

Approaches to predict M_h Full model approach EFT approach with Γ matching EFT approach with M_h matching

Solution Numerical comparison of the approaches Comparison of full model approaches Uncertainty estimation

• M_h in the THDM

Summary

Contents

What is FlexibleSUSY?

- Approaches to predict M_h Full model approach EFT approach with Γ matching EFT approach with M_h matchin
- Output: Numerical comparison of the approaches Comparison of full model approaches Uncertainty estimation
- M_h in the THDM

6 Summary

FlexibleSUSY = spectrum generator generator

FlexibleSUSY

Contents

What is FlexibleSUSY?

Approaches to predict M_h Full model approach EFT approach with Γ matching EFT approach with M_h matching

Oumerical comparison of the approaches Comparison of full model approaches Uncertainty estimation

• M_h in the THDM

6 Summary

Full model approach

Idea: Calculate M_h in the MSSM at the scale $Q = M_S$ as a function of the $\overline{\text{DR}}$ parameters:

$$g_i, y_{ij}^f, v_i, \mu, B\mu, m_{H_i}^2, m_{\tilde{f},ij}^2, M_i, T_{ij}^f$$

Full model approach

$$(M_h^{MSSM})^2 = \text{smallest eigenvalue of} \\ \left[(m_h^{MSSM})^2 - \Sigma_h^{MSSM} ((M_h^{MSSM})^2, M_S) + \frac{t_h^{MSSM}}{v} \right]_{ij}$$

Advantage: includes all 1L terms $O(p^2/M_5^2)$ Disadvantage: suffers from large logarithms $\propto \log(M_t/M_S)$ if $M_S \gg M_t$

EFT approach

Idea: Calculate M_h in the SM at the scale $Q = M_t$ as a function of the $\overline{\text{MS}}$ parameters:

g_i, y^f_{ij}, v,
$$\mu^2$$
, λ

EFT approach with Γ matching

Determine $\lambda(M_S)$ from mathching all $\Gamma^{(k)}_{\phi_1,...,\phi_n}(p^2 = 0, Q = M_S)$: \Rightarrow

$$\lambda(M_S) = \frac{1}{4} \left[g_Y^2 + g_2^2 \right] \cos^2 2\beta + \Delta \lambda$$

RG running to $Q = M_t \Rightarrow$

$$(M_h^{\mathrm{SM}})^2 = \lambda v^2 - \Sigma_h^{\mathrm{SM}}((M_h^{\mathrm{SM}})^2) + rac{t_h^{\mathrm{SM}}}{v}$$

Advantage: resums large logarithms $\propto \log(M_t/M_S)$ **Disadvantage:** difficult to automatize; neglects terms $O(p^2/M_S^2)$ from SUSY particles if performed at 1L-level only

EFT approach with M_h matching

$$M_h^{\text{SM}} \stackrel{!}{=} M_h^{\text{MSSM}}$$
 at $Q = M_S, 1L$

with

$$(M_h^{ ext{SM}})^2 = \lambda(M_S)v^2 - \Sigma_h^{ ext{SM}}(M_h^2) + rac{t_h^{ ext{SM}}}{v}
onumber \ (M_h^{ ext{MSSM}})^2 = (m_h^{ ext{MSSM}})^2 - \Sigma_h^{ ext{MSSM}}(M_h^2) + rac{t_h^{ ext{MSSM}}}{v}$$

 \Rightarrow

$$\lambda(M_{S}) = \frac{1}{v^{2}} \left[(m_{h}^{\text{MSSM}})^{2} - \Sigma_{h}^{\text{MSSM}} + \frac{t_{h}^{\text{MSSM}}}{v} + \Sigma_{h}^{\text{SM}} - \frac{t_{h}^{\text{SM}}}{v} \right]$$

EFT approach with M_h matching

Next step: RG running to $Q = M_t$ \Rightarrow

$$M_h^2 = \lambda(M_t)v^2 - \Sigma_h^{\mathsf{SM}}(M_h^2) + rac{t_h^{\mathsf{SM}}}{v}$$

EFT approach with M_h matching

Advantages:

- easily automatizable
- resums large logarithms $log(M_t/M_S)$ due to RG running
- includes all 1L terms $O(p^n/M_S^n, v^n/M_S^n)$

Disadvantage:

- large logs in matching cancel only in SM limit $\cos(eta-lpha)
 ightarrow 0$
- only 1L calculation so far

Contents

What is FlexibleSUSY?

 Approaches to predict M_h Full model approach EFT approach with Γ matching EFT approach with M_h matching

 Numerical comparison of the approaches Comparison of full model approaches Uncertainty estimation

• M_h in the THDM

6 Summary

Comparison full model vs. EFT approach

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

Comparison full model vs. EFT approach

Q: Why is FlexibleSUSY/MSSM so close to the EFT approaches and SPheno so far off?

Calculation of $y_t^{\text{MSSM}}(M_Z)$

A: Different treatment of 2-loop corrections to $y_t^{MSSM}(M_Z)$:

FlexibleSUSY:

$$m_{t} = M_{t} + \operatorname{Re}\left[\widetilde{\Sigma}_{t}^{(1),S}(M_{t})\right] + M_{t}\operatorname{Re}\left[\widetilde{\Sigma}_{t}^{(1),L}(M_{t}) + \widetilde{\Sigma}_{t}^{(1),R}(M_{t})\right] \\ + M_{t}\left[\widetilde{\Sigma}_{t}^{(1),\operatorname{qcd}}(m_{t}) + \left(\widetilde{\Sigma}_{t}^{(1),\operatorname{qcd}}(m_{t})\right)^{2} + \widetilde{\Sigma}_{t}^{(2),\operatorname{qcd}}(m_{t})\right]$$

SPheno:

$$m_t = M_t + \operatorname{Re}\left[\widetilde{\Sigma}_t^{(1),S}(m_t)\right] + \frac{m_t}{m_t} \operatorname{Re}\left[\widetilde{\Sigma}_t^{(1),L}(m_t) + \widetilde{\Sigma}_t^{(1),R}(m_t)\right] \\ + m_t\left[\widetilde{\Sigma}_t^{(1),\operatorname{qcd}}(m_t) + \widetilde{\Sigma}_t^{(2),\operatorname{qcd}}(m_t)\right]$$

Calculation of $y_t^{MSSM}(M_Z)$

$$\Rightarrow \\ \tilde{y}_t^{\text{FlexibleSUSY}} = y_t + t^2 \kappa^2 \left(\frac{184}{9} g_3^4 y_t - 24 g_3^2 y_t^3 + \frac{9}{8} y_t^5 \right) + \dots \\ \tilde{y}_t^{\text{SPheno}} = y_t + t^2 \kappa^2 \left(\frac{248}{9} g_3^4 y_t - 16 g_3^2 y_t^3 + \frac{27}{8} y_t^5 \right) + \dots$$

with

$$\begin{array}{ll} y_t \equiv y_t^{\rm SM}(M_S), & g_3 \equiv g_3^{\rm SM}(M_S), \\ \tilde{y}_t \equiv y_t^{\rm MSSM}(M_S), & \tilde{g}_3 \equiv g_3^{\rm MSSM}(M_S), \\ t \equiv \log \frac{M_S}{M_t}, & \kappa \equiv \frac{1}{(4\pi)^2} \end{array}$$

Calculation of $y_t^{MSSM}(M_Z)$

(

$$\begin{split} (\mathcal{M}_{h}^{2})^{\mathsf{EFT}} &= m_{h}^{2} + v^{2}y_{t}^{4} \Big[12t\kappa + 12t^{2}\kappa^{2} \left(16g_{3}^{2} - 9y_{t}^{2} \right) \\ &\quad + 4t^{3}\kappa^{3} \left(736g_{3}^{4} - 672g_{3}^{2}y_{t}^{2} + 90y_{t}^{4} \right) + \dots \Big], \\ \mathcal{M}_{h}^{2})^{\mathsf{FlexibleSUSY}} &= m_{h}^{2} + v^{2}y_{t}^{4} \Big[12t\kappa + 12t^{2}\kappa^{2} \left(16g_{3}^{2} - 9y_{t}^{2} \right) \\ &\quad + 4t^{3}\kappa^{3} \left(\frac{736g_{3}^{4}}{3} - 288g_{3}^{2}y_{t}^{2} + \frac{27y_{t}^{4}}{2} \right) + \dots \Big], \\ (\mathcal{M}_{h}^{2})^{\mathsf{SPheno}} &= m_{h}^{2} + v^{2}y_{t}^{4} \Big[12t\kappa + 12t^{2}\kappa^{2} \left(16g_{3}^{2} - 9y_{t}^{2} \right) \\ &\quad + 4t^{3}\kappa^{3} \left(\frac{992g_{3}^{4}}{3} - 192g_{3}^{2}y_{t}^{2} + \frac{81y_{t}^{4}}{2} \right) + \dots \Big]. \end{split}$$

Uncertainty estimation in the full model approach

Parametrize difference between FlexibleSUSY and SPheno by adding

$$\Delta m_t = \frac{C_3 g_3^4 M_t}{(4\pi)^4} \log^2 \frac{M_S}{M_Z}$$

In the MSSM: $C_3 = -184/9 \approx 20$ [hep-ph/0210258]

Uncertainty estimation in the full model approach

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

Uncertainty estimation in the full model approach

Parametrize missing 2L threshold corrections by adding

$$egin{aligned} \Delta\lambda^{(2)}_{(lpha^2_tlpha_s)} &= rac{g_3^2(y^{ ext{SM}}_t)^4}{(4\pi)^4} imes C_1 \ \Delta\lambda^{(2)}_{(lpha^4_t)} &= rac{(y^{ ext{SM}}_t)^6}{(4\pi)^4} imes C_2 \end{aligned}$$

In the MSSM for $X_t \in [-3M_S, +3M_S]$, $\tan \beta \in [1, \infty]$ [1407.4081,1504.05200]:

 $\begin{array}{l} C_1 \in [-314,231] \\ C_2 \in [-6,489] \end{array}$

Problem: This is most likely an over-estimate of the EFT uncertainty for small X_t , because for small X_t the 2L corrections to λ are small.

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

Probably better: Change calculation of λ by higher-order terms: For example, use $y_t^{\rm MSSM,(0)}$ vs. $y_t^{\rm MSSM,(1)}$ in

$$\lambda(M_{\mathcal{S}}) = \frac{1}{v^2} \left[(m_h^{\text{MSSM}})^2 - \Sigma_h^{\text{MSSM}} + \frac{t_h^{\text{MSSM}}}{v} + \Sigma_h^{\text{SM}} - \frac{t_h^{\text{SM}}}{v} \right]$$

where

$$y_t^{\text{MSSM},(0)} = \frac{y_t^{\text{SM}}}{s_{\beta}}$$
$$y_t^{\text{MSSM},(1)} = \frac{y_t^{\text{SM}}}{s_{\beta}} + \frac{\sqrt{2}}{s_{\beta}v} \left[\Sigma_t^{\text{MSSM}} - \Sigma_t^{\text{SM}} \right]$$

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

Comparison of full model and $EFT-M_h$ approach

Comparison of full model and $EFT-M_h$ approach

Conclusion of uncertainty estimations

Full model approach (2L):

(C_3 and Q uncertainties added linearly)

$M_S/{ m TeV}$	X_t/M_S	$\Delta M_h/{ m GeV}$	X_t/M_S	$\Delta M_h/{ m GeV}$
1	0	±1.3	2	±2.0
2	0	± 2.1	2	±3.0
10	0	± 4.5	2	± 5.5

EFT- M_h approach (1L): ($y_t^{(i)}$ and Q uncertainties added linearly)

$M_S/{ m TeV}$	X_t/M_S	$\Delta M_h/{ m GeV}$	X_t/M_S	$\Delta M_h/{ m GeV}$
1	0	±1.0	2	±3.1
2	0	± 1.0	2	± 3.1
10	0	± 1.1	2	±2.8

Contents

What is FlexibleSUSY?

- **2** Approaches to predict M_h
 - Full model approach EFT approach with Γ matching EFT approach with M_h matching
- Numerical comparison of the approaches Comparison of full model approaches Uncertainty estimation

• M_h in the THDM

6 Summary

M_h in the THDM

Wagner/Lee [1508.00576]:

$$\lambda_i(M_S) = \kappa O(y_{t,b,\tau}^4 + g_i^2 y_{t,b,\tau}^2) + \kappa^2 O(g_i^2 y_{t,b,\tau}^4)$$

Nierste et.al.: [0901.2065]:

$$\lambda_i(M_S) = \kappa O(y_{jk}^4 + g_i^2 y_{jk}^2 + g_i^4)$$

M_h in the THDM

M_h in the THDM + Higgsinos + gauginos

M_h in the THDM as function of M_S

 $\Delta \alpha_s(M_Z) = 0.0006$ [PDG], $\Delta M_t = 0.98$ GeV [arXiv:1403.4427], $Q \in [M_t/2, 2M_t]$
M_h in the THDM as function of M_S

 $\Delta \alpha_s(M_Z) = 0.0006$ [PDG], $\Delta M_t = 0.98$ GeV [arXiv:1403.4427], $Q \in [M_t/2, 2M_t]$

M_h in the THDM + \tilde{h}_i + \tilde{g}_i as function of M_S

 $\Delta \alpha_s(M_Z) = 0.0006$ [PDG], $\Delta M_t = 0.98$ GeV [arXiv:1403.4427], $Q \in [M_t/2, 2M_t]$

M_h in the THDM + \tilde{h}_i + \tilde{g}_i as function of M_S

 $\Delta \alpha_s(M_Z) = 0.0006$ [PDG], $\Delta M_t = 0.98$ GeV [arXiv:1403.4427], $Q \in [M_t/2, 2M_t]$

Summary

\mathbf{EFT} - M_h approach

- full model approach suffers from large logs $\propto \log(M_t/M_S)$ if $M_S \gg M_t$
- EFT- λ approach resums large logs, but difficult to automatize (also misses 1L terms $O(p^2/M_5^2)$ if performed at 1L-level only)
- EFT-*M_h* approach
 - can be automatized easily \rightarrow incorporation into <code>FlexibleSUSY</code>
 - resums large logs $\propto \log(M_t/M_S)$
 - includes all 1L terms $O(p^n/M_S^n, v^n/M_S^n)$
 - large logs cancel only in SM limit
 - more accurate than full model approach for $M_S\gtrsim 3\,{
 m TeV}$
 - Todo: perform matching and calculation of M_h at 2-loop level

THDM (+ Higgsinos + Gauginos):

- Effect of threshold corrections $\kappa O(g_i^4)$ on M_h less than 1 GeV
- Uncertainty from variation of Q and M_t : max. $\pm 2 \text{ GeV}$

Backup

MRSSM

Equivalence of EFT- λ and EFT- M_h approach

Equivalence EFT- λ and EFT- M_h approach $O(\hbar y_t^4)$

$$M_h^{ ext{SM}} \stackrel{!}{=} M_h^{ ext{MSSM}}$$
 at $Q = M_{\mathcal{S}}, 1L$

where

$$(M_h^{\text{SM}})^2 = \lambda v^2 - \sum_h^{\text{SM}} + t_h^{\text{SM}}/v$$
$$t_h^{\text{SM}}/v = -6(y_t^{\text{SM}})^2 A_0(m_t)/(4\pi)^2$$

and [neglecting stop mass mixing $O(m_t X_t/M_S^2)$]

$$(M_h^{\text{MSSM}})^2 = \frac{1}{4} (g_Y^2 + g_2^2) (v_u^2 + v_d^2) c_{2\beta}^2 - \Sigma_h^{\text{MSSM}} + t_h^{\text{MSSM}} / v$$

$$\Sigma_h^{\text{MSSM}} = \sum_h^{\text{SM}} \frac{c_\alpha^2}{s_\beta^2} + 3 \frac{(y_t^{\text{SM}})^2}{(4\pi)^2} \frac{c_\alpha^2}{s_\beta^2} \Big\{ A_0(m_{Q_3}) + A_0(m_{U_3}) + 2m_t \big[B_0(m_{Q_3}, m_{Q_3}) + B_0(m_{U_3}, m_{U_3}) \big] \Big\}$$

$$t_h^{\text{MSSM}} / v = -3 \frac{(y_t^{\text{SM}})^2}{(4\pi)^2} \frac{c_\alpha^2}{s_\beta^2} \Big[2A_0(m_t) - A_0(m_{Q_3}) - A_0(m_{U_3}) \Big]$$

40 / 40

Equivalence EFT- λ and EFT- M_h approach $O(\hbar y_t^4)$

$$\begin{split} & \text{in SM limit } \frac{c_{\alpha}^2}{s_{\beta}^2} \to 1 \\ \Rightarrow \\ & \lambda = \frac{1}{4} (g_Y^2 + g_2^2) c_{2\beta}^2 \\ & - 3 \frac{(y_t^{\text{SM}})^4}{(4\pi)^2} \Big[B_0(p^2, m_{Q_3}, m_{Q_3}) + B_0(p^2, m_{U_3}, m_{U_3}) \Big] \\ & = \frac{1}{4} (g_Y^2 + g_2^2) c_{2\beta}^2 \\ & - 3 \frac{(y_t^{\text{SM}})^4}{(4\pi)^2} \Big[-\log \frac{m_{Q_3}^2}{Q^2} + \frac{p^2}{6m_{Q_3}^2} + O\Big(\frac{p^4}{m_{Q_3}^4}\Big) \\ & -\log \frac{m_{U_3}^2}{Q^2} + \frac{p^2}{6m_{U_3}^2} + O\Big(\frac{p^4}{m_{U_3}^4}\Big) \Big] \\ & = [\text{Bagnaschi et. al. 2014}] + O\Big(\frac{p^2}{m_{Q_3}^2}\Big) + O\Big(\frac{p^2}{m_{U_3}^2}\Big) \end{split}$$

Determination of MSSM parameters

Determination of MSSM parameters

Fixed by observables:

Input				Output
$\alpha_{\rm em}^{\rm SM(5)}(M_Z)$	\rightarrow	$\alpha_{\rm em}^{\rm MSSM}(M_Z)$	\rightarrow	$g_1^{\text{MSSM}}(M_Z)$
G _F	\rightarrow	$\sin \theta_W^{\text{MSSM}}(M_Z)$	\rightarrow	$g_2^{MSSM}(M_Z)$
$\alpha_{\rm s}^{\rm SM(5)}(M_Z)$			\rightarrow	$g_3^{\text{MSSM}}(M_Z)$
Mz	\rightarrow	$m_Z^{\text{MSSM}}(M_Z)$	\rightarrow	$v^{MSSM}(M_Z)$
M _t	\rightarrow	$m_t^{\overline{\text{MSSM}}(M_Z)}$	\rightarrow	$y_t^{\text{MSSM}}(M_Z)$
$m_b^{SM(5)}(m_b)$	\rightarrow	$m_b^{\text{MSSM}}(M_Z)$	\rightarrow	$y_b^{\text{MSSM}}(M_Z)$
$\tilde{M_{ au}}$	\rightarrow	$m_{\tau}^{\tilde{M}SSM}(M_Z)$	\rightarrow	$y_{\tau}^{MSSM}(M_Z)$

Fixed by 2 EWSB conditions: $m_{H_u}^2$, $m_{H_d}^2$

Free parameters: tan β , μ , $B\mu$, $m_{\tilde{f},ij}^2$, M_i , T_{ij}^f

Determination of SM parameters

Fixed by observables:

Input				Output
$\alpha_{\rm em}^{\rm SM(5)}(M_Z)$	\rightarrow	$\alpha_{\rm em}^{\rm SM}(M_Z)$	\rightarrow	$g_1^{\rm SM}(M_Z)$
G _F	\rightarrow	$\sin \theta_W^{\rm SM}(M_Z)$	\rightarrow	$g_2^{SM}(M_Z)$
$\alpha_{s}^{SM(5)}(M_{Z})$			\rightarrow	$g_3^{\rm SM}(M_Z)$
M_Z	\rightarrow	$m_Z^{SM}(M_Z)$	\rightarrow	$v^{SM}(M_Z)$
M _t	\rightarrow	$m_t^{\overline{S}M}(M_Z)$	\rightarrow	$y_t^{SM}(M_Z)$
$m_b^{\mathrm{SM}(5)}(m_b)$	\rightarrow	$m_b^{SM}(M_Z)$	\rightarrow	$y_b^{SM}(M_Z)$
$M_{ au}$	\rightarrow	$m_{ au}^{SM}(M_Z)$	\rightarrow	$y_{ au}^{SM}(M_Z)$

Fixed by 1 EWSB condition: μ^2

Free parameter: λ

Determination of $g_3^{MSSM}(M_S)$

$$\alpha_{\rm s}^{\rm MSSM}(M_{\rm S}) = \frac{\alpha_{\rm s}^{\rm SM}(M_{\rm S})}{1 - \Delta \alpha_{\rm s}(M_{\rm S})}$$

with

$$\Delta \alpha_{\rm s}(Q) = \frac{\alpha_{\rm s}}{2\pi} \left[\frac{1}{2} - \sum_{\text{SUSY particle } f} T_f \log \frac{m_f}{Q} \right]$$

 \Rightarrow

$$g_3^{\text{MSSM}}(M_S) = \sqrt{4\pi \alpha_s^{\text{MSSM}}(M_S)}$$

Determination of $v_i^{MSSM}(M_S)$

 \Rightarrow

 \Rightarrow

$$M_Z^{\rm SM} = M_Z^{\rm MSSM}$$

$$(m_Z^{\text{MSSM}}(M_S))^2 = (M_Z^{\text{SM}})^2 + \Pi_Z^{\text{MSSM},1L}(Q = M_S)$$
$$(M_Z^{\text{SM}})^2 = \frac{1}{4} \left[(g_Y^{\text{SM}})^2 + (g_2^{\text{SM}})^2 \right] (v^{\text{SM}})^2 - \Pi_Z^{\text{SM},1L}(Q = M_S)$$
$$\Rightarrow$$

$$v^{ ext{MSSM}}(M_S) = rac{2m_Z^{ ext{MSSM}}(M_S)}{\sqrt{(g_Y^{ ext{MSSM}})^2 + (g_2^{ ext{MSSM}})^2}}$$

$$v_u^{\text{MSSM}}(M_S) = v^{\text{MSSM}}(M_S) \sin \beta(M_S)$$
$$v_d^{\text{MSSM}}(M_S) = v^{\text{MSSM}}(M_S) \cos \beta(M_S)$$

Determination of $y_i^{MSSM}(M_S)$

 \Rightarrow

 \Rightarrow

$$M_f^{\rm SM} = M_f^{\rm MSSM}$$

$$m_f^{ ext{MSSM}}(M_S) = M_f^{ ext{SM}} + \Sigma_f^{ ext{MSSM},1L}(Q = M_S)$$
 $M_f^{ ext{SM}} = rac{\sqrt{2}m_f^{ ext{SM}}}{v_i^{ ext{SM}}} - \Sigma_f^{ ext{SM},1L}(Q = M_S)$

$$y_f^{\text{MSSM}}(M_S) = \frac{\sqrt{2}m_f^{\text{MSSM}}(M_S)}{v_i^{\text{MSSM}}(M_S)}$$

40 / 40

Determination of SM parameters

Determination of $g_3^{SM}(M_Z)$

Input:
$$\alpha_{s}^{SM(5)}(M_{Z}) = 0.1185$$

$$\alpha_{\rm s}^{\rm SM}(M_Z) = \frac{\alpha_{\rm s}^{\rm SM(5)}(M_Z)}{1 - \Delta \alpha_{\rm s}(M_Z)}$$

with

 \rightarrow

$$\Delta \alpha_{\rm s}(Q) = \frac{\alpha_{\rm s}}{2\pi} \left[-\frac{2}{3} \log \frac{m_t}{Q} \right]$$

 \Rightarrow

$$g_3^{\rm SM}(M_Z) = \sqrt{4\pi \alpha_{\rm s}^{\rm SM}(M_Z)}$$

Determination of $y_t^{SM}(M_Z)$

$$y_t^{\rm SM}(M_Z) = \frac{\sqrt{2} \, m_t^{\rm SM}(M_Z)}{v(M_Z)}$$

where

$$\begin{split} m_t^{\rm SM}(Q) &= M_t + {\rm Re}\,\Sigma_t^S(M_Z) + M_t \Big[\,{\rm Re}\,\Sigma_t^L(M_Z) \\ &+ {\rm Re}\,\Sigma_t^R(M_Z) + \Delta m_t^{1L,{\rm gluon}} + \Delta m_t^{2L,{\rm gluon}} \Big] \\ \Delta m_t^{1L,{\rm gluon}} &= -\frac{g_3^2}{12\pi^2} \left[4 - 3\log\left(\frac{m_t^2}{Q^2}\right) \right] \\ \Delta m_t^{2L,{\rm gluon}} &= \left(\Delta m_t^{1L,{\rm gluon}}\right)^2 \\ &- \frac{g_3^4}{4608\pi^4} \bigg[396\log^2\left(\frac{m_t^2}{Q^2}\right) - 2028\log\left(\frac{m_t^2}{Q^2}\right) \\ &- 48\zeta(3) + 2821 + 16\pi^2(1 + \log 4) \bigg] \end{split}$$

40 / 40

Determination of v^{SM}

The VEV v^{SM} is calculated from the running Z mass at $Q = M_Z$:

$$v^{\text{SM}}(M_Z) = \frac{2m_Z^{\text{SM}}(M_Z)}{\sqrt{g_Y^2 + g_2^2}}$$
$$m_Z^{\text{SM}}(M_Z) = \sqrt{M_Z^2 + \Pi_Z^{1L}(p^2 = M_Z^2, Q = M_Z)}$$

 v^{SM} evolves under RG running according to [Sperling, Stöckinger, AV, 2013, 2014]

X_t dependence

(default algorithm: 1L matching SM \rightarrow MSSM)

$$\tan\beta = 5$$

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

 $aneta=5,\ X_t=\sqrt{6},\ X_{b, au}=0$

 $\tan \beta = 5, X_t = \sqrt{6}, X_{b,\tau} = 0$ (0L matching SM \rightarrow MSSM)

$$\tan\beta = 20$$

aneta=20, $X_{t,b, au}=0$

aneta=20, $X_t=\sqrt{6}$, $X_{b, au}=0$

 $\tan \beta = 20, X_t = \sqrt{6}, X_{b,\tau} = 0 \ (0L \text{ matching SM} \rightarrow \text{MSSM})$

X_t dependence

(default algorithm: 1L matching SM \rightarrow MSSM)

aneta= 5, $X_{b, au}=$ 0, $M_{S}=1\,{
m TeV}$

 $aneta=5,\ X_{b, au}=0,\ M_S=10\,{
m TeV}$

 $\tan\beta=20,\ X_{b,\tau}=0,\ M_{S}=2\,{\rm TeV}$

X_t dependence (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 100 GeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 200 GeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 300 GeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 400 GeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 500 GeV (0L matching SM \rightarrow MSSM)

 $\tan \beta = 5$, $X_{b,\tau} = 0$, $M_S = 1$ TeV (0L matching SM \rightarrow MSSM)

 $\tan \beta = 5$, $X_{b,\tau} = 0$, $M_S = 10$ TeV (0L matching SM \rightarrow MSSM)

Comparison with other spectrum generators

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

FlexibleSUSY's Weltanschauung

- Model is defined in terms of Lagrangian parameters: g_i, y_{ij}, v_i, \dots in the $\overline{MS}/\overline{DR}$ scheme
- Input parameters: $\alpha_{\text{em,SM}}^{(5),\overline{\text{MS}}}(M_Z), \ \alpha_{\text{s,SM}}^{(5),\overline{\text{MS}}}(M_Z), \ M_Z, \ M_t, \ G_F, \ \dots$
- Output parameters: m_h, M_h, ...

Physical problem statement for the SM

Algorithm to calculate the model parameters consistent with all BCs

