The magic is always in the details The search for new physics with the muon

Alexander Voigt

Hochschule Flensburg

Planetarium Talks 2022

[3]

Magnetism

S N

S N

nucleus electron

ŕ

m

Magnetic moment of the electron:

$$ec{m}_e = g_e rac{e}{2m_e} ec{S}$$

Measurement vs. prediction from classical Quantum Mechanics:

$$g_e^{\mathsf{Exp}} = 2.002\,319\,304\,361\,46(58)$$

Magnetic moment of the electron:

$$ec{m}_e = g_e rac{e}{2m_e}ec{S}$$

Measurement vs. prediction from classical Quantum Mechanics:

$$g_e^{ ext{Exp}} = 2.002\,319\,304\,361\,46(58)$$

 $g_e^{ ext{QM}} = 2$

Gigantic disagreement!

The Standard Model of Particle Physics

Direct interaction of an electron with a magnetic field (mediated by a photon):

g_e = 2

Next order (1-loop) quantum correction:

$$g_e^{ ext{1-loop}} pprox 2.002\,322\,82$$

[Schwinger 1948]

Relative deviation:

$$a_e^{ ext{1-loop}} := rac{g_e^{ ext{1-loop}} - 2}{2} pprox 0.001\,161\,4^{-1}$$

Quantum corrections with 2 loops:

 $a_e^{2\text{-loop}} pprox - 0.000\,001\,772\,31$

Comparison measurement vs. multi-loop prediction for a_e :

$$a_e^{ ext{Exp}} = (11\,596\,521\,807.3\pm2.8) imes10^{-13}$$

 $a_e^{ ext{SM}} = (11\,596\,521\,816.4\pm7.7) imes10^{-13}$

Comparison measurement vs. multi-loop prediction for a_e :

$$a_e^{\text{Exp}} = (11\,596\,521\,807.3\pm2.8) imes 10^{-13}$$

 $a_e^{\text{SM}} = (11\,596\,521\,816.4\pm7.7) imes 10^{-13}$

Agreement within a relative uncertainty of $\approx 10^{-10}$

$$a_e^{ ext{Exp}} - a_e^{ ext{SM}} = (-9.1 \pm 8.2) imes 10^{-13}$$

20

Muon g-factor

Muon g-factor

Standard Model multi-loop prediction:

$$a^{ ext{SM}}_{\mu} = (11\,659\,181.0\pm4.3) imes10^{-10} \ a^{ ext{Exp}}_{\mu} = ?$$

[FNAL]

Measurement: BNL

Measurement

Measure the deviation of the muon's spin precession frequency from the cyclotron frequency:

Inside the ring the muons decay:

 $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

Energy of e^+ depends on muon's spin direction \rightarrow infer a_μ

[13]

Measurement

Experimental measurements:

$$\begin{aligned} a^{\mathsf{CERN}}_{\mu} &= (11\,659\,229\pm81)\times10^{-10} & (1979)\,[14] \\ a^{\mathsf{BNL}}_{\mu} &= (11\,659\,208.0\pm6.3)\times10^{-10} & (2006)\,[15] \\ a^{\mathsf{FNAL}}_{\mu} &= (11\,659\,204.0\pm5.4)\times10^{-10} & (2021)\,[16] \end{aligned}$$

Combined:

$$a^{\mathsf{Exp}}_{\mu} = (\mathsf{11\,659\,206.1\pm 4.1}) imes \mathsf{10}^{-10} \quad (\mathsf{2021}) \ \mathsf{[16]}$$

Comparison of measurement and prediction

Comparison of measurement and prediction

$$a_{\mu}^{ extsf{Exp}} - a_{\mu}^{ extsf{SM}} = (25.1 \pm 5.9) imes 10^{-10}$$

Deviation \approx 4.2 σ

 $P(\text{data}|\text{SM}) \approx$ 0.0027%

Where does the deviation come from?

Where does the deviation come from?

Maybe there are more particles, which we have not observed yet?

Where does the deviation come from?

Maybe there are more Higgs bosons?

Higgses

Two-Higgs Doublet Model

New quantum corrections in the 2HDM with 1 loop:

Minimal Supersymmetry

Maybe there is a spin-partner for each particle?

gauginos

Minimal Supersymmetry

New quantum corrections in the Minimal Supersymmetric Standard Model (MSSM) with 1 loop:

Summary

- *a_µ* describes the interaction strength of the muon's spin with a magnetic field
- a_{μ} is governed by quantum corrections
- \Rightarrow hints to new, unknown particles

Let's wait for more data!

Two-Higgs Doublet Model

Minimal Supersymmetry

Spin rotation frequencies

Lamor frequency:

$$\omega_{\mathcal{S}} = -grac{Qe}{2m}B - (1-\gamma)rac{Qe}{\gamma m}B$$

Cyclotron frequency:

$$\omega_{C} = -\frac{Qe}{\gamma m}B$$

Measure difference:

$$\omega_a = \omega_S - \omega_C = -\frac{g-2}{2}\frac{Qe}{m}B = -a\frac{Qe}{m}B$$

References I

[1] Hubble. Abell 1689. http:

//hubblesite.org/newscenter/newsdesk/
archive/releases/2003/01/image/a.Jan.
2003.

[2] Hubble. M101. http: //hubblesite.org/newscenter/newsdesk/ archive/releases/2006/10/image/a. Feb. 2006.

References II

- [3] ESO/L. Calçada. *Comparison of rotating disc* galaxies in the distant Universe and the present day.
 - https://en.wikipedia.org/wiki/File: Comparison_of_rotating_disc_galaxies_
 - in_the_distant_Universe_and_the_
 - present_day.webm. März 2017.

References III

- [4] Aney. Bar magnet. https: //commons.wikimedia.org/wiki/File: Bar_magnet.jpg. März 2006.
- [5] Jacob Bourjaily. Julian Schwinger headstone. https: //commons.wikimedia.org/wiki/File: Julian_Schwinger_headstone.JPG. Apr. 2013.

References IV

[6] https://www.g-

2.bnl.gov/pictures/index.html.

[7] The Big Move. Dominik Stöckinger, "Neues aus der Teilchenphysik – Spektakuläres Ergebnis des Myon g-2 Experiments und seine Folgen", Lange Nacht der Wissenschaften, 2021.

References V

- [8] The Muon g-2 electromagnet passes by the St. Louis Arch on its way to Fermilab in Illinois. https: //muon-g-2.fnal.gov/bigmove/images/ gallery/20130719-St-Louis-Arch.jpg. 2013.
- [9] The g-2 Muon Magnet Ring third nights move arriving at Fermilab. https://vms.fnal.gov/ asset/detail?recid=1819131. Juli 2013.

References VI

[10] Muon g-2 – Moving the worl'd largest electromagnetic ring.

https://youtu.be/rGLpMigWIIs. Juli 2013.

- [11] Muon g-2 Experiment. https://vms.fnal.gov/ asset/detail?recid=1950114. Aug. 2017.
- [12] James P. Miller u. a. "Muon (g-2): Experiment and Theory". In: Ann. Rev. Nucl. Part. Sci. 62 (2012), S. 237–264. DOI:

10.1146/annurev-nucl-031312-120340.

References VII

[13] J. Grange u. a. "Muon (g-2) Technical Design Report". In: (Jan. 2015). arXiv: 1501.06858 [physics.ins-det].

J. Bailey u. a. "Final Report on the CERN Muon Storage Ring Including the Anomalous Magnetic Moment and the Electric Dipole Moment of the Muon, and a Direct Test of Relativistic Time Dilation". In: *Nucl. Phys. B* 150 (1979), S. 1–75. DOI: 10.1016/0550-3213 (79) 90292-X.

References VIII

 G. W. Bennett u. a. "Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL". In: *Phys. Rev. D* 73 (2006), S. 072003. DOI: 10.1103/PhysRevD.73.072003. arXiv: hep-ex/0602035.

References IX

[16] B. Abi u. a. "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm". In: *Phys. Rev. Lett.* 126 (14 Apr. 2021), S. 141801. DOI: 10.1103/PhysRevLett.126.141801. URL: https://link.aps.org/doi/10.1103/ PhysRevLett.126.141801.

[17] Albert Einstein scratching his head: with Jakob Klatzkin (left) and Abraham S. Yahuda (right) in Saranac Lake. https://www.lbi.org/ griffinger/record/243953. Aug. 1941.

References XI

[18] Peter Athron u. a. "Two-loop prediction of the anomalous magnetic moment of the muon in the Two-Higgs Doublet Model with GM2Calc 2". In: *Eur. Phys. J. C* 82.3 (2022), S. 229. DOI: 10.1140/epjc/s10052-022-10148-9. arXiv: 2110.13238 [hep-ph].