## Das Higgs-Boson als Instrument auf der Suche nach Supersymmetrie

Alexander Voigt

#### Physik-Kolloquium Europa-Universität Flensburg

24.10.2019



## Contents

#### 1 Das Standardmodell der Teilchenphysik

Teilcheninhalt Higgsmechanismus Erfolge und Probleme

Supersymmetrische Erweiterung des Standardmodells Eigenschaften und Probleme Wie kann man das MSSM testen?

Präzise Vorhersage der Masse des Higgs-Bosons Endliche Schleifenordnung Effektive Feldtheorie

Wo ist SUSY?

5 Zusammenfassung

#### Woraus besteht Materie?



## Das Standardmodell der Teilchenphysik



#### Teilcheninhalt:

- 3 Generationen Fermionen (Quarks und Leptonen)
- Eichbosonen (Austauschteilchen)
- Higgs-Boson

#### Wechselwirkungen:

- Elektromagnetismus
- schwache Wechselwirkung
- starke Wechselwirkung

## Lagrangedichte des Standardmodells

$$\begin{aligned} \chi &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ + i \mathcal{F} \mathcal{D} \mathcal{Y} + hc \\ + \mathcal{Y}_i \mathcal{Y}_{ij} \mathcal{Y}_j \mathcal{Y} + hc \\ + |\mathbf{D}_{\mu} \mathbf{y}|^2 - V(\mathbf{0}) \end{aligned}$$

zzgl. Euler-Lagrange-Gleichungen:

$$0 = \frac{\partial \mathcal{L}}{\partial \sigma} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \sigma)}$$

mit

$$\sigma \in \{A_{\mu}, \psi_{i}, \phi\}$$

[https://home.cern/sites/home.web.cern.ch/files/2018-06/untitled\_7.png]

## Wechselwirkungsbegriff

Wechselwirkungen beschreiben auf fundamentaler Ebene:

• Teilchenumwandlung (Erzeugung, Vernichtung, "Zerfall")



• Kraft zwischen Teilchen (z.B. Coulombkraft)



Kräfte werden durch Austauschteilchen vermittelt

## Wechselwirkungen im Standardmodell

Wechselwirkungen folgen aus inneren Symmetrien:

| WW                                                  | Austauschteilchen                                                | Kopplung       | Symmetriegruppe              |
|-----------------------------------------------------|------------------------------------------------------------------|----------------|------------------------------|
| schwache Hyperladung<br>schwacher Isospin<br>starke | $egin{array}{c} B \ W^1, W^2, W^3 \ G^1, \dots, G^8 \end{array}$ | ВҮ<br>В2<br>В3 | $U(1)_Y$ $SU(2)_L$ $SU(3)_C$ |

Symmetrien werden spontan gebrochen durch Higgs-Feld:

| WW                             | Austauschteilchen                    | Kopplung   | Symmetriegruppe            |
|--------------------------------|--------------------------------------|------------|----------------------------|
| elektromagnetische<br>schwache | $\stackrel{\gamma}{W^+}$ , $W^-$ , Z | e<br>_     | U(1) <sub>e.m.</sub>       |
| starke                         | $G^1,\ldots,G^8$                     | <b>g</b> 3 | <i>SU</i> (3) <sub>C</sub> |

Ursprüngliches Problem: Massenterme verletzen die Symmetrien:

 $\mathcal{L}_{\mathsf{Elektronmasse}} = -m_e ar{\psi}_e \psi_e$  (verboten!)

 $\psi_e$  = Wellenfunktion des Elektrons,  $m_e = 511 \, {\rm keV}/c^2$  Masse des Elektrons

Ursprüngliches Problem: Massenterme verletzen die Symmetrien:

 $\mathcal{L}_{\mathsf{Elektronmasse}} = -m_e \bar{\psi}_e \psi_e$  (verboten!)

 $\psi_e =$  Wellenfunktion des Elektrons,  $m_e = 511 \, {\rm keV}/c^2$  Masse des Elektrons

Lösung: (Peter Higgs et.al.)

**Schritt 1:** Neues Feld  $\phi$  (Higgs-Feld) einführen und mit Teilchen wechselwirken lassen:

$$\mathcal{L}_{\mathsf{Higgs}} = -y_e \phi \bar{\psi}_e \psi_e + \cdots$$

 $y_e =$  "Stärke" der WW des Elektrons mit Higgs-Feld

**Schritt 2:** Konstruiere Potential, in dem das Higgs-Feld einen Grundzustand,  $v = \text{konst.} \neq 0$ , besitzt:



Higgs-Potential:

$$V(\phi) = \frac{\lambda}{8}\phi^4 - \frac{\mu^2}{2}\phi^2$$

Entwickeln von  $\phi(x)$  um den Grundzustand:

$$\phi(x)=v+h(x)$$

Einsetzen von

$$\phi(x)=v+h(x)$$

in  $\mathcal{L}_{Higgs}$  ergibt:

$$\begin{aligned} \mathcal{L}_{\mathsf{Higgs}} &= -y_e \phi \bar{\psi}_e \psi_e + \cdots \\ &= -y_e (\nu + h(x)) \bar{\psi}_e \psi_e + \cdots \\ &= -y_e \nu \bar{\psi}_e \psi_e - y_e h(x) \bar{\psi}_e \psi_e + \cdots \end{aligned}$$

 $\Rightarrow$  durch Ablesen

$$m_e = y_e v$$

Massenterm für Elektron erzeugt durch WW mit Higgs-Feld  $\phi$ ! Nebeneffekt: neues Teilchen, **Higgs-Boson** h

Mit dem Higgsmechanismus lassen sich die Massen **aller** massiven Elementarteilchen generieren, z.B.

$$m_e = y_e v,$$
  $m_t = y_t v$   
 $m_Z^2 = \frac{v^2}{4} (g_Y^2 + g_2^2),$   $m_W^2 = \frac{v^2}{4} g_2^2$   
 $m_h^2 = \lambda v^2$ 

Vor 2012: Bekannt:

 $\begin{array}{ll} g_Y \approx 0.35, & g_2 \approx 0.65, & g_3 \approx 1.2 \\ v \approx 245 \, {\rm GeV}/c^2, & m_h = ? & \Leftrightarrow \lambda = ?, \end{array}$ 

2012: Nachweis des Higgs-Bosons von ATLAS/CMS am LHC

$$M_h = (125.10 \pm 0.14) \, \mathrm{GeV}/c^2 \qquad \Rightarrow \lambda pprox 0.28$$

## Erfolge und Probleme des Standardmodells

#### **Erfolge:**

- beschreibt 3 der 4 bekannten Wechselwirkungen
- beschreibt uns umgebende sichtbare Materie
- viele Präzisionstests bestanden, insbes.  $g_e \approx 2$

#### Probleme:

- beschreibt nicht Gravitation
- beschreibt nicht Dunkle Materie, Dunkle Energie
- $pprox 3.6\sigma$  Abweichung zwischen  $g_{\mu}^{
  m exp}$  und  $g_{\mu}^{
  m theo}$

 $\Rightarrow$  Das Standardmodell liefert keine vollständige Beschreibung des Universums!

## Contents

1 Das Standardmodell der Teilchenphysik

Teilcheninhalt Higgsmechanismus Erfolge und Probleme

#### 2 Supersymmetrische Erweiterung des Standardmodells

Eigenschaften und Probleme Wie kann man das MSSM testen

Präzise Vorhersage der Masse des Higgs-Bosons Endliche Schleifenordnung Effektive Feldtheorie

Wo ist SUSY?

**5** Zusammenfassung

## Supersymmetrie

**Ausgangspunkt:** Raumzeit und physikalische Gesetze besitzen mehrere Symmetrien:

- Raum-Zeit-Translationsinvarianz
  - $\leftrightarrow$  Erhaltung von Energie- und Impuls  $P^{\mu}$
- Lorentzinvarianz
  - $\leftrightarrow$  Erhaltung des (Bahn-/Spin-)Drehimpulstensors  $M^{\mu
    u}$

**Theorem:** Es gibt nur **eine** Möglichkeit diese Symmetrien auf eine nicht-triviale Weise zu erweitern: Supersymmetrie

 $|\mathsf{boson}\rangle \leftrightarrow |\mathsf{fermion}\rangle$ 

**Konsequenz:** Zu jedem Teilchen im Standardmodell mit Spin *S* korrespondiert ein supersymmetrischer "Partner" mit Spin  $S \pm \frac{1}{2}$ .

## Minimal Supersymmetrisches Standardmodell (MSSM)



#### Vorteile:

- Eichkopplungsvereinigung
- korrekte Vorhersage von  $g_{\mu}$
- Enthält ein Dunkle Materie-Teilchen
- Vorhersage der Masse des Higgs-Bosons

- vorhergesagte Higgs-Masse zu klein?
- bisher keine SUSY-Teilchen gefunden?



#### Vorteile:

- Eichkopplungsvereinigung
- korrekte Vorhersage von  $g_{\mu}$
- Enthält ein Dunkle Materie-Teilchen
- Vorhersage der Masse des Higgs-Bosons

- vorhergesagte Higgs-Masse zu klein?
- bisher keine SUSY-Teilchen gefunden?



#### Vorteile:

- Eichkopplungsvereinigung
- korrekte Vorhersage von  $g_{\mu}$
- Enthält ein Dunkle Materie-Teilchen
- Vorhersage der Masse des Higgs-Bosons

- vorhergesagte Higgs-Masse zu klein?
- bisher keine SUSY-Teilchen gefunden?



#### Vorteile:

- Eichkopplungsvereinigung
- korrekte Vorhersage von  $g_{\mu}$
- Enthält ein Dunkle Materie-Teilchen
- Vorhersage der Masse des Higgs-Bosons

#### Probleme:

- vorhergesagte Higgs-Masse zu klein?
- bisher keine SUSY-Teilchen gefunden?

## $m_h \leq m_Z$

#### Vorhersage der Masse des Higgs-Bosons

SM: Ad-hoc Higgs-Potential:

 $\Rightarrow$ 

 $\Rightarrow$ 

$$V(\phi) = \frac{\lambda}{8}\phi^4 - \frac{\mu^2}{2}\phi^2$$

$$m_h^2 = \frac{\lambda}{v^2}$$

**MSSM:** Higgs-Potential automatisch:

$$V(\phi) = \frac{1}{8} \frac{1}{4} \left( g_Y^2 + g_2^2 \right) \cos^2(2\beta) \phi^4 + \cdots$$

$$m_h^2 = \frac{1}{4} \left( g_Y^2 + g_2^2 \right) \cos^2(2\beta) v^2$$
$$= m_Z^2 \cos^2(2\beta)$$
$$\leq m_Z^2$$

#### Vorteile:

- Eichkopplungsvereinigung
- korrekte Vorhersage von  $g_{\mu}$
- Enthält ein Dunkle Materie-Teilchen
- Vorhersage der Masse des Higgs-Bosons

Probleme:

- vorhergesagte Higgs-Masse zu klein?
- bisher keine SUSY-Teilchen gefunden?

# $m_h \leq m_Z$

Problem: vorhergesagte Higgs-Masse zu klein?

Vorhersage des MSSM:

 $m_h \leq m_Z$ 

Aus den Messungen am LEP und LHC wissen wir jedoch:

 $M_h \approx 125.10 \, {
m GeV}$  $M_Z \approx 91.2 \, {
m GeV}$ 

 $\Rightarrow$  Das MSSM sagt nur dann die korrekte Higgs-Masse vorher, wenn es **große Quantenkorrekturen** zwischen  $M_h$  und  $m_h$  gibt!

$$M_h^2 = m_h^2 + \Delta m_h^2 \qquad \Rightarrow \qquad \Delta m_h^2 \ge (85 \, \text{GeV})^2$$

#### Was sind Quantenkorrekturen?

Quantenkorrekturen zu  $g_e$ :



Quantenkorrekturen zu  $M_h^2$ :



#### Vorteile:

- Eichkopplungsvereinigung
- korrekte Vorhersage von  $g_{\mu}$
- Enthält ein Dunkle Materie-Teilchen
- Vorhersage der Masse des Higgs-Bosons

- vorhergesagte Higgs-Masse zu klein? → Kein Problem!
- bisher keine SUSY-Teilchen gefunden?

#### Problem: bisher keine SUSY-Teilchen gefunden

| July 2019                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                                                                         |                             |                                                                                                                                                                                                                                                            | $\sqrt{s} = 13 10 v$     |                          |                                 |                                                                                                                                                                                                                                                                                                   |                                                                                                     |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                  | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Signa                                                                 | ture                                                                                                    | ∫£ dt [fb <sup>−</sup>      | ') Ma                                                                                                                                                                                                                                                      | ss limit                 |                          |                                 |                                                                                                                                                                                                                                                                                                   | Reference                                                                                           |
| Inclusive Searches                               | $\bar{q}\bar{q}, \bar{q} \rightarrow q \bar{t}_{1}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                          | 0 e, μ 2-6 ji<br>mono-jet 1-3 ji                                      | ets $E_{T_{r}}^{min}$<br>ets $E_{T}^{min}$                                                              | 36.1<br>36.1                | ₽ [2x, 8x Degen.]<br>₽ [1x, 8x Degen.]                                                                                                                                                                                                                     | 0.43                     | 0.9                      | 1.55                            | m(t_1^0):=100 GeV<br>m(t):=m(t_1^0):=5 GeV                                                                                                                                                                                                                                                        | 1712.02332<br>1711.03301                                                                            |
|                                                  | $gg, g {\rightarrow} q q \tilde{g}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 e,μ 2-6 j                                                           | ets $E_T^{min}$                                                                                         | 36.1                        | 2                                                                                                                                                                                                                                                          |                          | Forbidden                | 2.0<br>0.95-1.6                 | m(t <sup>2</sup> )-200 GeV<br>m(t <sup>2</sup> ):::900 GeV                                                                                                                                                                                                                                        | 1712.02332<br>1712.02332                                                                            |
|                                                  | $\hat{g}\hat{g}, \hat{g} \rightarrow q\hat{q}(\ell \ell)\hat{\ell}_1^0$                                                                                                                                                                                                                                                                                                                                                                                          | 3 e,μ 4 ja<br>ee,μμ 2 ja                                              | ts<br>ts E <sub>T</sub>                                                                                 | 36.1<br>36.1                | 8                                                                                                                                                                                                                                                          |                          |                          | 1.85                            | m(t)-300 GeV<br>m(t)-m(t)=50 GeV                                                                                                                                                                                                                                                                  | 1706.03731<br>1805.11381                                                                            |
|                                                  | $\hat{g}\hat{g}, \hat{g} \rightarrow gqWZ\hat{g}_{1}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                        | 0 e,μ 7-11<br>SS e,μ 6 ja                                             | jets E <sub>T</sub><br>ts                                                                               | 36.1<br>139                 | 8                                                                                                                                                                                                                                                          |                          |                          | 1.8                             | m(t) <400 GeV<br>m(t)=m(t)=200 GeV                                                                                                                                                                                                                                                                | 1708.02794<br>ATLAS-CONF-2019-015                                                                   |
|                                                  | $gg, g \rightarrow d\tilde{R}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-1 e.μ 3 l<br>SS e.μ 6 ja                                            | s E <sub>T</sub> min<br>ts                                                                              | 79.8<br>139                 | 2                                                                                                                                                                                                                                                          |                          |                          | 1.25                            | 25 m(t <sup>2</sup> <sub>1</sub> )-200 GeV<br>m(t)-m(t <sup>2</sup> <sub>1</sub> )=300 GeV                                                                                                                                                                                                        | ATLAS-CONF-2018-041<br>ATLAS-CONF-2019-015                                                          |
| 3 <sup>14</sup> gen. squarks<br>drect production | $\hat{b}_1\hat{b}_1,\hat{b}_1{\rightarrow}b\hat{\eta}_1^0/t\hat{\chi}_1^*$                                                                                                                                                                                                                                                                                                                                                                                       | Muts<br>Muts<br>Muts                                                  | ple<br>ple<br>ple                                                                                       | 36.1<br>36.1<br>139         | Ji Forbidden<br>Ji<br>Ji<br>Ji                                                                                                                                                                                                                             | Farbidden<br>Farbidden   | 0.9<br>0.58-0.82<br>0.74 | nd.                             | $m(\tilde{t}_1^0)$ =300 GeV, BR( $h\tilde{t}_1^0$ )=1<br>$m(\tilde{t}_1^0)$ =300 GeV, BR( $h\tilde{t}_1^0$ )=BR( $h\tilde{t}_1^0$ )=0.5<br>$()$ =200 GeV, $m(\tilde{t}_1^0)$ =300 GeV, BR( $t\tilde{t}_1^0$ )=1                                                                                   | 1708.09265, 1711.03301<br>1708.09265<br>ATLAS-CONF-2019-015                                         |
|                                                  | $b_1b_1,b_1{\rightarrow}b\hat{\ell}_2^0{\rightarrow}bb\hat{\ell}_1^0$                                                                                                                                                                                                                                                                                                                                                                                            | 0 e, µ 6 i                                                            | $E_T^{min}$                                                                                             | 139                         | 51 Forbidden<br>51                                                                                                                                                                                                                                         | 0.23-0.48                |                          | 0.23-1.35                       | $\begin{array}{c} \Delta m(\tilde{t}_{2}^0, \tilde{t}_{1}^0)\!=\!130\text{GeV}, m(\tilde{t}_{1}^0)\!\!=\!\!100\text{GeV} \\ \Delta m(\tilde{t}_{2}^0, \tilde{t}_{1}^0)\!=\!130\text{GeV}, m(\tilde{t}_{1}^0)\!\!=\!\!0\text{GeV} \end{array}$                                                     | SUSY-2018-31<br>SUSY-2018-31                                                                        |
|                                                  | $\begin{array}{l} \bar{\imath}_1\bar{\imath}_1,\bar{\imath}_1 \rightarrow Wb\bar{\xi}_1^0 \text{ or } \bar{\xi}_1^0 \\ \bar{\imath}_1\bar{\imath}_1,\bar{\imath}_1 \rightarrow Wb\bar{\xi}_1^0 \\ \bar{\imath}_1\bar{\imath}_1,\bar{\imath}_1 \rightarrow \bar{\imath}_1b\gamma,\bar{\imath}_1 \rightarrow \tau G \\ \bar{\imath}_1\bar{\imath}_1,\bar{\imath}_1 \rightarrow c\bar{\xi}_1^0 / i\bar{\imath},\bar{\imath} \rightarrow c\bar{\xi}_1^0 \end{array}$ | 0-2 e,μ 0-2 jeta<br>1 e,μ 3 jeta<br>1 r + 1 e,μ,τ 2 jeta<br>0 e,μ 2 e | $(1.2 b E_T^{min})$<br>$(1 b E_T^{min})$<br>$(1 b E_T^{min})$<br>$(1 b E_T^{min})$<br>$(1 c E_T^{min})$ | 36.1<br>139<br>36.1<br>36.1 | 1)<br>1)<br>1)<br>2<br>1)<br>1)                                                                                                                                                                                                                            | 0.44-0.5                 | 1.0<br>9<br>0.85         | 1.16                            | m(t <sup>2</sup> <sub>1</sub> )=1 GeV<br>m(t <sup>2</sup> <sub>1</sub> )=400 GeV<br>m(t <sup>2</sup> )=800 GeV<br>m(t <sup>2</sup> <sub>1</sub> )=0 GeV<br>m(t <sup>2</sup> <sub>1</sub> )=0 GeV<br>m(t <sup>2</sup> <sub>1</sub> )=50 GeV                                                        | 1506.08516, 1709.04183, 1711.11520<br>AFLAS-CONF-2019-017<br>1803.10178<br>1805.01649<br>1805.01649 |
|                                                  | $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$<br>$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$                                                                                                                                                                                                                                                                                                                           | 0 e.μ mono<br>1-2 e.μ 4 i<br>3 e.μ 1 i                                | b $E_T^{min}$<br>$E_T^{min}$<br>$E_T^{min}$                                                             | 36.1<br>36.1<br>139         | 71<br>72<br>72                                                                                                                                                                                                                                             | 0.43<br>Forbidden        | 0.32-0.88<br>0.86        |                                 | $\begin{split} m(\tilde{r}_{1},r)\!-\!m(\tilde{r}_{1}^{'})\!=\!5~\text{GeV}\\ m(\tilde{r}_{1}^{'})\!=\!0~\text{GeV}, \ m(\tilde{r}_{1})\!-\!m(\tilde{r}_{1}^{'})\!=\!180~\text{GeV}\\ m(\tilde{r}_{1}^{'})\!=\!260~\text{GeV}, \ m(r_{1})\!-\!m(\tilde{r}_{1}^{'})\!=\!40~\text{GeV} \end{split}$ | 1711.03301<br>1705.03986<br>ATLAS-CONF-2019-016                                                     |
|                                                  | $\hat{x}_1^* \hat{x}_2^0$ via WZ                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-3 e,μ<br>ee,μμ ≥ 1                                                  | $E_T^{min}$<br>$E_T^{min}$                                                                              | 36.1<br>139                 | $\frac{\hat{x}_{1}^{*}/\hat{x}_{2}^{0}}{\hat{x}_{1}^{*}/\hat{x}_{2}^{0}} = 0.205$                                                                                                                                                                          | 0                        | 6                        |                                 | $m(\hat{t}_1^0)=0$<br>$m(\hat{t}_1^0)=5 \text{ GeV}$                                                                                                                                                                                                                                              | 1403.5294, 1805.02293<br>ATLAS-CONF-2019-014                                                        |
|                                                  | $\hat{\chi}_1^{+} \hat{\chi}_1^{-}$ via WW<br>$\hat{\chi}_1^{+} \hat{\chi}_2^{0}$ via Wh<br>$\hat{\chi}_1^{+} \hat{\chi}_2^{0}$ via 2.5                                                                                                                                                                                                                                                                                                                          | 2 e, μ<br>0-1 e, μ 2 b5                                               | $E_T^{min}$<br>$2\gamma = E_T^{min}$<br>$F^{min}$                                                       | 139<br>139                  | $\vec{x}_1^{\dagger}$<br>$\vec{x}_1^{\dagger} \vec{x}_2^{\dagger}$ Forbidden                                                                                                                                                                               | 0.42                     | 0.74                     |                                 | m(t <sup>0</sup> )=0<br>m(t <sup>0</sup> )=70 GeV                                                                                                                                                                                                                                                 | ATLAS-CONF-2019-008<br>ATLAS-CONF-2019-019, ATLAS-CONF-2019-XY2                                     |
| die                                              | $\chi_1 \chi_1 \text{ val} \chi_2 / v$<br>$\bar{\tau} \tau, \bar{\tau} \rightarrow \tau \tilde{\chi}_1^0$<br>$l_{L,R} l_{L,R}, l \rightarrow \ell \tilde{\chi}_1^0$                                                                                                                                                                                                                                                                                              | 2τ<br>2τ<br>2ε,μ 0 ja                                                 | $E_T^{min}$<br>ts $E_L^{min}$                                                                           | 139                         | 7 (fL-7R.L) 0.16-0.3                                                                                                                                                                                                                                       | 0.12-0.39                | 0.7                      |                                 | m(r,v)=0.5(m(x1)+m(x1))<br>m(r)=0<br>m(r)=0                                                                                                                                                                                                                                                       | ATLAS-CONF-2019-018<br>ATLAS-CONF-2019-008                                                          |
|                                                  | $\bar{H}\bar{H}, \bar{H} {\rightarrow} hG/ZG$                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 e,μ ≥ 1<br>0 e,μ ≥ 3<br>4 e,μ 0 ja                                  | $b = E_T^{min}$<br>$b = E_T^{min}$<br>$b = E_T^{min}$                                                   | 139<br>36.1<br>36.1         | 7 0.256<br><del>H</del> 0.13-0.23<br>H 0.3                                                                                                                                                                                                                 |                          | 0.29-0.88                |                                 | $m(\tilde{t}) \cdot m(\tilde{t}_1^c) \approx 10 \text{ GeV}$<br>$BR(\tilde{t}_1^c) \rightarrow \delta \tilde{G}) \approx 1$<br>$BR(\tilde{t}_1^c) \rightarrow 2\tilde{G}) \approx 1$                                                                                                              | ATLAS-CONF-2019-014<br>1806.04030<br>1804.03602                                                     |
| ved<br>les                                       | Direct $\hat{x}_1^* \hat{x}_1^-$ prod., long-lived $\hat{x}_1^*$                                                                                                                                                                                                                                                                                                                                                                                                 | Disapp. trk 1 je                                                      | at Egric                                                                                                | 36.1                        | 8t 0.15                                                                                                                                                                                                                                                    | 0.46                     |                          |                                 | Pure Wino<br>Pure Hicitaino                                                                                                                                                                                                                                                                       | 1712.02118<br>471010%.010%.017.019                                                                  |
| Long-li<br>particl                               | Stable ġ R-hadron<br>Metastable ġ R-hadron, ġ→ggi <sup>®</sup>                                                                                                                                                                                                                                                                                                                                                                                                   | Multi<br>Multi                                                        | ple<br>ple                                                                                              | 36.1<br>36.1                | 2<br>2 [r(2) =10 ns, 0.2 ns]                                                                                                                                                                                                                               |                          |                          | 2.0<br>2.05                     | 2.4 m(t <sup>2</sup> )=100 GeV                                                                                                                                                                                                                                                                    | 1902.01636,1808.04095<br>1710.04901,1808.04095                                                      |
| RPV                                              | $ \begin{array}{l} LFV pp {\rightarrow} \bar{v}_t + X, \bar{v}_t {\rightarrow} e \mu / e \tau / \mu \tau \\ \bar{X}_1^+ \bar{X}_1^- / \bar{X}_2^0 \rightarrow WW/Z\ell\ell\ell\ell \nu \tau \\ \bar{g} \bar{g}, \bar{g} {\rightarrow} q g \bar{g}_1^+ , \bar{X}_1^0 \rightarrow q g q \end{array} $                                                                                                                                                              | еµ,ет,µт<br>4 е.,µ 0 је<br>4-5 large<br>Multi                         | ts E <sub>T</sub><br>I-R jets<br>ple                                                                    | 3.2<br>36.1<br>36.1<br>36.1 | $\hat{r}_{1}$<br>$\hat{K}_{1}^{\dagger}/\hat{K}_{2}^{\dagger} = [\lambda_{12} \neq 0, \lambda_{121} \neq 0]$<br>$\hat{g} = [m(\hat{K}_{1}), 200 \text{ GeV}, 1100 \text{ GeV}]$<br>$\hat{g} = [\hat{K}_{12}^{\dagger}, 20 - 4, 20 - 5]$                    |                          | 0.82                     | 1.9<br>1.33<br>1.3 1.9<br>5 2.0 | $\lambda'_{111} = 0.11, \lambda_{121(211)} = 0.07$<br>$m[\tilde{t}_1^2] = 100 \text{ GeV}$<br>Large $\lambda'_{121}$<br>$m[\tilde{t}_1^2] = 200 \text{ GeV}, bino-like$                                                                                                                           | 1607.08079<br>1804.03602<br>1804.03568<br>ATLAS-CONF-2018-003                                       |
|                                                  | $ \begin{array}{l} \overline{a}, \overline{i} {\rightarrow} e \overline{k}_1^0, \overline{k}_1^0 {\rightarrow} u b x \\ \overline{b}_1 \overline{b}_1, \overline{b}_1 {\rightarrow} b x \\ \overline{b}_1 \overline{b}_1, \overline{b}_1 {\rightarrow} b x \\ \overline{b}_1 \overline{b}_1, \overline{b}_1 {\rightarrow} q d \end{array} $                                                                                                                      | Multi<br>2 jets -<br>2 e.μ 2 i<br>1 μ DV                              | ple<br>+ 2 <i>b</i><br>5<br>7                                                                           | 36.1<br>36.7<br>36.1<br>136 | $\begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \left[ X_{121}^{*}, -2n-4, 1n-2 \right] \\ \hline \tilde{t}_{1} & \left[ q_{2}, b_{1} \right] \\ \hline \tilde{t}_{1} & \left[ 1n-10 < X_{121}^{*} < 1n-8, 3n-10 < X_{121}^{*} \right] \end{array}$ | 0.55<br>0.42 0.<br><3e-9 | 1.0<br>81<br>1.0         | 5<br>0.4-1.45<br>1.6            | $m(\hat{x}_{1}^{0})$ =200 GeV, bino-Hee<br>BR $(\hat{x}_{1} \rightarrow br/b\mu)$ >20%<br>BR $(\hat{x}_{1} \rightarrow \mu\mu)$ =100%, cosik=1                                                                                                                                                    | ATLAS-CONF-2018-003<br>1710.07171<br>1710.05544<br>ATLAS-CONF-2019-005                              |
| Only                                             | a selection of the available ma                                                                                                                                                                                                                                                                                                                                                                                                                                  | ss limits on new s                                                    | tates or                                                                                                | 1                           | 0-1                                                                                                                                                                                                                                                        |                          |                          | ı .<br>1                        | Mass scale [TeV]                                                                                                                                                                                                                                                                                  |                                                                                                     |

ATLAS SUSY Searches\* - 95% CL Lower Limits

phenomena is shown. Many of the limits of new sta simplified models. c.f. refs. for the assumptions made.

ATLAS Preliminary E 10 T.V

## Wie kann man das MSSM testen?

Sind die experimentellen Ausschlussgrenzen für SUSY-Teilchen kompatibel mit der Notwendigkeit großer Quantenkorrekturen zur Higgs-Masse?

#### Vorgehen zur Untersuchung:

**1** Berechne MSSM-Vorhersage von  $M_h$  so präzise wie möglich:

$$M_h^2 = m_h^2 + \Delta m_h^2$$

e Einschränkung des Parameterraums des MSSM durch Forderung:

$$M_h \stackrel{!}{=} 125.10 \,\mathrm{GeV} \pm \delta M_h^{\mathrm{exp}} \pm \delta M_h^{\mathrm{theo}}$$

Experimentelle Unsicherheit:

$$\delta M_h^{\mathrm{exp}} = 0.14 \, \mathrm{GeV}$$
 [PDG-2019]

## Contents

1 Das Standardmodell der Teilchenphysik

Teilcheninhalt Higgsmechanismus Erfolge und Probleme

Supersymmetrische Erweiterung des Standardmodells Eigenschaften und Probleme Wie kann man das MSSM testen?

Präzise Vorhersage der Masse des Higgs-Bosons Endliche Schleifenordnung Effektive Feldtheorie

Wo ist SUSY?

**5** Zusammenfassung

#### Berechnung bis zu endlicher Schleifenordnung



## Berechnung bis zu endlicher Schleifenordnung

Quantenkorrekturen berechnen:



#### **Beobachtung:**

- Quantenkorrekturen lassen sich nach der Anzahl der Schleifen sortieren
- Jede Schleife ist proportional zu  $\kappa = 1/(4\pi)^2 \approx 1/160$ 
  - $\Rightarrow$  Feynman-Diagramm mit n Schleifen ist proportional zu  $\kappa^n$
- Je mehr Schleifen man mitnimmt, desto genauer das Ergebnis!

Vorgehen: Reihenentwicklung in Schleifen (Störungsreihe):

$$M_h^2 = m_h^2 + \Delta m_h^2$$
$$\Delta m_h^2 = \kappa^1 \Delta_1 + \kappa^2 \Delta_2 + \kappa^3 \Delta_3 + \cdots$$

## Los geht's! 1-Schleifen-Quantenkorrekturen

Quantenkorrekturen zu  $M_h$  mit 1 Schleife:

$$\kappa^1 \Delta_1 = \cdots \underbrace{ \begin{pmatrix} t \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}}_{t \to t} + \cdots \underbrace{ \begin{pmatrix} \tilde{t}_i \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}}_{t \to t} + \cdots$$

$$\approx 6\kappa y_t^4 v^2 (2L+c_0)+\cdots$$

 $L \equiv \ln(M_S/M_t)$   $M_t = 173.34 \text{ GeV: Masse des Top-Quarks}$   $M_S: \text{ Masse der Stop-Quarks}$  $c_0 = \text{ konst.}$ 

## 1-Schleifen-Quantenkorrekturen



#### Beobachtungen:

- logarithmischer Beitrag mit  $L \equiv \ln(M_S/M_t)$
- damit Quantenkorrektur groß genug, so dass  $M_h = 125.10 \text{ GeV} \Rightarrow M_S \gtrsim 2 \text{ TeV}$
- verbleibende theoretische Unsicherheit:  $\delta M_h^{\text{theo}} \approx \pm 6 \text{ GeV}$

Nicht gut genug!

## Weiter geht's! 2-Schleifen-Quantenkorrekturen



[hep-ph/0105096, hep-ph/0112177]

## 2-Schleifen-Quantenkorrekturen

$$\kappa^2 \Delta_2 \approx \kappa^2 y_t^4 g_3^2 \left( c_1 L^2 + c_2 L + c_3 \right) + \cdots$$

#### Beobachtungen:

- logarithmischer Beitrag mit  $L^2$ ,  $L \equiv \ln(M_S/M_t)$
- verbleibende Unsicherheit:  $\delta M_h^{
  m theo} pprox \pm 3 \, {
  m GeV}$

Immernoch nicht gut genug!

## Weiter geht's! 3-Schleifen-Quantenkorrekturen



[1005.5709]

$$\kappa^{3}\Delta_{3} pprox \kappa^{3}y_{t}^{4}g_{3}^{4}\left(c_{7}L^{3}+c_{8}L^{2}+c_{9}L+c_{10}
ight)$$

#### Beobachtungen:

- logarithmischer Beitrag mit  $L^3$ ,  $L \equiv \ln(M_S/M_t)$
- verbleibende Unsicherheit:  $\delta M_h^{\text{theo}} \approx \pm 2 \text{ GeV}$

## Konvergenz der Störungsreihe

Typische Größenordnung der Quantenkorrekturen:

$$M_h = m_h + \kappa^1 \Delta_1 + \kappa^2 \Delta_2 + \kappa^3 \Delta_3 + \cdots$$
  
 
$$\approx [91 + O(20 \dots 30) + O(2 \dots 4) + O(1 \dots 2)] \text{ GeV}$$

#### Beobachtung:

• Störungsreihe konvergiert "zu langsam"

#### Grund:

- große Quantenkorrekturen sind nötig damit  $M_h = 125.10 \, {\rm GeV}$
- Quantenkorrektur mit *n* Schleifen erzeugt Term *L<sup>n</sup>*
- $\Rightarrow L = \ln(M_S/M_t)$  muss groß gemacht werden! (möglich indem  $M_S \gg M_t$ , insbes.  $M_S \gtrsim 2 \text{ TeV}$ )
- $\Rightarrow$  Störungsreihe konvergiert langsam
- $\Rightarrow$  verbleibende Unsicherheit durch Abschneiden der Störungsreihe:  $\delta M_h^{\text{theo}} \approx 2 \text{ GeV}$ zur Erinnerung:  $\delta M_h^{\text{exp}} = 0.14 \text{ GeV}$

#### Unsicherheitsabschätzung



[1804.09410]

#### Lösung: Effektive Feldtheorie

**Fazit:** Abschneiden der Störungsreihe auf 3-Schleifenniveau führt zu großen fehlenden Termen:

$$\Delta m_h^2 \supset c_1 \kappa^1 L^1 + c_2 \kappa^2 L^2 + c_3 \kappa^3 L^3 + O(\kappa^4 L^4)$$

#### Lösung: Effektive Feldtheorie

**Fazit:** Abschneiden der Störungsreihe auf 3-Schleifenniveau führt zu großen fehlenden Termen:

$$\Delta m_h^2 \supset c_1 \kappa^1 L^1 + c_2 \kappa^2 L^2 + c_3 \kappa^3 L^3 + O(\kappa^4 L^4)$$

Lösung: Verwende eine Methode, bei der alle Terme von der Form

$$\Delta m_h^2 \supset \sum_{n=0}^{\infty} c_n \kappa^n L^n$$

einbezogen werden:

#### Effektive Feldtheorie (EFT)

## Contents

1 Das Standardmodell der Teilchenphysik

Teilcheninhalt Higgsmechanismus Erfolge und Probleme

Supersymmetrische Erweiterung des Standardmodells Eigenschaften und Probleme Wie kann man das MSSM testen?

 Präzise Vorhersage der Masse des Higgs-Bosons Endliche Schleifenordnung Effektive Feldtheorie

• Wo ist SUSY?

**5** Zusammenfassung

Feste Schleifenordnung vs. Effektive Feldtheorie



#### Berechnung in einer Effektiven Feldtheorie

**Idee:** SUSY-Teilchen entkoppeln an Energieskala  $M_S$   $\Rightarrow$  SM ist "Effektive Theorie" (ohne SUSY-Teilchen)  $\Rightarrow$  effektiver SM-Parameter  $\lambda(M_S)$  wird vorhergesagt



#### EFT enthält unendliche Reihe von $(\kappa L)^n$ -Termen

System gekoppelter DGLs:

$$\frac{\mathrm{d}\lambda}{\mathrm{d}L} = \beta_{\lambda} \approx -12\kappa y_t^4, \qquad \frac{\mathrm{d}y_t}{\mathrm{d}L} \approx -8\kappa y_t g_3^2, \qquad \frac{\mathrm{d}g_3}{\mathrm{d}L} \approx -7\kappa g_3^3$$

Lösung:

$$\lambda(M_t) = \frac{1}{4} \left( g_Y^2 + g_2^2 \right) c_{2\beta}^2 - \frac{2y_t^4}{3g_3^2} \left[ \left( 1 + 14g_3^2 \kappa L \right)^{-9/7} - 1 \right]$$

Einsetzen in  $M_h^2 = \lambda(M_t)v^2$  ergibt:

$$\begin{split} M_h^2 &= m_Z^2 c_{2\beta}^2 - \frac{2y_t^4 v^2}{3g_3^2} \left[ \left( 1 + 14g_3^2 \kappa L \right)^{-9/7} - 1 \right] \\ &= m_Z^2 c_{2\beta}^2 + 12y_t^4 v^2 \left[ \kappa L - 16g_3^2 \kappa^2 L^2 + \frac{736}{3}g_3^4 \kappa^3 L^3 + O(\kappa^4 L^4) \right] \end{split}$$

 $\Rightarrow M_h$  enthält **unendliche Reihe** von  $(\kappa L)^n$ -Termen

## Eigenschaften der EFT-Rechnung

Typische Größenordnung der Quantenkorrekturen in einer EFT-Rechnung:

$$M_h = m_h + \Delta m_h^{1\ell} + \Delta m_h^{2\ell} + \Delta m_h^{3\ell} + \cdots$$
  
  $\approx [O(124) + O(0.5...1) + O(0.1...0.2) + O(0.02...0.04)] \text{ GeV}$ 

#### Vorteile:

- Störungsreihe wird nicht bei n Schleifen  $O(L^n)$  abgeschnitten
- große Logarithmen L<sup>n</sup> werden komplett aufsummiert
- $\Rightarrow$  Störungsreihe konvergiert schnell

#### Nachteil:

• unpräzise wenn  $M_S \lesssim 0.5 \,\text{TeV}$  (ist irrelevant)

#### Unsicherheitsabschätzung



[1804.09410]

## Contents

1 Das Standardmodell der Teilchenphysik

Teilcheninhalt Higgsmechanismus Erfolge und Probleme

Supersymmetrische Erweiterung des Standardmodells Eigenschaften und Probleme Wie kann man das MSSM testen?

Präzise Vorhersage der Masse des Higgs-Bosons Endliche Schleifenordnung Effektive Feldtheorie

Wo ist SUSY?

**5** Zusammenfassung

#### Wo ist SUSY?



[1407.4081]

**Supersymmetrie** ist eine interessante Erweiterung des Standardmodells. Bietet Erklärungen für Dunkle Materie,  $g_{\mu}$ , uvm.

**Präzise Vorhersage der Masse des Higgs-Bosons** erlaubt Einschränkung des Parameterraums des MSSM.

**Stopmassen**  $M_S \gtrsim 2 \text{ TeV}$  im MSSM nötig für korrekte Vorhersage von  $M_h = 125.10 \text{ GeV} \rightarrow \text{Kompatible mit LHC-Ergebnissen}.$ 

**Effektive Feldtheorie** ist nötig um präzise Vorhersagen zu erhalten, da unendliche Reihe großer Logarithmen aufsummiert

#### Ausblick

# Riesiger Zoo an SUSY-Modellen $\Rightarrow$ Automatisierung nötig!



# Backup

#### Lagrangedichte des Standardmodells

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \bar{\psi}_i \gamma^{\mu} D_{\mu} \psi_i + y_{ij} \phi \bar{\psi}_i \psi_j + \text{h.c.} + |D_{\mu} \phi|^2 - V(\phi)$$

zzgl. Euler-Lagrange-Gleichungen:

$$0 = \frac{\partial \mathcal{L}}{\partial \sigma} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \sigma)}$$

#### Higgs masses in the SM

Higgs potential

$$V_{\text{Higgs}} = -\mu^2 |\Phi|^2 + \frac{\lambda}{2} |\Phi|^4 = -\frac{\mu^2}{2} (\nu + h)^2 + \frac{\lambda}{8} (\nu + h)^4 + \cdots$$

where

$$\Phi = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(v+h) \end{pmatrix}$$

After eliminating  $\mu^2$ :

$$V_{\mathrm{Higgs}} = \lambda v^2 \frac{h^2}{2} + \cdots \qquad \Rightarrow \qquad m_h^2 = \lambda v^2 \qquad (\mathrm{tree-level})$$

**Until 2012:**  $M_h = ? \Leftrightarrow \lambda = ?$ **Since 2012:**  $M_h \approx 125 \text{ GeV} \Rightarrow \lambda \approx 0.26$ 

## Higgs masses in the (real) MSSM

Higgs potential:

$$V_{\mathsf{Higgs}} = rac{1}{8}(g_Y^2 + g_2^2)(|h_1|^2 - |h_2|^2)^2 + rac{g_2^2}{2}|h_1^{\dagger}h_2|^2 + \cdots$$

where

$$h_1 = \begin{pmatrix} \frac{1}{\sqrt{2}}(v_1 + h_1^0) \\ 0 \end{pmatrix}, \qquad h_2 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(v_2 + h_2^0) \end{pmatrix}$$

After EWSB (if  $m_A \gg m_Z$ ):

$$V_{\text{Higgs}} \approx \frac{1}{4} (g_Y^2 + g_2^2) v^2 c_{2\beta}^2 \frac{h^2}{2} + \dots = m_Z^2 c_{2\beta}^2 \frac{h^2}{2} + \dots$$

 $\Rightarrow$  prediction:

$$m_h^2 = m_Z^2 \cos^2 2\beta \le m_Z^2 pprox (91.2 \, {
m GeV})^2$$
 (tree-level)

#### Scenarios with 1 light Higgs doublet



#### Scenarios with 2 light/intermediate Higgs doublets

