Improved precision in the constrained Exceptional Supersymmetric Standard Model (cE₆SSM)

Alexander Voigt

Technische Universität Dresden Institut für Kern- und Teilchenphysik

Helmholtz Alliance Workshop Dresden 01.–03. December 2010

1 The Exceptional Supersymmetric Standard Model (E₆SSM)

- Model motivation Model definition Constrained model (cE_6SSM)
- 2 Threshold corrections
- 3 Predicted mass spectrum
- Onclusion and outlook

Motivation by string theory

[F. del Aguila, G. A. Blair, M. Daniel, G. G. Ross, Nucl. Phys. B272 (1986)]

Alexander Voigt (TU Dresden)

Improved precision in the cE₆SSM

MSSM superpotential:

$$\mathcal{W}_{\text{MSSM}} = \mu H_d H_u - h^u_{ij} (H_u Q_i) u^c_j - h^d_{ij} (H_d Q_i) d^c_j - h^e_{ij} (H_d L_i) e^c_j$$

- bilinear term $\mu H_d H_u$ present before SUSY breaking
- model definition at unification scale $M_X \Rightarrow \mu \sim M_X$
- but EWSB conditions imply

$$\frac{1}{2}m_Z^2 = \frac{m_{H_d}^2 - m_{H_u}^2\tan^2\beta}{\tan^2\beta - 1} - \mu^2$$

 $\Rightarrow \mu \sim m_Z$ to have $v = 174\,{
m GeV}$

[D. J. H. Chung et Al. Phys.Rept.407 (2005)]

Definition of the E_6SSM – gauge structure

[S. F. King, S. Moretti, R. Nevzorov, Phys.Rev.D73:035009 (2006)]

Definition of the
$$E_6SSM$$

Supersymmetric gauge theory based on ${\it E}_6$ gauge group broken at GUT scale

$$E_6
ightarrow SU(3)_{ extsf{c}} imes SU(2)_{ extsf{L}} imes U(1)_{ extsf{Y}} imes U(1)_{ extsf{N}}$$

 $U(1)_N$ broken above electroweak scale

$$\begin{split} SU(3)_{\mathsf{c}} \times SU(2)_{\mathsf{L}} \times U(1)_{Y} \times U(1)_{\mathsf{N}} \\ \longrightarrow SU(3)_{\mathsf{c}} \times SU(2)_{\mathsf{L}} \times U(1)_{Y} \end{split}$$

Note: μ problem solved, because $\mu H_{1i}H_{2i}$ forbidden by $U(1)_N$

Definition of the E_6SSM – matter content

Matter content

- 3 complete fundamental 27 multiplets $(27)_i$ of E_6
- 2 higgs-like doublets H', $\overline{H'}$ from (27)', ($\overline{27}$)'
- Vector superfields in adjoint representation of $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_N$

Q _i , u _i , a _i , L _i , e _i , n _i S _i	$SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$
	singlet
H_{1i}, H_{2i}	higgs-like doublets
X_i, \overline{X}_i	exotic colored (Diquarks/
	Leptoquarks)
H', H'	extra higgs-like doublets
V^{Y} , \vec{V}^{W} , V_{g}^{a} , V^{N}	gauge bosons, gauginos

E₆SSM superpotential

Approximations of the general E_6SSM superpotential:

- $Z_2^{B/L}$ symmetry (analogous to *R* parity) and (approximate) Z_2^H symmetry to avoid proton decay and FCNC
- integrate out n_i^c , H', $\overline{H'}$
- keep only dominant terms

 $\mathcal{W}_{\mathsf{E}_6\mathsf{SSM}} \approx h_t(H_uQ)t^c + h_b(H_dQ)b^c + h_\tau(H_dL)\tau^c$ $+ \lambda_i S_3(H_{1i}H_{2i}) + \kappa_i S_3(X_i\overline{X}_i)$

Note: $\mu H_{1i}H_{2i}$ forbidden by $U(1)_N$ gauge symmetry $\Rightarrow \mu$ problem solved dynamically

$$\lambda_3 S_3(H_{13}H_{23}) \quad
ightarrow \quad -rac{\lambda_3 \langle S_3
angle}{\sqrt{2}} (ilde{h}_{13} ilde{h}_{23}) + \cdots$$

 \Rightarrow

[P. Athron, S. F. King, D. J. Miller, S. Moretti, R. Nevzorov, Phys.Rev.D80:035009 (2009)] Constrained model defined by mass universality at M_X :

> scalar masses $= m_0$, gaugino masses $= M_{1/2}$, trilinear coupling = A

Input parameters for cE_6SSM :

$$\lambda_i(M_X), \kappa_i(M_X), m_0, M_{1/2}, A$$

$$\Leftrightarrow \lambda_i(M_X), \kappa_i(M_X), v, \tan \beta, \langle S_3 \rangle$$

Goal: more precise prediction of particle masses in $\mathsf{cE}_6\mathsf{SSM}$

Threshold correction for the strong coupling

For example: g_3 (most imortant, since $\beta_3^{1\text{Loop}} = 0$)

$$\frac{2}{3}\sum_{x}\log\left(\frac{m_{x}}{\mu}\right) - \frac{1}{6}\sum_{\tilde{x}}\log\left(\frac{m_{\tilde{x}}}{\mu}\right) \bigg\}$$

[J. L. Hall, Nucl.Phys.B178 (1981)]

Alexander Voigt (TU Dresden)

10 / 13

Matching scale dependency

Matching scale dependency

Conclusions:

- (c) E_6SSM is an interesting, well motivated model
- first study of threshold effects in cE_6SSM
- wide spectrum \rightarrow threshold corrections important
- threshold corrections reduce dependency of the particle masses from the matching scale

Outlook:

Increase precision in prediction of the particle spectrum further:

- implement E₆SSM yukawa coupling threshold corrections
- 2 loop RGEs for scalar masses
- Calculate shifts to pole masses

$$\begin{split} h_{u}^{\overline{\text{DR}},\text{E}_{6}\text{SSM}} &= h_{u}^{\text{tree}} \left(1 + \frac{\delta g_{2}}{g_{2}} - \frac{\delta M_{W}}{M_{W}} + \frac{\delta m_{u}}{m_{u}} - \frac{\delta s_{\beta}}{s_{\beta}} \right)_{\text{finite}} \\ h_{d}^{\overline{\text{DR}},\text{E}_{6}\text{SSM}} &= h_{d}^{\text{tree}} \left(1 + \frac{\delta g_{2}}{g_{2}} - \frac{\delta M_{W}}{M_{W}} + \frac{\delta m_{d}}{m_{d}} - \frac{\delta c_{\beta}}{c_{\beta}} \right)_{\text{finite}} \\ h_{u}^{\text{tree}} &= \frac{g_{2}m_{f}}{\sqrt{2}M_{W}s_{\beta}} \\ h_{d}^{\text{tree}} &= \frac{g_{2}m_{f}}{\sqrt{2}M_{W}c_{\beta}} \\ \delta M_{W} &= \widetilde{\text{Re}} Z_{WW,\text{T}}(M_{W}^{2}) \\ \delta m_{f} &= \frac{1}{2} \widetilde{\text{Re}} \left[m_{f} \left(Z_{f\bar{f}}^{\text{L}}(m_{f}^{2}) + Z_{f\bar{f}}^{\text{R}}(m_{f}^{2}) \right) + Z_{f\bar{f}}^{\text{I}}(m_{f}^{2}) + Z_{f\bar{f}}^{\text{r}}(m_{f}^{2}) \right] \end{split}$$