Higgs mass prediction in supersymmetry with effective field theory techniques

Alexander Voigt

RWTH Aachen

Heidelberg, 13.06.2017

Contents

1 Introduction to supersymmetry

Higgs mass calculation in the MSSM at fixed loop order in an EFT in a mixed approach

Output State
Output State

Contents

1 Introduction to supersymmetry

Higgs mass calculation in the MSSM at fixed loop order in an EFT in a mixed approach

3 Uncertainty estimate

Supersymmetry

Still an attractive extension of the Standard Model!

Features:

- can solve the hierarchy problem (heavy BSM particles can give large corrections to the Higgs mass)
- gauge coupling unification at $\sim 10^{16}\,\text{GeV}$ (due to extra matter)
- possible connection to super-gravity models and string theory (E_6SSM, MRSSM)
- can explain deviation of $(g-2)_{\mu}$
- can stabilize the electroweak vacuum (see later)

Problem: LHC has not found any SUSY particles so far \Rightarrow SUSY particles are probably heavy

Minimal supersymmetry (MSSM)

MSSM = supersymmetric extension of the 2HDM

Particle content (superfields):

$$\begin{aligned} \hat{Q} &: (\mathbf{3}, \mathbf{2}, \frac{1}{6}), & \hat{u}^c : (\mathbf{\bar{3}}, \mathbf{1}, -\frac{2}{3}), & \hat{d}^c : (\mathbf{\bar{3}}, \mathbf{1}, \frac{1}{3}), \\ \hat{L} &: (\mathbf{1}, \mathbf{2}, -\frac{1}{2}), & \hat{e}^c : (\mathbf{1}, \mathbf{1}, 1), \\ \hat{H}_d &: (\mathbf{1}, \mathbf{2}, -\frac{1}{2}), & \hat{H}_u : (\mathbf{1}, \mathbf{2}, \frac{1}{2}), \\ \tilde{B} &: (\mathbf{1}, \mathbf{1}, 0), & \tilde{W} : (\mathbf{1}, \mathbf{3}, 0), & \tilde{g} : (\mathbf{8}, \mathbf{1}, 0) \end{aligned}$$

Superpotential:

$$\begin{split} \mathcal{W}_{\mathsf{MSSM}} &= (Y_u)_{ij} \, \hat{Q}_i \cdot \hat{H}_u \, \hat{u}_j^c + (Y_d)_{ij} \, \hat{Q}_i \cdot \hat{H}_d \, \hat{d}_j^c + (Y_e)_{ij} \, \hat{L}_i \cdot \hat{H}_d \, \hat{e}_j^c \\ &+ \mu \hat{H}_u \cdot \hat{H}_d \end{split}$$

Minimal supersymmetry (MSSM)

SUSY particles have not been observed \Rightarrow SUSY must be broken. Here we consider soft breaking:

$$\begin{split} \mathcal{L}_{\mathsf{MSSM}}^{\mathsf{soft}} &= -\frac{1}{2} \Big[M_1 \bar{\tilde{B}}^0 \tilde{B}^0 + M_2 \bar{\tilde{W}} \tilde{W} + M_3 \bar{\tilde{g}} \tilde{g} \Big] \\ &- m_{H_u}^2 |H_u|^2 - m_{H_d}^2 |H_d|^2 - \Big[B \mu H_u \cdot H_d + \mathsf{h.c.} \Big] \\ &- \Big[\tilde{Q}_i^\dagger (m_Q^2)_{ij} \tilde{Q}_j + \tilde{d}_{Ri}^\dagger (m_d^2)_{ij} \tilde{d}_{Rj} + \tilde{u}_{Ri}^\dagger (m_u^2)_{ij} \tilde{u}_{Rj} \\ &+ \tilde{L}_i^\dagger (m_L^2)_{ij} \tilde{L}_j + \tilde{e}_{Ri}^\dagger (m_e^2)_{ij} \tilde{e}_{Rj} \Big] \\ &+ \Big[(T_u)_{ij} \tilde{Q}_i \cdot H_u \tilde{u}_{Rj}^\dagger + (T_d)_{ij} \tilde{Q}_i \cdot H_d \tilde{d}_{Rj}^\dagger + (T_e)_{ij} \tilde{L}_i \cdot H_d \tilde{e}_{Rj}^\dagger \\ &+ \mathsf{h.c.} \Big] \end{split}$$

Higgs sector of the MSSM

The two Higgs doublets develop VEVs as

$$H_d = \begin{pmatrix} \frac{v_d}{\sqrt{2}} + H_d^0 \\ H_d^- \end{pmatrix} \qquad \qquad H_u = \begin{pmatrix} H_u^+ \\ \frac{v_u}{\sqrt{2}} + H_u^0 \end{pmatrix}$$

 \Rightarrow

$$m_Z^2 = \frac{1}{4} (g_Y^2 + g_2^2) v^2, \qquad m_W^2 = \frac{1}{4} g_2^2 v^2, \\ m_t = y_t v_u / \sqrt{2}, \qquad m_b = y_b v_d / \sqrt{2}, \\ v^2 := v_u^2 + v_d^2, \qquad \tan \beta := v_u / v_d$$

Mixing of Higgs fields in the CP-conserving MSSM:

$$ig(\operatorname{\mathsf{Re}} H^0_d, \operatorname{\mathsf{Re}} H^0_uig) o (h, H)$$

 $ig(\operatorname{\mathsf{Im}} H^0_d, \operatorname{\mathsf{Im}} H^0_uig) o (G^0, A)$
 $ig((H^-_d)^*, H^+_uig) o (G^+, H^+)$

Considered SUSY scenarios

In the following I set for simplicity

$$\begin{aligned} (m_f^2)_{ij}(M_S) &= \delta_{ij}M_S^2, \quad (f = Q, u, d, L, e) \\ M_i(M_S) &= M_S, \quad (i = 1, 2, 3) \\ \mu(M_S) &= M_S, \\ m_A^2(M_S) &= \frac{B\mu(M_S)}{\sin\beta(M_S)\cos\beta(M_S)} = M_S^2, \\ (X_f)_{ij} &= (T_f)_{ij}/(Y_f)_{ij} - \begin{cases} \mu^* \tan\beta \\ \mu^* \cot\beta \end{cases} \quad \text{for} \quad \begin{cases} f = d, e, \\ f = u, \end{cases} \end{aligned}$$

Abbreviations:

$$X_t := (X_u)_{33}, X_b := (X_d)_{33}, X_{\tau} := (X_e)_{33}, s_{\beta} := \sin \beta, c_{\beta} := \cos \beta, t_{\beta} := \tan \beta$$

Current limits on SUSY particle masses

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	ε, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	-1) Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{split} & \text{MSUGRACIASSM} \\ & \tilde{q}^{2}_{11}\tilde{q}^{-1}_{12}\tilde{q}^{2}_{11}\tilde{q}^{-1}_{12}\tilde{q}^{2}_{11}\tilde{q}^{-1}_{12}\tilde{q}^{2}_{11}\tilde{q}^{2}_{12}\tilde$	0-3 e, µ/1-2 τ : 0 mono-jet 0 3 e, µ 0 1-2 τ + 0-1 ℓ 2 γ 7 2 e, µ(Z) 0	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 2 jets 2 jets mono-jet		20.3 36.1 32 36.1 36.1 36.1 36.1 32 32 20.3 13.3 20.3 20.3	62 6 800 GeV 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.85 TeV 1.57 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.55 TeV 37 TeV 1.8 TeV	$\begin{split} &m(j)\!=\!m(j) \\ &m(j)\!=\!m(j$	1907.0525 ATLAS-CONF-037-022 1904.0773 ATLAS-CONF-037-022 ATLAS-CONF-037-023 ATLAS-CONF-037-03 ATLAS-CONF-037-03 1007.0510 1007.0510 1007.0540 1007.0540 1007.0540 1000.0330 1000.0330 1000.0330
3 rd gen § med.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0-1 e,μ 0-1 e,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2 2 1	1.92 TeV 1.97 TeV 37 TeV	$\begin{array}{l} m(\hat{\tau}_{1}^{0}){<}600GeV \\ m(\hat{\tau}_{1}^{0}){<}200GeV \\ m(\hat{\tau}_{1}^{0}){<}300GeV \end{array}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
314 gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$, $\tilde{h}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$, $\tilde{h}_1 \rightarrow c \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$ (natural GMSB) $\tilde{h}_2 \tilde{h}_1 \tilde{h}_2 \rightarrow \tilde{h}_1 \rightarrow Z$ $\tilde{h}_2 \tilde{h}_1 \tilde{h}_2 \rightarrow \tilde{h}_1 \rightarrow K$	0 $2 e, \mu$ (SS) $0 \cdot 2 e, \mu$ $0 \cdot 2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1 \cdot 2 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2 b mono-jet 1 b 1 b 4 b	Yas Yas Yas Yas Yas Yas Yas	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	8 950 GeV 7 157570 GeV 200-720 GeV 7 90-180 GeV 205-950 GeV 7 90-180 GeV 205-950 GeV 7 90-322 GeV 7 7 90-320 GeV 300-780 GeV 7 150-660 GeV 320-800 GeV 6 320-800 GeV 320-800 GeV		$\begin{split} m(\tilde{t}_{1}^{2}) & \!$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-039 1202.1202, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{split} \tilde{t}_{k,k} \tilde{t}_{k,k}, \tilde{t} \rightarrow \tilde{t}_{k}^{2} \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{k}(\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{r}(r\tilde{r}), \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{r}(r\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2}, \tilde{t}_{k}(\tilde{r}), \tilde{t}\tilde{r}_{k}^{2}(\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{k}(\tilde{t}), \tilde{t}\tilde{r}_{k}^{2}(\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \rightarrow W \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \rightarrow W \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \\ \tilde{g} GM (wino NLSP) weak prod. \tilde{x}_{k}^{2} \\ \tilde{g} GM (bino NLSP) weak prod. \tilde{x}_{k}^{2} \end{split}$	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2 \cdot 3 e, \mu$ e, μ, γ $4 e, \mu$ $4 \cdot e, \mu + \gamma$ $\gamma G = 1 e, \mu + \gamma$ $\gamma G = 2 \gamma$	0 0 0-2 jets 0-2 b 0	165 165 165 165 165 165 165 165 165 165	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	2 99-440 GeV 2 710 GeV 2 730 GeV 3 740 GeV 4 74 4 74 4 74 4 74 5 70 GeV 5 85 GeV 6 115-270 GeV 8 85 GeV 8 90 GeV	₩ m(t ²)+m m(t ²)+m	$\begin{split} m(\tilde{t}_{1}^{0}) = 0 & \\ m(\tilde{t}_{1}^{0}) = 0, \\ m(\tilde{t}_{1}^{0}) =$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 1501.07110 1403.5086 1907.05403
Long-lived particles	Direct $\tilde{x}_1^*\tilde{x}_1^-$ prod., long-lived \tilde{x}_1^* Direct $\tilde{x}_1^*\tilde{x}_1^*$ prod., long-lived \tilde{x}_1^* Stable, stopped \tilde{y} -R-hadron Stable \tilde{y} -R-hadron Metasztable \tilde{y} -R-hadron GMSB, stable $\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1 $\tilde{x}_1^*\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1 $\tilde{x}_2^*\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1 $\tilde{x}_2^*\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1 $\tilde{x}_2^*\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1	Disapp. trk dE/dx trk 0 trk dE/dx trk 1-2 µ 2 y displ. cc/eµ/µ displ. vtx + jet	1 jet - 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes Yes Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	11 430 GeV 2 495 GeV 2 850 GeV 2 800 GeV 2 800 GeV 2 800 GeV 2 10 700 V 1 10 700 V	1.58 TeV 1.57 TeV	$\begin{split} m(\tilde{t}_1^{-1}) & m(\tilde{t}_1^{-1}) = 100 \; \text{MeV}, \; \pi(\tilde{t}_1^{-1}) = 102 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{MeV}, \; \pi(\tilde{t}_1^{-1}) = 151 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{T} \; \text{T} \; \text{T} \; \text{MeV} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{T} \;$	ATLAS-CONF-017-017 1506.05322 1310.6584 1806.65129 1804.04520 1411.6795 1403.5542 1504.65162 1504.65162
RPV	$ \begin{array}{l} LFV pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} ep_{t} e\tau / \mu\tau \\ Blinear \ RPV \ CMSSM \\ \tilde{v}_{\tau}^{T} (X_{\tau}^{T}) = \langle \mathcal{M} e^{T} (X_{\tau}^{T}) = \langle $	$e\mu,e\tau,\mu\tau$ $2e,\mu$ (SS) $4e,\mu$ $3e,\mu+\tau$ 0 $4e,\mu$ $1e,\mu$ $1e,\mu$ $1e,\mu$ $1e,\mu$ $2e,\mu$	0-3 b 5 large-R je 5 large-R je 1-10 jets/0-4. 1-10 jets/0-4. 2 jets + 2 b 2 b	- Yes Yes ts - ts - ts - ts - ts -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	5. 4.2 21 1.14 Te 22 1.06 V 1.14 Te 24 1.06 TeV 24 1.06 TeV 25 1.06 TeV 26 1.0	1.9 TeV 1.45 TeV V 1.55 TeV 2.1 TeV 1.65 TeV 1.45 TeV	$\begin{split} I_{111}^{i} &= 0.11, \ J_{1121121214} = 0.07 \\ m(\xi) = m(\xi), \ c_{122} < 1 \ mm \\ m(\xi)^{i} = 0.0024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.0024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0 \ $	1607.08073 1444.2503 ATLAS-CONF-2015-675 1405.5085 ATLAS-CONF-2015-607 ATLAS-CONF-2015-607 ATLAS-CONF-2015-607 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-035
Other	Scalar charm, $\hat{c} \rightarrow c \hat{\ell}_1^0$	0	2 c	Yes	20.3	2 510 GeV		m(\$ ⁰ ₁)<200 GeV	1501.01325
'Only	a selection of the available ma omena is shown. Many of the	uss limits on r limits are ba	new states	s or	1	0 ⁻¹ 1		Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Contents

1 Introduction to supersymmetry

Higgs mass calculation in the MSSM at fixed loop order in an EFT in a mixed approach

Output State
Output State

CP-even Higgs masses MSSM

 $(\operatorname{\mathsf{Re}} H^0_d,\operatorname{\mathsf{Re}} H^0_u) \stackrel{lpha}{
ightarrow} (h,H)$ with the mass matrix

$$M = \begin{pmatrix} m_A^2 s_\beta^2 + m_Z^2 c_\beta^2 & -(m_A^2 + m_Z^2) s_\beta c_\beta \\ \cdot & m_A^2 c_\beta^2 + m_Z^2 s_\beta^2 \end{pmatrix}$$

$$m_{h,H}^2 = \frac{1}{2} \left[m_Z^2 + m_A^2 \mp \sqrt{(m_Z^2 + m_A^2)^2 - 4m_Z^2 m_A^2 c_{2\beta}^2} \right]$$

$$m_h^2 < \min(m_Z^2, m_A^2) c_{2\beta}^2$$

If $m_A \gg m_Z$:

 \Rightarrow

 \Rightarrow

$$m_h^2 \approx m_Z^2 c_{2\beta}^2 = rac{1}{4} (g_Y^2 + g_2^2) v^2 c_{2\beta}^2$$

Higgs mass in the CP-conserving MSSM

If $m_A \gg m_Z$:

$$m_h^2 \approx m_Z^2 c_{2\beta}^2 = rac{1}{4} (g_Y^2 + g_2^2) v^2 c_{2\beta}^2$$

In the MSSM the tree-level Higgs mass is restricted to be smaller than $m_Z!$

Q: How can $M_h \approx 125 \text{ GeV}$ be possible in the MSSM?

A: Large loop corrections are to be expected!

$$M_h^2 = m_h^2 + \Delta m_h^2 \qquad \Rightarrow \qquad \Delta m_h^2 \ge (85 \, \text{GeV})^2$$

Current status of MSSM Higgs mass calculation

Usual approach: Spectrum generators calculate r.h.s. of

$$M_h^2 = m_h^2 + \Delta m_h^2$$

as a function of all SM and SUSY parameters. Because of large loop corrections Δm_h^2 :

$$\Delta M_h^{
m theo}\gtrsim (1\dots2)\,{
m GeV}$$
 at least!
 $\Delta M_h^{
m exp}=0.24\,{
m GeV}$ [PDG-2017]

Theory calculation needs to improve! Current workshop series:

Higgs mass at 1-loop level

In the MSSM the following diagrams give the dominant contribution to M_h at the 1-loop level:

14 / 41

Higgs mass at 1-loop level

$$(\Delta m_h^2)^{1L} \approx \frac{12m_t^2 y_t^2}{(4\pi)^2} \left(\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} - \frac{X_t^4}{12m_{\tilde{t}}^4} \right) + O(p^2)$$

 $X_t = A_t - \mu/t_eta = {
m stop}$ mixing parameter

Observations:

- logarithmically enhanced by $m_{\tilde{t}}/m_t$
- maximal for $X_t \approx \sqrt{6}m_{\tilde{t}}$
- high sensitivity on m_t , due to prefactor $m_t^2 y_t^2 = 2m_t^4/v^2$
- ambiguity of definition of m_t : pole mass or $\overline{\rm DR}$ mass? $M_t \approx 173.3 \,{\rm GeV}, \ m_t^{\overline{\rm DR}} \approx 165 \,{\rm GeV}$
 - \Rightarrow huge theoretical uncertainty!
 - \Rightarrow 2-loop calculation needed to resolve this ambiguity
- to get $M_h pprox$ 125 GeV, $m_{{\widetilde t}} \gtrsim$ 1 TeV needed (see later)

Higgs mass at 2-loop level

Known contributions: $O(\alpha_s(\alpha_t + \alpha_b) + (\alpha_t + \alpha_b)^2 + \alpha_\tau^2)$ for $p^2 = 0$ [hep-ph/0105096,hep-ph/0112177]

Higgs mass at 2-loop level

$$\begin{split} (\Delta m_h^2)^{2L} &\approx \frac{m_t^2 y_t^4}{(4\pi)^4} \left(c_1 \ln^2 \frac{M_S^2}{m_t^2} + c_2 \ln \frac{M_S^2}{m_t^2} + c_3 \right) \\ &+ \frac{m_t^2 y_t^2 g_3^2}{(4\pi)^4} \left(c_4 \ln^2 \frac{M_S^2}{m_t^2} + c_5 \ln \frac{M_S^2}{m_t^2} + c_6 \right) \end{split}$$

Observations:

- logarithmically enhanced by M_S/m_t
- still high sensitivity on m_t
- ambiguity of definition of m_t is resolved
- ambiguity of definition of α_s : $\alpha_s^{SM}(M_Z)$, $\alpha_s^{MSSM}(M_S)$, ...? \Rightarrow 3-loop calculation needed to resolve this ambiguity

Higgs mass at 3-loop level

Known contributions: $O(\alpha_t \alpha_s^2)$ for $p^2 = 0$ [arXiv:1005.5709]

$$(\Delta m_h^2)^{3L} \approx \frac{m_t^2 y_t^2 g_3^4}{(4\pi)^6} \left(c_7 \ln^3 \frac{M_S^2}{m_t^2} + c_8 \ln^2 \frac{M_S^2}{m_t^2} + c_9 \ln \frac{M_S^2}{m_t^2} + c_{10} \right)$$

Observations:

- logarithmically enhanced by M_S/m_t
- still high sensitivity on m_t
- ambiguity of definition of m_t is resolved
- ambiguity of definition of α_s is resolved

Summary of fixed loop order calculations

Typical order of magnitude of loop contributions (depends on parameter scenario):

$$egin{aligned} \mathcal{M}_h &= m_h + \Delta m_h^{1L} + \Delta m_h^{2L} + \Delta m_h^{3L} + \cdots \ &pprox [91 + O(20 \dots 30) + O(2 \dots 4) + O(1 \dots 2)] \, ext{GeV} \end{aligned}$$

Advantages:

- includes logarithmic, non-logarithmic and suppressed terms of the order $O(v^2/M_S^2)$ at fixed loop order
- precise prediction if $M_S \sim m_t$

Problem:

• large logarithmic corrections, if $M_S \gg m_t$ \Rightarrow slow convergence of perturbation series \Rightarrow large theoretical uncertainty, (1–2 GeV, or more) $M_h^{\text{exp}} = (125.09 \pm 0.24) \text{ GeV}$

Contents

1 Introduction to supersymmetry

Higgs mass calculation in the MSSM at fixed loop order in an EFT in a mixed approach

3 Uncertainty estimate

Higgs mass calculation in an EFT

Idea: Integrate out SUSY particles at M_S (expand in v^2/M_S^2) $\Rightarrow \lambda(M_S)$ is fixed by the MSSM (Remember: in the SM $m_h^2 = \lambda v^2$) \Rightarrow effectively: separation of scales M_S and M_t .

EFT procedure

Match all renormalized *n*-point functions at $p^2 = v^2 = 0$, $Q = M_S$ of the SM and MSSM:

$$\partial_{p^2}^{(k)} \Gamma_{h,\dots,h}^{\mathsf{MSSM},(n)} = \partial_{p^2}^{(k)} \Gamma_{h,\dots,h}^{\mathsf{SM},(n)}$$

$$\Rightarrow$$

$$\lambda(M_S) = \frac{1}{4} \left[g_Y^2 + g_2^2 \right] c_{2\beta}^2 + \Delta \lambda^{1L} + \Delta \lambda^{2L} + \cdots$$

RG running of $\lambda(M_S)$ to $Q = M_t$. Calculation of M_h in the Standard Model:

$$(M_h^{\mathrm{SM}})^2 = \lambda(M_t)v^2 + (\Delta m_h^2)^{1L} + (\Delta m_h^2)^{2L} + \cdots$$

EFT avoids large logarithmic corrections

1 Calculate λ at $Q = M_S$:

$$\lambda(Q) = \frac{1}{4} \left[g_Y^2 + g_2^2 \right] c_{2\beta}^2 + \frac{12m_t^2 y_t^2}{(4\pi)^2 v^2} \left[\ln \frac{M_S^2}{Q^2} + \frac{X_t^2}{M_S^2} - \frac{X_t^4}{12M_S^4} \right] + \cdots$$

\Rightarrow no large logs

- **2** RG running from $Q = M_S \rightarrow M_t$. \Rightarrow logs are resummed to all orders
- **3** Calculate M_h in the SM at $Q = M_t$:

$$(M_h^{\rm SM})^2 = \lambda v^2 + \frac{12m_t^2 y_t^2}{(4\pi)^2 v^2} \ln \frac{Q^2}{m_t^2} + \cdots$$

 \Rightarrow no large logs

Summary of EFT approach

Typical order of magnitude of loop contributions (depends on parameter scenario, here $X_t = 0$, $M_S = 20 \text{ TeV}$):

$$\begin{split} M_h &= m_h + \Delta m_h^{1L} + \Delta m_h^{2L} + \cdots \\ &= \sqrt{\lambda(M_t)} v + \Delta m_h^{1L} + \Delta m_h^{2L} + \cdots \\ &\approx \left[O(124) + O(0.5 \dots 1) + O(0.1 \dots 0.2) \right] \text{GeV} \\ &= \sqrt{\lambda(M_S)} v + \log s + \Delta m_h^{1L} + \Delta m_h^{2L} + \cdots \\ &\approx \left[O(84) + O(40) + O(0.5 \dots 1) + O(0.1 \dots 0.2) \right] \text{GeV} \end{split}$$

Advantages:

- · large logarithmic fixed order loop corrections are avoided
- large logarithms $\propto \ln(M_S/M_t)$ are resummed to all orders

Disadvantage: usually terms $O(v^2/M_S^2)$ are neglected \Rightarrow imprecise when $v \sim M_S \Rightarrow$ then large theoretical uncertainty

Comparison of fixed-order and EFT approaches

Summary of fixed-order and EFT approaches

	low M_S $M_S \lesssim 2 { m TeV}$	high M_S $M_S\gtrsim 2{ m TeV}$
fixed-order	1	×
EFT	×	1
? mixed	✓	1

Q: Can the fixed-order and EFT approaches be combined?

A: Yes! [arXiv:1312.4937, arXiv:1609.00371]

Contents

1 Introduction to supersymmetry

• Higgs mass calculation in the MSSM

- in an EFT in a mixed approach
- Output State
 Output State

Mixed fixed-order and EFT approaches

Goal: resum large logarithms **and** include suppressed $O(v^2/M_S^2)$ terms

Two known approaches:

• FeynHiggs [arXiv:1312.4937]: Replace logs from fixed-order calculation by resummed logs

$$M_h^2 = (M_h^2)_{
m fixed-order} - (M_h^2)_{
m logs} + (M_h^2)_{
m resummed \ logs}$$

• FlexibleEFTHiggs [arXiv:1609.00371]: Incorporate $O(v^2/M_S^2)$ terms into λ by using the matching condition

$$(M_h^2)_{\sf SM} = (M_h^2)_{\sf MSSM}$$
 at 1L level at $Q = M_S$

FlexibleEFTHiggs approach

Idea:

1 Determine $\lambda(M_S)$ from the condition

$$(M_h^2)_{\text{SM}} = (M_h^2)_{\text{MSSM}}$$
 1L, $Q = M_S$

No suppressed terms are neglected. $\Rightarrow \lambda$ contains all $O(v^2/M_S^2)$ suppressed terms

- **2** RG running of $\lambda(M_S)$ from $M_S \to M_t$ Note: M_h is RG invariant.
- **3** Calculate M_h in the Standard Model at $Q = M_t$:

$$M_h^2 = \lambda(M_t)v^2 + (\Delta m_h^2)_{\rm SM}^{1L}$$

 $\Rightarrow M_h$ contains all suppressed terms.

FlexibleEFTHiggs – EFT equivalence

Proof of equivalence: Start with matching condition:

$$(M_h^2)_{\rm SM} = (M_h^2)_{\rm MSSM}$$
 1L, $Q = M_S$
 $\lambda v^2 + (\Delta m_h^2)_{\rm SM}^{1L} = (M_h^2)_{\rm MSSM}$

$$\Rightarrow$$

$$\lambda(M_S) = \frac{1}{v^2} \left[(M_h^2)_{\text{MSSM}} - (\Delta m_h^2)_{\text{SM}}^{1L} \right]$$
$$= \frac{1}{v^2} \left[(m_h^2)_{\text{MSSM}} + (\Delta m_h^2)_{\text{MSSM}}^{1L} - (\Delta m_h^2)_{\text{SM}}^{1L} \right]$$

Now insert $(m_h^2)_{MSSM}$ and $(\Delta m_h^2)_{MSSM}^{1L}$...

FlexibleEFTHiggs – EFT equivalence

Inserting $(m_h^2)_{\text{MSSM}}$ and $(\Delta m_h^2)_{\text{MSSM}}^{1L}$ for $X_t = 0$:

$$\begin{split} \lambda(M_S) &= \frac{1}{v^2} \Biggl[\frac{1}{4} (g_Y^2 + g_2^2) v^2 c_{2\beta}^2 \\ &+ \frac{c_\alpha^2}{s_\beta^2} (\Delta m_h^2)_{\rm SM}^{1L} - \frac{c_\alpha^2}{s_\beta^2} \frac{12 (y_t^{\rm SM})^2 m_t^2}{(4\pi)^2} B_0(m_h^2, M_S^2, M_S^2) \\ &- (\Delta m_h^2)_{\rm SM}^{1L} \Biggr] \end{split}$$

Now go to the decoupling limit $c_{lpha}^2/s_{eta}^2
ightarrow 1\,\dots$

FlexibleEFTHiggs – EFT equivalence

In the decoupling limit $c_{lpha}^2/s_{eta}^2
ightarrow 1$:

$$\begin{split} \lambda(M_S) &= \frac{1}{4} (g_Y^2 + g_2^2) c_{2\beta}^2 - 12 \frac{m_t^2 (y_t^{\text{SM}})^2}{(4\pi)^2 v^2} B_0(m_h^2, M_S^2, M_S^2) \\ &= \frac{1}{4} (g_Y^2 + g_2^2) c_{2\beta}^2 - 12 \frac{m_t^2 (y_t^{\text{SM}})^2}{(4\pi)^2 v^2} \bigg[-\log \frac{M_S^2}{Q^2} + \frac{m_h^2}{6M_S^2} + O\bigg(\frac{m_h^4}{M_S^4}\bigg) \bigg] \\ &= \frac{1}{4} (g_Y^2 + g_2^2) c_{2\beta}^2 + 12 \frac{m_t^2 (y_t^{\text{SM}})^2}{(4\pi)^2 v^2} \bigg[\log \frac{M_S^2}{Q^2} \bigg] + O\bigg(\frac{v^2}{M_S^2}\bigg) \\ &= \lambda^{\text{EFT,tree}} + \Delta \lambda^{\text{EFT,1L}} + O\bigg(\frac{v^2}{M_S^2}\bigg) \end{split}$$

In the decoupling limit $\lambda(M_S)$ in the FlexibleEFTHiggs approach is equivalent to the EFT approach at 1-loop, up to suppressed terms $O(v^2/M_S^2)$

Summary FlexibleEFTHiggs approach

$$(M_h^2)_{\mathsf{SM}}=(M_h^2)_{\mathsf{MSSM}}$$
 1L, $Q=M_S$

$$\lambda(M_S) = \lambda^{\mathsf{EFT,tree}} + \lambda^{\mathsf{EFT,1L}} + O(v^2/M_S^2)$$

Observations:

 \Rightarrow

- large 1-loop logarithms cancel in matching condition
- for v = p = 0 FlexibleEFTHiggs is identical to a 1-loop EFT calculation
- all suppressed terms are incorporated in $\boldsymbol{\lambda}$
- RG running resums (N)LL to all orders

 \Rightarrow FlexibleEFTHiggs leads to a correct Higgs mass prediction at the full 1-loop level (including suppressed terms) with additional (N)LL resummation.

Comparison of the three approaches

Contents

1 Introduction to supersymmetry

Higgs mass calculation in the MSSM at fixed loop order in an EFT in a mixed approach

Output State
Output State

Ways to estimate the theoretical uncertainty

Good ansatz: Change the calculation by higher orders beyond the calculational accuracy.

Examples:

- variation of the unphysical renormalization scale(s)
- change m_t or α_s by higher orders
- re-parametrization of M_h

Potential pitfalls:

- some changes alone are an under-estimation of the uncertainty \rightarrow a combination of multiple changes should be used
- potential over-estimation of the uncertainty when large cancellations occur at higher orders
- some changes are sensitive to the same kind of higher order contributions \rightarrow potential "double counting"
- new higher order dependencies might be difficult to estimate Example: How would one estimate α_s dependence of M_h^{2L} when only M_h^{1L} is known?
Example: under-estimation of the uncertainty

The variation of the renormalization scale alone might be an under-estimation of the uncertainty:

 $X_t = 0$, tan $\beta = 5$

Example: over-estimation of the uncertainty

When large cancellations between the same kind of corrections from different sources occur, including only one source might lead to an over-estimation:

Higgs mass uncertainty estimate

fixed-order:

•
$$|M_h^{2L}(Q_{\text{pole}} = M_S/2) - M_h^{2L}(Q_{\text{pole}} = 2M_S)|$$

•
$$|M_h^{2L}(y_t^{1L}) - M_h^{2L}(y_t^{2L})|$$

EFT (SUSYHD):

•
$$|M_h^{2L}(Q_{\text{pole}} = M_t/2) - M_h^{2L}(Q_{\text{pole}} = 2M_t)|$$

•
$$|M_h^{2L}(y_t^{2L}) - M_h^{2L}(y_t^{3L})|$$

•
$$|M_h^{2L}(Q_{match} = M_S/2) - M_h^{2L}(Q_{match} = 2M_S)|$$

•
$$|M_h^{2L} - M_h^{2L}(\lambda \to \lambda(1 + v^2/M_S^2))|$$

FlexibleEFTHiggs:

•
$$|M_h^{2L}(Q_{\text{pole}} = M_t/2) - M_h^{2L}(Q_{\text{pole}} = 2M_t)|$$

•
$$|M_h^{2L}(y_t^{2L}) - M_h^{2L}(y_t^{3L})|$$

•
$$|M_h^{2L}(Q_{match} = M_S/2) - M_h^{2L}(Q_{match} = 2M_S)|$$

Higgs mass uncertainty estimate

Summary

Supersymmetry is still viable, but LHC continuously excludes light SUSY scenarios

Approaches to calculate M_h :

	low M_S $M_S \lesssim 2 { m TeV}$	high M_S $M_S\gtrsim 2{ m TeV}$
fixed-order	1	×
EFT	×	✓
mixed	1	✓

Uncertainty of M_h in SUSY:

- tricky to estimate and still ongoing effort!
- $\Delta M_h \gtrsim$ 1–2 GeV at least, but continuously improves

Backup

Effect of higher-dimensional operators

 $\tan \beta = 20, \ X_t = \sqrt{6} \ M_S$

Effect of higher-dimensional operators

 $M_S = 1 \,\mathrm{TeV}, \tan\beta = 20$

[1703.08166]

aneta=5, $X_{t,b, au}=0$

 $\tan \beta = 5$, $X_{t,b,\tau} = 0$

 $aneta=5,\ M_S=2\,{
m TeV},\ X_{b, au}=0$

tan $\beta = 5$, $M_S = 2$ TeV, $X_{b,\tau} = 0$ For large X_t deviation from HSSUSY-1L due to $p \neq 0 \neq v$.

Uncertainty estimation of original FlexibleEFTHiggs-1L

Incorrect 2L logs in original FlexibleEFTHiggs-1L

Matching condition:

$$\lambda \leftarrow rac{1}{v^2} \left[(m_h^{ extsf{SM}})^2 + (M_h^{ extsf{MSSM}})^2 - (M_h^{ extsf{SM}})^2
ight]$$

Expansion of momentum iteration up to 1L level:

$$\lambda = \frac{1}{v^2} \Big[(m_h^{\mathsf{MSSM}})^2 + \Delta m_{h,\mathsf{MSSM}}^2 - \Delta m_{h,\mathsf{SM}}^2 + O(\hbar^2) \Big]$$

with

$$egin{aligned} \Delta m_{h, ext{MSSM}}^2 &= - \Sigma_{ ext{MSSM}}^{1L} + t_{ ext{MSSM}}^{1L} / extsf{v}_{ ext{MSSM}} \ \Delta m_{h, ext{SM}}^2 &= - \Sigma_{ ext{SM}}^{1L} + t_{ ext{SM}}^{1L} / extsf{v}_{ ext{SM}} \end{aligned}$$

Incorrect 2L logs in original FlexibleEFTHiggs-1L

Problem:
$$y_t^{\text{MSSM}} = y_t^{\text{SM}} / s_\beta [1 + O(\hbar)]$$

 \Rightarrow
 $\Delta m_{h,\text{MSSM}}^2 - \Delta m_{h,\text{SM}}^2 \propto \hbar \left[(y_t^{\text{MSSM}} s_\beta)^4 \log \frac{m_t}{M_S} - (y_t^{\text{SM}})^4 \log \frac{m_t}{M_S} \right]$
 $= \hbar \left[0 + \propto \hbar y_t^4 \log \frac{m_t}{M_S} + O(\hbar^2) \right]$
 $= O(\hbar^2 y_t^4 \log \frac{m_t}{M_S})$

 \Rightarrow incorrect 2L logs remain in FlexibleEFTHiggs-1L

Summary original FlexibleEFTHiggs-1L

Advantages:

- ✓ easily automatizable
- ✓ correctly resums LL
- ✓ all non-log terms correct at 1L, including all terms O(vⁿ/Mⁿ_S)

Disadvantage:

× incorrect 2L logs $O(\hbar^2 \log(m_t/M_S))$

Improved FlexibleEFTHiggs-1L

strict handling of loop orders in matching condition

$$(M_h^{\text{SM}})^2 = \lambda v^2 - \Sigma_h^{\text{SM}}((m_h^{\text{MSSM}})^2) + \frac{t_h^{\text{SM}}}{v}$$
$$(M_h^{\text{MSSM}})^2 = \text{EV of } \left[M_\phi^{(1)} - \Sigma_\phi^{\text{MSSM}}((m_h^{\text{MSSM}})^2) + \tilde{t}_\phi^{\text{MSSM}}\right]$$

with

 $egin{aligned} M_{\phi}^{(1)} &= ext{tree-level mass matrix w}/1 ext{L parameters} \ \Sigma_{\phi}^{ ext{MSSM}} &= 1 ext{L self-energy w}/0 ext{L parameters} \ t_{\phi_i}^{ ext{MSSM}} &= 1 ext{L tadpole w}/0 ext{L parameters} \ m_h^{ ext{MSSM}} &= ext{tree-level mass w}/0 ext{L parameters} \ (ilde{t}_{\phi}^{ ext{MSSM}})_i &= ext{tree-level mass w}/v_i \end{aligned}$

Improved FlexibleEFTHiggs-1L

Advantages:

- ✓ easily automatizable
- ✓ correctly resums LL + NLL
- ✓ all non-log terms correct at 1L, including all terms O(vⁿ/Mⁿ_S)

Disadvantage:

- non-logarithmic 2L terms arise at M_S
- X difficult to add 2L corrections

aneta=5, $X_t=-2M_S$, $X_{b, au}=0$

aneta=5, $X_t=-2M_S$, $X_{b, au}=0$

aneta=5, $X_{t,b, au}=0$

aneta=5, $X_t=-2M_S$, $X_{b, au}=0$

 $aneta=5,\ M_{\mathcal{S}}=2\, ext{TeV},\ X_{b, au}=0$

Equivalence of pure EFT and FlexibleEFTHiggs

Equivalence pure EFT and FlexibleEFTHiggs $O(\hbar y_t^4)$

$$M_h^{ ext{SM}} \stackrel{!}{=} M_h^{ ext{MSSM}}$$
 at $Q = M_{\mathcal{S}}, 1L$

where

$$(M_h^{\text{SM}})^2 = \lambda v^2 - \sum_h^{\text{SM}} + t_h^{\text{SM}}/v$$
$$t_h^{\text{SM}}/v = -6(y_t^{\text{SM}})^2 A_0(m_t)/(4\pi)^2$$

and [neglecting stop mass mixing $O(m_t X_t/M_S^2)$]

$$(M_h^{\text{MSSM}})^2 = \frac{1}{4} (g_Y^2 + g_2^2) (v_u^2 + v_d^2) c_{2\beta}^2 - \Sigma_h^{\text{MSSM}} + t_h^{\text{MSSM}} / v$$

$$\Sigma_h^{\text{MSSM}} = \sum_h^{\text{SM}} \frac{c_\alpha^2}{s_\beta^2} + 3 \frac{(y_t^{\text{SM}})^2}{(4\pi)^2} \frac{c_\alpha^2}{s_\beta^2} \Big\{ A_0(m_{Q_3}) + A_0(m_{U_3}) + 2m_t \big[B_0(m_{Q_3}, m_{Q_3}) + B_0(m_{U_3}, m_{U_3}) \big] \Big\}$$

$$t_h^{\text{MSSM}} / v = -3 \frac{(y_t^{\text{SM}})^2}{(4\pi)^2} \frac{c_\alpha^2}{s_\beta^2} \Big[2A_0(m_t) - A_0(m_{Q_3}) - A_0(m_{U_3}) \Big]$$

Equivalence pure EFT and FlexibleEFTHiggs $O(\hbar y_t^4)$ in SM limit $\frac{c_{\alpha}^2}{s^2} \rightarrow 1$ \Rightarrow $\lambda = \frac{1}{4}(g_Y^2 + g_2^2)c_{2\beta}^2$ $-3\frac{(y_t^{\rm SM})^4}{(4\pi)^2} \Big[B_0(p^2,m_{Q_3},m_{Q_3})+B_0(p^2,m_{U_3},m_{U_3})\Big]$ $=rac{1}{4}(g_Y^2+g_2^2)c_{2\beta}^2$ $-3\frac{(y_t^{\rm SM})^4}{(4\pi)^2}\Big[-\log\frac{m_{Q_3}^2}{Q^2}+\frac{p^2}{6m_Q^2}+O\Big(\frac{p^4}{m_Q^4}\Big)\Big]$ $-\log \frac{m_{U_3}^2}{Q^2} + \frac{p^2}{6m_{U_4}^2} + O\left(\frac{p^4}{m_{U_4}^4}\right)$ = [Bagnaschi et. al. 2014] + $O\left(\frac{p^2}{m_e^2}\right) + O\left(\frac{p^2}{m_e^2}\right)$

Determination of MSSM parameters

Determination of MSSM parameters

Fixed by observables:

Input				Output
$\alpha_{\rm em}^{\rm SM(5)}(M_Z)$	\rightarrow	$\alpha_{\rm em}^{\rm MSSM}(M_Z)$	\rightarrow	$g_1^{\text{MSSM}}(M_Z)$
G _F	\rightarrow	$\sin \theta_W^{\text{MSSM}}(M_Z)$	\rightarrow	$g_2^{MSSM}(M_Z)$
$\alpha_{\rm s}^{\rm SM(5)}(M_Z)$			\rightarrow	$g_3^{\text{MSSM}}(M_Z)$
Mz	\rightarrow	$m_Z^{\text{MSSM}}(M_Z)$	\rightarrow	$v^{MSSM}(M_Z)$
M _t	\rightarrow	$m_t^{\overline{\text{MSSM}}(M_Z)}$	\rightarrow	$y_t^{\text{MSSM}}(M_Z)$
$m_b^{SM(5)}(m_b)$	\rightarrow	$m_b^{\text{MSSM}}(M_Z)$	\rightarrow	$y_b^{\text{MSSM}}(M_Z)$
$\tilde{M_{ au}}$	\rightarrow	$m_{\tau}^{\tilde{M}SSM}(M_Z)$	\rightarrow	$y_{\tau}^{MSSM}(M_Z)$

Fixed by 2 EWSB conditions: $m_{H_u}^2$, $m_{H_d}^2$

Free parameters: tan β , μ , $B\mu$, $m_{\tilde{f},ij}^2$, M_i , T_{ij}^f

Determination of SM parameters

Fixed by observables:

Input				Output
$\alpha_{\rm em}^{\rm SM(5)}(M_Z)$	\rightarrow	$\alpha_{\rm em}^{\rm SM}(M_Z)$	\rightarrow	$g_1^{\rm SM}(M_Z)$
G _F	\rightarrow	$\sin \theta_W^{\rm SM}(M_Z)$	\rightarrow	$g_2^{SM}(M_Z)$
$\alpha_{s}^{SM(5)}(M_{Z})$			\rightarrow	$g_3^{\rm SM}(M_Z)$
M_Z	\rightarrow	$m_Z^{SM}(M_Z)$	\rightarrow	$v^{SM}(M_Z)$
M _t	\rightarrow	$m_t^{\overline{S}M}(M_Z)$	\rightarrow	$y_t^{SM}(M_Z)$
$m_b^{\mathrm{SM}(5)}(m_b)$	\rightarrow	$m_b^{SM}(M_Z)$	\rightarrow	$y_b^{SM}(M_Z)$
$M_{ au}$	\rightarrow	$m_{ au}^{SM}(M_Z)$	\rightarrow	$y_{ au}^{SM}(M_Z)$

Fixed by 1 EWSB condition: μ^2

Free parameter: λ

Determination of $g_3^{MSSM}(M_S)$

$$\alpha_{\rm s}^{\rm MSSM}(M_{\rm S}) = \frac{\alpha_{\rm s}^{\rm SM}(M_{\rm S})}{1 - \Delta \alpha_{\rm s}(M_{\rm S})}$$

with

$$\Delta \alpha_{\rm s}(Q) = \frac{\alpha_{\rm s}}{2\pi} \left[\frac{1}{2} - \sum_{\text{SUSY particle } f} T_f \log \frac{m_f}{Q} \right]$$

$$g_3^{\text{MSSM}}(M_S) = \sqrt{4\pi lpha_s^{\text{MSSM}}(M_S)}$$

Determination of $v_i^{MSSM}(M_S)$

 \Rightarrow

$$M_Z^{\rm SM} = M_Z^{\rm MSSM}$$

$$(m_Z^{\text{MSSM}}(M_S))^2 = (M_Z^{\text{SM}})^2 + \Pi_Z^{\text{MSSM},1L}(Q = M_S)$$
$$(M_Z^{\text{SM}})^2 = \frac{1}{4} \left[(g_Y^{\text{SM}})^2 + (g_2^{\text{SM}})^2 \right] (v^{\text{SM}})^2 - \Pi_Z^{\text{SM},1L}(Q = M_S)$$
$$\Rightarrow$$

$$v^{ ext{MSSM}}(M_S) = rac{2m_Z^{ ext{MSSM}}(M_S)}{\sqrt{(g_Y^{ ext{MSSM}})^2 + (g_2^{ ext{MSSM}})^2}}$$

$$v_u^{\text{MSSM}}(M_S) = v^{\text{MSSM}}(M_S) \sin \beta(M_S)$$
$$v_d^{\text{MSSM}}(M_S) = v^{\text{MSSM}}(M_S) \cos \beta(M_S)$$

Determination of $y_i^{MSSM}(M_S)$

 \Rightarrow

$$M_f^{\rm SM} = M_f^{\rm MSSM}$$

$$m_f^{ ext{MSSM}}(M_S) = M_f^{ ext{SM}} + \Sigma_f^{ ext{MSSM},1L}(Q = M_S)$$
 $M_f^{ ext{SM}} = rac{\sqrt{2}m_f^{ ext{SM}}}{v_i^{ ext{SM}}} - \Sigma_f^{ ext{SM},1L}(Q = M_S)$

$$y_f^{\text{MSSM}}(M_S) = \frac{\sqrt{2}m_f^{\text{MSSM}}(M_S)}{v_i^{\text{MSSM}}(M_S)}$$

Determination of SM parameters

Determination of $g_3^{SM}(M_Z)$

Input:
$$\alpha_{s}^{SM(5)}(M_{Z}) = 0.1185$$

$$\alpha_{\rm s}^{\rm SM}(M_Z) = \frac{\alpha_{\rm s}^{\rm SM(5)}(M_Z)}{1 - \Delta \alpha_{\rm s}(M_Z)}$$

with

 \rightarrow

$$\Delta \alpha_{\rm s}(Q) = \frac{\alpha_{\rm s}}{2\pi} \left[-\frac{2}{3} \log \frac{m_t}{Q} \right]$$

$$g_3^{\rm SM}(M_Z) = \sqrt{4\pi \alpha_{\rm s}^{\rm SM}(M_Z)}$$

Determination of $y_t^{SM}(M_Z)$

$$y_t^{\rm SM}(M_Z) = \frac{\sqrt{2} \, m_t^{\rm SM}(M_Z)}{v(M_Z)}$$

where

$$\begin{split} m_t^{\rm SM}(Q) &= M_t + {\rm Re}\,\Sigma_t^S(M_Z) + M_t \Big[\,{\rm Re}\,\Sigma_t^L(M_Z) \\ &+ {\rm Re}\,\Sigma_t^R(M_Z) + \Delta m_t^{1L,{\rm gluon}} + \Delta m_t^{2L,{\rm gluon}}\Big] \\ \Delta m_t^{1L,{\rm gluon}} &= -\frac{g_3^2}{12\pi^2} \left[4 - 3\log\left(\frac{m_t^2}{Q^2}\right) \right] \\ \Delta m_t^{2L,{\rm gluon}} &= \left(\Delta m_t^{1L,{\rm gluon}}\right)^2 \\ &- \frac{g_3^4}{4608\pi^4} \bigg[396\log^2\left(\frac{m_t^2}{Q^2}\right) - 1452\log\left(\frac{m_t^2}{Q^2}\right) \\ &- 48\zeta(3) + 2053 + 16\pi^2(1 + \log 4) \bigg] \end{split}$$

41 / 41

Determination of v^{SM}

The VEV v^{SM} is calculated from the running Z mass at $Q = M_Z$:

$$v^{\text{SM}}(M_Z) = \frac{2m_Z^{\text{SM}}(M_Z)}{\sqrt{g_Y^2 + g_2^2}}$$
$$m_Z^{\text{SM}}(M_Z) = \sqrt{M_Z^2 + \Pi_Z^{1L}(p^2 = M_Z^2, Q = M_Z)}$$

 v^{SM} evolves under RG running according to [Sperling, Stöckinger, AV, 2013, 2014]
Comparison full model vs. EFT approach

Q: Why is FlexibleSUSY/MSSM so close to the EFT approaches and SPheno so far off?

Calculation of $y_t^{\text{MSSM}}(M_Z)$

A: Different treatment of 2-loop corrections to $y_t^{MSSM}(M_Z)$:

FlexibleSUSY:

$$m_{t} = M_{t} + \operatorname{Re}\left[\widetilde{\Sigma}_{t}^{(1),S}(M_{t})\right] + M_{t}\operatorname{Re}\left[\widetilde{\Sigma}_{t}^{(1),L}(M_{t}) + \widetilde{\Sigma}_{t}^{(1),R}(M_{t})\right] \\ + M_{t}\left[\widetilde{\Sigma}_{t}^{(1),\operatorname{qcd}}(m_{t}) + \left(\widetilde{\Sigma}_{t}^{(1),\operatorname{qcd}}(m_{t})\right)^{2} + \widetilde{\Sigma}_{t}^{(2),\operatorname{qcd}}(m_{t})\right]$$

SPheno:

$$m_t = M_t + \operatorname{Re}\left[\widetilde{\Sigma}_t^{(1),S}(m_t)\right] + \frac{m_t}{m_t} \operatorname{Re}\left[\widetilde{\Sigma}_t^{(1),L}(m_t) + \widetilde{\Sigma}_t^{(1),R}(m_t)\right] \\ + m_t\left[\widetilde{\Sigma}_t^{(1),\operatorname{qcd}}(m_t) + \widetilde{\Sigma}_t^{(2),\operatorname{qcd}}(m_t)\right]$$

Calculation of $y_t^{MSSM}(M_Z)$

$$\Rightarrow \\ \tilde{y}_t^{\text{FlexibleSUSY}} = y_t + t^2 \kappa^2 \left(\frac{184}{9} g_3^4 y_t - 24 g_3^2 y_t^3 + \frac{9}{8} y_t^5 \right) + \dots \\ \tilde{y}_t^{\text{SPheno}} = y_t + t^2 \kappa^2 \left(\frac{248}{9} g_3^4 y_t - 16 g_3^2 y_t^3 + \frac{27}{8} y_t^5 \right) + \dots$$

with

$$\begin{array}{ll} y_t \equiv y_t^{\rm SM}(M_S), & g_3 \equiv g_3^{\rm SM}(M_S), \\ \tilde{y}_t \equiv y_t^{\rm MSSM}(M_S), & \tilde{g}_3 \equiv g_3^{\rm MSSM}(M_S), \\ t \equiv \log \frac{M_S}{M_t}, & \kappa \equiv \frac{1}{(4\pi)^2} \end{array}$$

Calculation of $y_t^{MSSM}(M_Z)$

(

$$\begin{split} (\mathcal{M}_{h}^{2})^{\mathsf{EFT}} &= m_{h}^{2} + v^{2}y_{t}^{4} \Big[12t\kappa + 12t^{2}\kappa^{2} \left(16g_{3}^{2} - 9y_{t}^{2} \right) \\ &\quad + 4t^{3}\kappa^{3} \left(736g_{3}^{4} - 672g_{3}^{2}y_{t}^{2} + 90y_{t}^{4} \right) + \dots \Big], \\ \mathcal{M}_{h}^{2})^{\mathsf{FlexibleSUSY}} &= m_{h}^{2} + v^{2}y_{t}^{4} \Big[12t\kappa + 12t^{2}\kappa^{2} \left(16g_{3}^{2} - 9y_{t}^{2} \right) \\ &\quad + 4t^{3}\kappa^{3} \left(\frac{736g_{3}^{4}}{3} - 288g_{3}^{2}y_{t}^{2} + \frac{27y_{t}^{4}}{2} \right) + \dots \Big], \\ (\mathcal{M}_{h}^{2})^{\mathsf{SPheno}} &= m_{h}^{2} + v^{2}y_{t}^{4} \Big[12t\kappa + 12t^{2}\kappa^{2} \left(16g_{3}^{2} - 9y_{t}^{2} \right) \\ &\quad + 4t^{3}\kappa^{3} \left(\frac{992g_{3}^{4}}{3} - 192g_{3}^{2}y_{t}^{2} + \frac{81y_{t}^{4}}{2} \right) + \dots \Big]. \end{split}$$