Higgs mass prediction in BSM models with FlexibleSUSY using an automatized EFT approach

Tom Steudtner, Dominik Stöckinger, Alexander Voigt

KUTS 2016 Heidelberg

21.01.2016

Contents

What is FlexibleSUSY?

2 Approaches to predict M_h

Full model approach EFT approach Automatic EFT approach Equivalence of EFT and automatic EFT approach

③ Numerical comparison of the approaches

4 Summary

Contents

1 What is FlexibleSUSY?

2 Approaches to predict M_h

Full model approach EFT approach Automatic EFT approach Equivalence of EFT and automatic EFT approach

3 Numerical comparison of the approaches

4 Summary

FlexibleSUSY = spectrum generator generator

FlexibleSUSY

Generating a spectrum generator

Available models with MSSM high-scale origin

Model	RGEs	h self-energy contributions	matching conditions to the MSSM	
MSSM ("full model")	3L	$1L + 2L O((\alpha_t + \alpha_b)\alpha_s) + 2L O((\alpha_t + \alpha_b)^2)$	-	
THDM	2L	1L	1L $\lambda_i O((\alpha_t + \alpha_b + \alpha_\tau)\alpha_i)$ + 2L $\lambda_i O(\alpha_t^2 \alpha_s)$ [1508.00576]	
$THDM + \tilde{h}_i$	2L	1L	$\begin{array}{l} 1L \ \lambda_i \ \mathcal{O}((\alpha_t + \alpha_b + \alpha_\tau)\alpha_i) \\ + \ 2L \ \lambda_i \ \mathcal{O}(\alpha_t^2\alpha_s) \ {}_{1508.00576]} \end{array}$	
THDM + split	2L	1L	1L $\lambda_i O((\alpha_t + \alpha_b + \alpha_\tau)\alpha_i)$ + 2L $\lambda_i O(\alpha_t^2 \alpha_s)$ [1508.00576]	
SM+split	2L	$1L + 2L O(\alpha_t(\alpha_s + \alpha_t)) + 3L gluino O(\alpha_t \alpha_s^2)$	1L $\tilde{g}_{ij} O(\alpha_t + \alpha_i)$ + 1L $\lambda O((\alpha_t + \alpha_i)^2)$ + 2L $\lambda O(\alpha_s \alpha_t^2)$ [1407.4081]	
SM ("EFT")	3L	$1L + 2L \ \mathcal{O}(\alpha_t(\alpha_s + \alpha_t))$	$ \begin{array}{l} 1L \ \lambda \ \mathcal{O}((\alpha_t + \alpha_i)^2 + \alpha_b^2 + \alpha_\tau^2) \\ + \ 2L \ \lambda \ \mathcal{O}((\alpha_s + \alpha_t)\alpha_t^2) \\ \end{array} \\ \left[^{1407.4081, \ 1504.05200]} \end{array} $	
SM ("automatic EFT")	3L	1L	1L λ + $O(p^2/M_S^2)$ terms	

Contents

What is FlexibleSUSY?

2 Approaches to predict M_h

Full model approach EFT approach Automatic EFT approach Equivalence of EFT and automatic EFT approach

S Numerical comparison of the approaches

4 Summary

Full model approach

Idea: Calculate M_h in the MSSM as a function of the \overline{DR} parameters:

$$g_i, y_{ij}^f, v_i, \mu, B\mu, m_{H_i}^2, m_{\tilde{f},ij}^2, M_i, T_{ij}^f$$

Full model approach

-

Fixed by observables:

Input				Output
$\alpha_{\rm em}^{\rm SM(5)}(M_Z)$	\rightarrow	$\alpha_{\rm em}^{\rm MSSM}(M_Z)$	\rightarrow	$g_1^{\text{MSSM}}(M_Z)$
G _F	\rightarrow	$\sin \theta_W^{\text{MSSM}}(M_Z)$	\rightarrow	$g_2^{MSSM}(M_Z)$
$\alpha_{\rm s}^{\rm SM(5)}(M_Z)$			\rightarrow	$g_3^{\text{MSSM}}(M_Z)$
Mz	\rightarrow	$m_Z^{\text{MSSM}}(M_Z)$	\rightarrow	$v^{MSSM}(M_Z)$
M _t	\rightarrow	$m_t^{\overline{\text{MSSM}}(M_Z)}$	\rightarrow	$y_t^{\text{MSSM}}(M_Z)$
$m_b^{SM(5)}(m_b)$	\rightarrow	$m_{b}^{\text{MSSM}}(M_{Z})$	\rightarrow	$y_{b}^{\text{MSSM}}(M_{Z})$
$\tilde{M_{ au}}$	\rightarrow	$m_{\tau}^{\tilde{M}SSM}(M_Z)$	\rightarrow	$y_{\tau}^{MSSM}(M_Z)$

Fixed by 2 EWSB conditions: $m_{H_u}^2$, $m_{H_d}^2$

Free parameters: tan β , μ , $B\mu$, $m_{\tilde{f},ij}^2$, M_i , T_{ij}^f

Full model approach

$$(M_h^{\text{MSSM}})^2 = \text{smallest eigenvalue of} \\ \left[(m_h^{\text{MSSM}})^2 - \Sigma_h^{\text{MSSM}} (p^2 = (M_h^{\text{MSSM}})^2, Q = M_S) \right]_{ij}$$

Advantage: includes terms $O(p^2/M_S^2)$ Disadvantage: suffers from large logarithms $\propto \log(M_Z/M_S)$ if $M_S \gg M_Z$

EFT approach

Idea: Calculate M_h in the SM as a function of the $\overline{\text{MS}}$ parameters:

$$g_i$$
, y_{ij}^f , v, μ^2 , λ

EFT approach

Fixed by observables:

Input				Output
$\alpha_{\rm em}^{\rm SM(5)}(M_Z)$	\rightarrow	$\alpha_{\rm em}^{\rm SM}(M_Z)$	\rightarrow	$g_1^{\rm SM}(M_Z)$
G _F	\rightarrow	$\sin \theta_W^{\rm SM}(M_Z)$	\rightarrow	$g_2^{SM}(M_Z)$
$\alpha_{s}^{SM(5)}(M_{Z})$			\rightarrow	$g_3^{SM}(M_Z)$
M_Z	\rightarrow	$m_Z^{SM}(M_Z)$	\rightarrow	$v^{SM}(M_Z)$
M _t	\rightarrow	$m_t^{\overline{S}M}(M_Z)$	\rightarrow	$y_t^{SM}(M_Z)$
$m_b^{\mathrm{SM}(5)}(m_b)$	\rightarrow	$m_b^{SM}(M_Z)$	\rightarrow	$y_b^{SM}(M_Z)$
$M_{ au}$	\rightarrow	$m_{ au}^{SM}(M_Z)$	\rightarrow	$y_{ au}^{SM}(M_Z)$

Fixed by 1 EWSB condition: μ^2

Free parameter: λ

EFT approach: matching all $\Gamma_{\phi_1,...,\phi_n}(Q = M_S)$

Determine $\lambda(M_S)$ from mathching all $\Gamma_{\phi_1,...,\phi_n}(Q = M_S)$:

$$\frac{\partial}{\partial p^2} \Gamma_{hh}^{SM}(p^2 = 0, Q = M_S) = \frac{\partial}{\partial p^2} \Gamma_{hh}^{MSSM}(p^2 = 0, Q = M_S)$$
$$\Gamma_{hhhh}^{SM}(p^2 = 0, Q = M_S) = \Gamma_{hhhh}^{MSSM}(p^2 = 0, Q = M_S)$$

$$\lambda(M_S) = \frac{1}{4} \left[g_Y^2 + g_2^2 \right] \cos^2 2\beta + \Delta \lambda$$

RG running to $Q = M_Z \Rightarrow$

 \Rightarrow

$$(M_h^{\rm SM})^2 = \lambda(M_Z)v^2(M_Z) - \Sigma_h^{\rm SM}(p^2 = (M_h^{\rm SM})^2, Q = M_Z)$$

Advantage: resums large logarithms $\propto \log(M_Z/M_S)$ **Disadvantage:** difficult to automatize; neglects terms $O(p^2/M_S^2)$ from SUSY particles if performed at 1L-level only

Comparison full model vs. EFT approach

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

Comparison full model vs. EFT approach

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

Automatic EFT approach

Idea: Calculate M_h in the SM as a function of the $\overline{\text{MS}}$ parameters:

g_i, y
$$_{ij}^{f}$$
, v, μ^{2} , λ

where $\lambda(M_S)$ is determined numerically by the 1L matching condition $M_h^{\rm SM} \stackrel{!}{=} M_h^{\rm MSSM}$

Automatic EFT approach: matching M_h

$$M_h^{\text{SM}} \stackrel{!}{=} M_h^{\text{MSSM}}$$
 at $Q = M_S, 1L$

$$\Rightarrow$$

$$\lambda(M_{S}) = \frac{1}{\nu^{2}(M_{S})} \Big[(M_{h}^{\text{MSSM}})^{2} + \Sigma_{h}^{\text{SM},1L} (p^{2} = (M_{h}^{\text{SM}})^{2}, Q = M_{S}) \Big]$$

where

$$(M_h^{\text{SM}})^2 = \lambda(M_S)v^2(M_S) - \Sigma_h^{\text{SM},1L}(p^2 = (M_h^{\text{SM}})^2, Q = M_S)$$
$$(M_h^{\text{MSSM}})^2 = \text{smallest eigenvalue of}$$
$$\left[(m_h^{\text{MSSM}})^2 - \Sigma_h^{\text{MSSM},1L}(p^2 = (M_h^{\text{MSSM}})^2, Q = M_S) \right]_{ij}$$

Automatic EFT approach: matching M_h

Next step: RG running to $Q = M_Z$ \Rightarrow

$$(M_h^{\rm SM})^2 = \lambda(M_Z)v^2(M_Z) - \Sigma_h^{\rm SM,1L}(p^2 = (M_h^{\rm SM})^2, Q = M_Z)$$

Equivalence EFT and automatic EFT approach $O(\hbar y_t^4)$

$$M_h^{ ext{SM}} \stackrel{!}{=} M_h^{ ext{MSSM}}$$
 at $Q = M_S, 1L$

where

(

$$(M_h^{SM})^2 = \lambda v^2 - \sum_h^{SM} + t_h^{SM}$$

 $t_h^{SM} = -6(y_t^{SM})^2 A_0(m_t)/(4\pi)^2$

and [neglecting stop mass mixing $O(m_t X_t / M_S^2)$]

$$\begin{split} \mathcal{M}_{h}^{\text{MSSM}})^{2} &= \frac{1}{4} (g_{Y}^{2} + g_{2}^{2}) (v_{u}^{2} + v_{d}^{2}) c_{2\beta}^{2} - \Sigma_{h}^{\text{MSSM}} + t_{h}^{\text{MSSM}} \\ \Sigma_{h}^{\text{MSSM}} &= \Sigma_{h}^{\text{SM}} \frac{c_{\alpha}^{2}}{s_{\beta}^{2}} + 3 \frac{(y_{t}^{\text{SM}})^{2}}{(4\pi)^{2}} \frac{c_{\alpha}^{2}}{s_{\beta}^{2}} \Big\{ A_{0}(m_{Q_{3}}) + A_{0}(m_{U_{3}}) \\ &+ 2m_{t} \big[B_{0}(m_{Q_{3}}, m_{Q_{3}}) + B_{0}(m_{U_{3}}, m_{U_{3}}) \big] \Big\} \\ t_{h}^{\text{MSSM}} &= -3 \frac{(y_{t}^{\text{SM}})^{2}}{(4\pi)^{2}} \frac{c_{\alpha}^{2}}{s_{\beta}^{2}} \Big[2A_{0}(m_{t}) - A_{0}(m_{Q_{3}}) - A_{0}(m_{U_{3}}) \Big] \Big] \end{split}$$

Equivalence EFT and automatic EFT approach $O(\hbar y_t^4)$ in SM limit $\frac{c_{lpha}^2}{s_{lpha}^2}
ightarrow 1$ \Rightarrow $\lambda = \frac{1}{4}(g_Y^2 + g_2^2)c_{2\beta}^2$ $-3\frac{(y_t^{\rm SM})^4}{(4\pi)^2} \Big[B_0(p^2,m_{Q_3},m_{Q_3})+B_0(p^2,m_{U_3},m_{U_3})\Big]$ $=rac{1}{4}(g_Y^2+g_2^2)c_{2eta}^2$ 2 2 л

$$-3\frac{(y_t^{\text{JW}})^4}{(4\pi)^2} \Big[-\log\frac{m_{Q_3}^2}{Q^2} + \frac{p^2}{6m_{Q_3}^2} + O\Big(\frac{p^4}{m_{Q_3}^4}\Big) \\ -\log\frac{m_{U_3}^2}{Q^2} + \frac{p^2}{6m_{U_3}^2} + O\Big(\frac{p^4}{m_{U_3}^4}\Big) \Big]$$
$$= [\text{Bagnaschi et. al. 2014}] + O\Big(\frac{p^2}{m_{Q_3}^2}\Big) + O\Big(\frac{p^2}{m_{U_3}^2}\Big)$$

Summary of automatic EFT approach

Advantages:

- easily automatizable
- resums large logarithms $log(M_Z/M_S)$ due to RG running
- includes 1L terms $O(p^2/M_S^2)$ from SUSY particles
- incorporates SUSY particle mixings

Disadvantage:

- large logs in matching cancel only in SM limit $\cos(\beta \alpha) \rightarrow 0$
- only 1L calculation so far

Contents

What is FlexibleSUSY?

2 Approaches to predict M_h

Full model approach EFT approach Automatic EFT approach Equivalence of EFT and automatic EFT approach

3 Numerical comparison of the approaches

4 Summary

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

aneta=20, $X_{t,b, au}=0$

Summary

Summary:

- full model approach suffers from large logs $\propto \log(M_Z/M_S)$ if $M_S \gg M_Z$
- EFT approach resums large logs, but difficult to automatize (also misses 1L terms $O(p^2/M_S^2)$ if performed at 1L-level only)
- "automatic EFT" approach
 - can be automatized easily \rightarrow incorporation into <code>FlexibleSUSY</code>
 - resums large logs $\propto \log(M_Z/M_S)$
 - includes terms $O(p^2/M_S^2)$ at 1L
 - handles SUSY particle mixings
 - large logs cancel only in SM limit

Todo:

- perform matching and calculation of M_h at 2-loop level
- test non-SUSY and non-minimal SUSY models

Backup

Determination of MSSM parameters

Determination of $g_3^{MSSM}(M_S)$

$$\alpha_{\rm s}^{\rm MSSM}(M_{\rm S}) = \frac{\alpha_{\rm s}^{\rm SM}(M_{\rm S})}{1 - \Delta \alpha_{\rm s}(M_{\rm S})}$$

with

$$\Delta \alpha_{\rm s}(Q) = \frac{\alpha_{\rm s}}{2\pi} \left[\frac{1}{2} - \sum_{\text{SUSY particle } f} T_f \log \frac{m_f}{Q} \right]$$

$$g_3^{\text{MSSM}}(M_S) = \sqrt{4\pi lpha_s^{\text{MSSM}}(M_S)}$$

Determination of $v_i^{MSSM}(M_S)$

 \Rightarrow

$$M_Z^{\rm SM} = M_Z^{\rm MSSM}$$

$$(m_Z^{\text{MSSM}}(M_S))^2 = (M_Z^{\text{SM}})^2 + \Pi_Z^{\text{MSSM},1L}(Q = M_S)$$
$$(M_Z^{\text{SM}})^2 = \frac{1}{4} \left[(g_Y^{\text{SM}})^2 + (g_2^{\text{SM}})^2 \right] (v^{\text{SM}})^2 - \Pi_Z^{\text{SM},1L}(Q = M_S)$$
$$\Rightarrow$$

$$v^{ ext{MSSM}}(M_S) = rac{2m_Z^{ ext{MSSM}}(M_S)}{\sqrt{(g_Y^{ ext{MSSM}})^2 + (g_2^{ ext{MSSM}})^2}}$$

$$v_u^{\text{MSSM}}(M_S) = v^{\text{MSSM}}(M_S) \sin \beta(M_S)$$
$$v_d^{\text{MSSM}}(M_S) = v^{\text{MSSM}}(M_S) \cos \beta(M_S)$$

Determination of $y_i^{MSSM}(M_S)$

 \Rightarrow

$$M_f^{\rm SM} = M_f^{\rm MSSM}$$

$$m_f^{ ext{MSSM}}(M_S) = M_f^{ ext{SM}} + \Sigma_f^{ ext{MSSM},1L}(Q = M_S)$$
 $M_f^{ ext{SM}} = rac{\sqrt{2}m_f^{ ext{SM}}}{v_i^{ ext{SM}}} - \Sigma_f^{ ext{SM},1L}(Q = M_S)$

$$y_f^{\text{MSSM}}(M_S) = \frac{\sqrt{2}m_f^{\text{MSSM}}(M_S)}{v_i^{\text{MSSM}}(M_S)}$$

Determination of SM parameters

Determination of $g_3^{SM}(M_Z)$

Input:
$$\alpha_{s}^{SM(5)}(M_{Z}) = 0.1185$$

$$\alpha_{\rm s}^{\rm SM}(M_Z) = \frac{\alpha_{\rm s}^{\rm SM(5)}(M_Z)}{1 - \Delta \alpha_{\rm s}(M_Z)}$$

with

 \rightarrow

$$\Delta \alpha_{\rm s}(Q) = \frac{\alpha_{\rm s}}{2\pi} \left[-\frac{2}{3} \log \frac{m_t}{Q} \right]$$

$$g_3^{SM}(M_Z) = \sqrt{4\pi lpha_s^{SM}(M_Z)}$$

Determination of $y_t^{SM}(M_Z)$

$$y_t^{\rm SM}(M_Z) = \frac{\sqrt{2} \, m_t^{\rm SM}(M_Z)}{v(M_Z)}$$

where

$$\begin{split} m_t^{\rm SM}(Q) &= M_t + {\rm Re}\,\Sigma_t^S(M_Z) + M_t \Big[\,{\rm Re}\,\Sigma_t^L(M_Z) \\ &+ {\rm Re}\,\Sigma_t^R(M_Z) + \Delta m_t^{1L,{\rm gluon}} + \Delta m_t^{2L,{\rm gluon}}\Big] \\ \Delta m_t^{1L,{\rm gluon}} &= -\frac{g_3^2}{12\pi^2} \left[4 - 3\log\left(\frac{m_t^2}{Q^2}\right) \right] \\ \Delta m_t^{2L,{\rm gluon}} &= \left(\Delta m_t^{1L,{\rm gluon}}\right)^2 \\ &- \frac{g_3^4}{4608\pi^4} \bigg[396\log^2\left(\frac{m_t^2}{Q^2}\right) - 2028\log\left(\frac{m_t^2}{Q^2}\right) \\ &- 48\zeta(3) + 2821 + 16\pi^2(1 + \log 4) \bigg] \end{split}$$

25 / 25

Determination of v^{SM}

The VEV v^{SM} is calculated from the running Z mass at $Q = M_Z$:

$$v^{\text{SM}}(M_Z) = \frac{2m_Z^{\text{SM}}(M_Z)}{\sqrt{g_Y^2 + g_2^2}}$$
$$m_Z^{\text{SM}}(M_Z) = \sqrt{M_Z^2 + \Pi_Z^{1L}(p^2 = M_Z^2, Q = M_Z)}$$

 v^{SM} evolves under RG running according to [Sperling, Stöckinger, AV, 2013, 2014]

X_t dependence

(default algorithm: 1L matching SM \rightarrow MSSM)

$$\tan\beta = 5$$

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

an eta = 5, $X_t = \sqrt{6}$, $X_{b,\tau} = 0$

 $\tan \beta = 5, X_t = \sqrt{6}, X_{b,\tau} = 0$ (0L matching SM \rightarrow MSSM)

$$\tan\beta = 20$$

aneta=20, $X_{t,b, au}=0$

aneta=20, $X_t=\sqrt{6}$, $X_{b, au}=0$

an eta = 20, $X_t = \sqrt{6}$, $X_{b, au} = 0$ (0L matching SM ightarrow MSSM)

X_t dependence

(default algorithm: 1L matching SM \rightarrow MSSM)

aneta= 5, $X_{b, au}=$ 0, $M_{S}=1\,{
m TeV}$

 $aneta=5,\ X_{b, au}=0,\ M_S=10\,{
m TeV}$

 $\tan\beta=20,\ X_{b,\tau}=0,\ M_{S}=2\,{\rm TeV}$

X_t dependence (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 100 GeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 200 GeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 300 GeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 400 GeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 500 GeV (0L matching SM \rightarrow MSSM)

 $\tan \beta = 5$, $X_{b,\tau} = 0$, $M_S = 1$ TeV (0L matching SM \rightarrow MSSM)

tan β = 5, $X_{b,\tau}$ = 0, M_S = 10 TeV (0L matching SM \rightarrow MSSM)

Comparison with other spectrum generators

an eta = 5, $X_{t,b, au} = 0$

FlexibleSUSY's Weltanschauung

- Model is defined in terms of Lagrangian parameters: g_i, y_{ij}, v_i, \dots in the $\overline{MS}/\overline{DR}$ scheme
- Input parameters: $\alpha_{\text{em,SM}}^{(5),\overline{\text{MS}}}(M_Z), \ \alpha_{\text{s,SM}}^{(5),\overline{\text{MS}}}(M_Z), \ M_Z, \ M_t, \ G_F, \ \dots$
- Output parameters: m_h, M_h, ...

Physical problem statement for the SM

Algorithm to calculate the model parameters consistent with all BCs

