Precise Higgs mass calculations in BSM models in light of the recent LHC results

Alexander Voigt

IKTP-Institutsseminar, TU-Dresden

13/12/2018

Contents

Introduction

Open questions before/after the Higgs discovery Advantages/disadvantages of SUSY How can we test a SUSY model?

2 Higgs mass prediction

Fixed-order calculation Effective field theory calculation Hybrid fixed-order/EFT calculation

3 Where is SUSY?

4 Summary

- Does the Higgs exist?
- What does DM consist of?
- What causes the deviation of $(g-2)_{\mu}$?
- Is the vacuum stable up to $M_{\rm Pl}$?
- Why is $M_h = 125 \text{ GeV}?$
- Is there a solution to the hierarchy problem?
- Can QFT and gravity be unified?

- Does the Higgs exist?
- What does DM consist of?
- What causes the deviation of $(g-2)_{\mu}$?
- Is the vacuum stable up to $M_{\rm Pl}$?
- Why is $M_h = 125 \text{ GeV}?$
- Is there a solution to the hierarchy problem?
- Can QFT and gravity be unified?

- Does the Higgs exist?
- What does DM consist of?
- What causes the deviation of $(g-2)_{\mu}$?
- Is the vacuum stable up to $M_{\rm Pl}$?
- Why is $M_h = 125 \text{ GeV}?$
- Is there a solution to the hierarchy problem?
- Can QFT and gravity be unified?

- Does the Higgs exist?
- What does DM consist of?
- What causes the deviation of $(g-2)_{\mu}$?
- Is the vacuum stable up to $M_{\rm Pl}$?
- Why is $M_h = 125 \, \text{GeV}?$
- Is there a solution to the hierarchy problem?
- Can QFT and gravity be unified?

- Does the Higgs exist?
- What does DM consist of?
- What causes the deviation of $(g-2)_{\mu}$?
- Is the vacuum stable up to $M_{\rm Pl}$?
- Why is $M_h = 125 \text{ GeV}$?
- Is there a solution to the hierarchy problem?
- Can QFT and gravity be unified?

- Does the Higgs exist?
- What does DM consist of?
- What causes the deviation of $(g-2)_{\mu}$?
- Is the vacuum stable up to $M_{\rm Pl}$?
- Why is $M_h = 125 \text{ GeV}$?
- Is there a solution to the hierarchy problem?
- Can QFT and gravity be unified?

Problem 1: no SUSY particles observed

ATLAS SUSY	Searches*	- 95%	CLI	Lower	Limits	
Lub. 0010						

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dr[fi	-1]	Ma	ss limit		$\sqrt{s} = 7, 8$	TeV Vs = 13 TeV	Reference
	$\bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\xi}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	∉ [2x, 8x De] ∉ [1x, 8x De]	gen.) gen.)	0.43	0.9	1.55	m(t ²)<100 GeV m(i)-m(t ²):5 GeV	1712.02332 1711.03301
ICLINE	$gg, g {\rightarrow} q q q^0_1$	0	2-6 jets	Yes	36.1	8 8			Forbidden	2.0 0.95-1.6	m(ℓ ₁ ⁰)<200 GeV m(ℓ ₁)=\$00 GeV	1712.02332 1712.02332
10 D	$\hat{g}\hat{g},\hat{g}{\rightarrow} q\hat{q}(\ell\ell)\hat{\ell}_1^0$	3 e.μ ee.μμ	4 jets 2 jets	Yes	36.1 36.1	8 8				1.85	m($\tilde{\ell}_1^0$)<800 GeV m($\tilde{\ell}_1^0$)=50 GeV	1705.03731 1805.11381
	$\hat{g}\hat{g}, \hat{g} \rightarrow qqWZ\hat{g}_{1}^{0}$	0 3 e,µ	7-11 jets 4 jets	Yes -	36.1 36.1	2 2			0.98	1.8	m($\hat{\tilde{r}}_1^0$) <400 GeV m(\tilde{r}_1)=200 GeV	1708.02794 1705.03731
	$gg, g \rightarrow c \bar{c} \bar{\chi}_1^0$	0-1 e,μ 3 e,μ	3 b 4 jets	Yes	36.1 36.1	2 2				2.0	$m(\hat{f}_1^0)$ <200 GeV $m(\hat{g}_1)$ =200 GeV	1711.01901 1706.03731
	$\hat{b}_1\hat{b}_1, \hat{b}_1{\rightarrow} b\hat{t}_1^D/\hat{t}_1^a$		Multiple Multiple Multiple		36.1 36.1 36.1	$\tilde{b}_1 \\ \tilde{b}_1 \\ \tilde{b}_1 \\ \tilde{b}_1$	Forbidden	Forbidden Forbidden	0.9 0.58-0.82 0.7	m(²)	$m(\hat{r}_1^0)$ =300 GeV, BR(k_1^0)=1 $m(\hat{r}_1^0)$ =300 GeV, BR(k_1^0)=BR(k_1^0)=0.5 =200 GeV, $m(\hat{r}_1^0)$ =300 GeV, BR(\hat{r}_1^0)=1	1708.09266, 1711.03301 1708.09265 1706.03731
llor	$\tilde{b}_1 \tilde{b}_1, \tilde{i}_1 \tilde{i}_1, M_2 = 2 \times M_1$		Multiple Multiple		36.1 36.1	iι iι Forb	idden		0.7		$m(\hat{t}_1^0)$:50 GeV $m(\hat{t}_1^0)$:200 GeV	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
anpovd t	$\bar{i}_1\bar{i}_1, \bar{i}_1 \rightarrow Wb\bar{t}_1^0 \text{ or } i\bar{t}_1^0$ $\bar{i}_1\bar{i}_1, H LSP$	0-2 e.μ (0-2 jets/1-3 Multiple Multiple	b Yes	36.1 36.1 36.1	I1 11 11 11	Forbidden		1.0 0.4-0.9 0.6-0.8	m(2) m(2)	$m(\tilde{t}_{1}^{0})=1 \text{ GeV}$)=150 GeV, $m(\tilde{t}_{1}^{0})=m(\tilde{t}_{1}^{0})=5 \text{ GeV}$, $I_{1} \approx I_{L}$)=300 GeV, $m(\tilde{t}_{1}^{0})=m(\tilde{t}_{1}^{0})=5 \text{ GeV}$, $\tilde{t}_{1} \approx \tilde{t}_{L}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
5	ří ří, Well-Tempered LSP		Multiple		36.1	Ĩ,			0.48-0.84	m(2)	$(=150 \text{ GeV}, m(\hat{k}_1^n) \cdot m(\hat{k}_1^n) := 5 \text{ GeV}, I_1 \approx I_L$	1709.04183, 1711.11520
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \mathcal{K}_1^{\prime\prime} / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \mathcal{K}_1^{\prime\prime}$	0	2: mono-jet	Yes	36.1 36.1			0.46	0.85		m(\$\vec{k}1):=0 GeV m(\$\vec{k}1,z):=m(\$\vec{k}1):=50 GeV m(\$\vec{k}1):=5 GeV	1805.01649 1805.01649 1711.03301
	$t_2t_2, t_2{\rightarrow}t_1+h$	1-2 e. µ	4.6	Yes	36.1	ī,			0.32-0.88		$m(\hat{x}_{1}^{0})$:0 GeV, $m(\hat{r}_{1}) \cdot m(\hat{x}_{1}^{0})$: 150 GeV	1705.03985
	$\hat{x}_{1}^{\pm}\hat{x}_{2}^{0}$ via WZ	2-3 e,μ ee,μμ	≥1	Yes Yes	36.1 36.1	$\frac{\hat{x}_{1}^{*}\hat{x}_{1}^{0}}{\hat{x}_{1}^{*}\hat{x}_{2}^{0}} = 0.11$	7		0.6		$m(\hat{\xi}_1^0)=0$ $m(\hat{\xi}_1^0)-m(\hat{\xi}_1^0)=10 \text{ GeV}$	1403.5294, 1806.02293 1712.08119
	$\hat{\chi}_{1}^{*}\hat{\chi}_{2}^{0}$ via Wh	ll/lyystbb		Yes	20.3	$\hat{x}_{1}^{a}/\hat{x}_{2}^{b}$	0.26				m(t ² 1):0	1501.07110
(rect	$\hat{X}_{1}^{*}\hat{X}_{1}^{*}/\hat{X}_{2}^{0}, \hat{X}_{1}^{*} \rightarrow \bar{\tau}v(\tau\bar{v}), \hat{X}_{2}^{0} \rightarrow \bar{\tau}\tau(v\bar{v})$	2 7		Yes	36.1	$\hat{x}_{1}^{*}\hat{x}_{2}^{*}$ $\hat{x}_{1}^{*}\hat{x}_{2}^{*}$	0.22		0.76	$m(\tilde{t}_1^n) \cdot m(\tilde{t}_1^n)$	$m(\hat{k}_{1}^{0})=0, m(\hat{r}, \hat{r})=0.5(m(\hat{k}_{1}^{0})+m(\hat{k}_{1}^{0}))$ $\hat{r}_{1}^{0}=100 \text{ GeV}, m(\hat{r}, \hat{r})=0.5(m(\hat{k}_{1}^{0})+m(\hat{k}_{1}^{0}))$	1708.07875
g	$\hat{\ell}_{L,R}\hat{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \hat{\ell}_1^0$	2 e.μ 2 e.μ	0 ≥ 1	Yes Yes	36.1 36.1	7 7 0.	18	0.5			m(\hat{r}_1^0)=0 m(\hat{r}_1)=5 GeV	1803.02762 1712.08119
	$BB, B \rightarrow hG/ZG$	0 4 ε.μ	≥ 3b 0	Yes Yes	36.1 36.1	ii Ii	0.13-0.23 0.3		0.29-0.88		$BR(\tilde{t}_{1}^{0} \rightarrow \Lambda \tilde{G})=1$ $BR(\tilde{t}_{1}^{1} \rightarrow 2G)=1$	1805.04030 1804.03602
	$Direct \hat{x}_1^* \hat{x}_1^- \operatorname{prod.}, long-lived \hat{x}_1^*$	Disapp. trk	1 jet	Yes	36.1			0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Dicle	Stable § R-hadron	SMP	-		3.2	8				1.6		1605.05129
-BO	Metastable g R-hadron, g→opf 1	2-	Multiple	Ver	32.8	∦ [r(ĝ) =100 s ^a	ns, 0.2 ns)	0.44		1.6	2.4 m(t ²)=100 GeV	1710.04901, 1604.04520
	$\hat{g}\hat{g}, \hat{\chi}_1^0 \rightarrow eev/e\muv/\mu\muv$	displ. ce/eµ/µ	η <i>ι</i> -	-	20.3	8		0.44		1.3	1 <r(ℓ<sub>1)<3 ns, 5#5s model 6 <ur(ℓ<sub>1⁰)< 1000 mm, m(ℓ₁⁰)+1 TeV</ur(ℓ<sub></r(ℓ<sub>	1504.05162
747	LFV $pp \rightarrow \bar{v}_i + X, \bar{v}_i \rightarrow e\mu/e\tau/\mu\tau$	εμ,ετ.μτ			3.2	9,				1.9	$\mathcal{X}_{\rm S11}{=}0.11, \lambda_{\rm S12/111/210}{=}0.07$	1607.08079
	$\hat{\chi}_{1}^{*}\hat{\chi}_{1}^{*}/\hat{\chi}_{2}^{0} \rightarrow WW)Z\ell\ell\ell\ell\nu\nu$	4 e.µ	0	Yes	36.1	$\hat{x}_1^* \hat{\mu}_2^* = \mu_{ab} x$	0, J ₁₂₁ ≠ 0]		0.82	1.33	m(2)=100 GeV	1804.03602
	$\hat{g}\hat{g}, \hat{g} \rightarrow qq\hat{g}\hat{g}_{1}^{\prime\prime}, \hat{\chi}_{1}^{\prime\prime} \rightarrow qqq$	0 4	-5 large-R Multiple	jets -	36.1 36.1	8 (T(X_1)=200 8 (T_1)=20-4,	GeV, 1100 GeV] 2e-5]		1.0	1.3 1.9	Large J ₁₁₂ m(2)-200 GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
	$\bar{p}\bar{p}, \bar{p} \rightarrow t\bar{b}x / \bar{p} \rightarrow t\bar{k}\bar{k}_{1}^{0}, \bar{k}_{1}^{0} \rightarrow t\bar{b}x$		Multiple		36.1	8 12-1-10	-4			1.8 2.1	m ^(C))=200 GeV, bino-like	ATLAS-CONF-2018-003
	$\vec{u}, \vec{i} \rightarrow \vec{K}_{1}^{0}, \vec{X}_{1}^{0} \rightarrow tha$		Multiple		36.1	8 (1,10-20-4)	16-2)	0.5	1.0	i	m(t ²)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$\bar{t}_1\bar{t}_1$, $\bar{t}_1 \rightarrow bx$	0	2 jets + 2	b -	36.7	$\tilde{t}_1 = [qq, he]$		0.42	0.61			1710.07171
	$I_1I_1, I_1 \rightarrow b\ell$	2 e.µ	2 b		36.1	i,				0.4-1.45	$BR(\tilde{s}_1 \rightarrow dw/b\mu) > 20\%$	1710.05544
1ly	a selection of the available mas	s limits on r	new stati	es or	1	0-1				l .	Mass scale [TeV]	

Only a selection of the available mass innits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. ATLAS Preliminary

Problem 2: Tree-level Higgs mass too small

(minimal) SUSY predicts at tree-level:

$$m_h = m_Z |\cos 2\beta| \le m_Z$$

But from experiment we know:

 $M_h pprox 125.09 \, {
m GeV}$ $M_Z pprox 91.2 \, {
m GeV}$

 \Rightarrow large loop corrections required!

$$M_h^2 = m_h^2 + \Delta m_h^2 \qquad \Rightarrow \qquad \Delta m_h^2 \ge (85 \, \text{GeV})^2$$

How can we test a SUSY model?

Idea:

1 Calculate M_h as precisely as possible in the SUSY model:

$$M_h^2 = m_h^2 + \Delta m_h^2$$

2 Constrain the parameter space by requiring:

$$M_h \stackrel{!}{=} 125.09 \,\mathrm{GeV} \pm \Delta M_h^{\mathrm{exp}} \pm \Delta M_h^{\mathrm{theo}}$$

Problem: because of large loop corrections Δm_h^2 :

$$\Delta M_h^{
m theo} \gtrsim (1 \dots 2) \, {
m GeV} ~~{
m at ~least!} \ \Delta M_h^{
m exp} = 0.24 \, {
m GeV} ~~_{
m [PDG-2017]}$$

Contents

Introduction

Open questions before/after the Higgs discovery Advantages/disadvantages of SUSY How can we test a SUSY model?

2 Higgs mass prediction

Fixed-order calculation Effective field theory calculation Hybrid fixed-order/EFT calculation

3 Where is SUSY?

4 Summary

Approaches to predict M_h

Contents

Introduction

Open questions before/after the Higgs discovery Advantages/disadvantages of SUSY How can we test a SUSY model?

Higgs mass prediction Fixed-order calculation

Effective field theory calculation Hybrid fixed-order/EFT calculation

3 Where is SUSY?

4 Summary

Fixed-order calculation

Input: α_{em} , α_s , G_F , M_Z , M_t , m_b , ...

Fixed loop order calculation

Dominant contribution to M_h at the 1-loop level:

Higgs mass at 1-loop level

$$(\Delta m_h^2)^{1L} \approx \frac{12m_t^2 y_t^2}{(4\pi)^2} \left(\ln \frac{M_s^2}{m_t^2} + \frac{X_t^2}{M_s^2} - \frac{X_t^4}{12M_s^4} \right) + O(p^2)$$

 $X_t = A_t - \mu/t_eta$ = stop mixing parameter, $M_S = (m_Q)_{33} = (m_U)_{33}$

Observations:

- logarithmically enhanced by M_S/m_t
- maximal for $X_t \approx \sqrt{6}M_S$
- high sensitivity on m_t , due to prefactor $m_t^2 y_t^2 = 2m_t^4/v^2$
- ambiguity of definition of m_t : pole mass or $\overline{\text{DR}}$ mass? $M_t \approx 173.3 \text{ GeV}, \ m_t^{\overline{\text{DR}}} \approx 165 \text{ GeV}$ \Rightarrow huge theoretical uncertainty! \Rightarrow 2-loop calculation needed to resolve this ambiguity
- $M_h pprox$ 125 GeV requires $M_S \gtrsim$ 5 TeV

Higgs mass at 2-loop level

Known contributions: $O(\alpha_s(\alpha_t + \alpha_b) + (\alpha_t + \alpha_b)^2 + \alpha_\tau^2)$ for $p^2 = 0$ [hep-ph/0105096, hep-ph/0112177]

Higgs mass at 2-loop level

$$\begin{split} (\Delta m_h^2)^{2L} &\approx \frac{m_t^2 y_t^4}{(4\pi)^4} \left(c_1 \ln^2 \frac{M_S^2}{m_t^2} + c_2 \ln \frac{M_S^2}{m_t^2} + c_3 \right) \\ &+ \frac{m_t^2 y_t^2 g_3^2}{(4\pi)^4} \left(c_4 \ln^2 \frac{M_S^2}{m_t^2} + c_5 \ln \frac{M_S^2}{m_t^2} + c_6 \right) \end{split}$$

Observations:

- logarithmically enhanced by M_S/m_t
- still high sensitivity on m_t
- ambiguity of definition of m_t is resolved \checkmark
- ambiguity of definition of α_s : $\alpha_s^{SM}(M_Z)$, $\alpha_s^{MSSM}(M_S)$, ...? \Rightarrow 3-loop calculation needed to resolve this ambiguity

Higgs mass at 3-loop level

Known contributions: $O(\alpha_t \alpha_s^2)$ for $p^2 = 0$ [1005.5709]

$$(\Delta m_h^2)^{3L} \approx \frac{m_t^2 y_t^2 g_3^4}{(4\pi)^6} \left(c_7 \ln^3 \frac{M_5^2}{m_t^2} + c_8 \ln^2 \frac{M_5^2}{m_t^2} + c_9 \ln \frac{M_5^2}{m_t^2} + c_{10} \right)$$

Observations:

- logarithmically enhanced by M_S/m_t
- still high sensitivity on m_t
- ambiguity of definition of m_t is resolved \checkmark
- ambiguity of definition of α_{s} is resolved \checkmark

Summary of fixed loop order calculation

Typical order of magnitude of loop contributions (depends on parameter scenario):

$$M_{h} = m_{h} + \Delta m_{h}^{1L} + \Delta m_{h}^{2L} + \Delta m_{h}^{3L} + \cdots$$

\$\approx [91 + O(20...30) + O(2...4) + O(1...2)] GeV

Advantages:

- includes logarithmic and non-logarithmic contributions
- precise prediction if $M_S \sim m_t$

Problem:

- large logarithmic corrections, if $M_S \gg m_t$
 - \Rightarrow slow convergence of perturbation series
 - \Rightarrow large theoretical uncertainty, (1–2 GeV, or more)

Uncertainty estimate of the fixed-order $\overline{\text{DR}}'$ calculation

[1804.09410]

Contents

Introduction

Open questions before/after the Higgs discovery Advantages/disadvantages of SUSY How can we test a SUSY model?

e Higgs mass prediction

Fixed-order calculation Effective field theory calculation Hybrid fixed-order/EFT calculatio

3 Where is SUSY?

4 Summary

Higgs mass calculation in an EFT

Idea: Decouple SUSY particles at M_S (expand in v^2/M_S^2) $\Rightarrow \lambda(M_S)$ is fixed by the MSSM

Summary of EFT approach

Typical order of magnitude of loop contributions (depends on parameter scenario, here $X_t = 0$, $M_S = 20 \text{ TeV}$):

$$M_h = m_h + \Delta m_h^{1L} + \Delta m_h^{2L} + \Delta m_h^{3L} + \cdots$$

 $\approx [O(124) + O(0.5...1) + O(0.1...0.2) + O(0.02...0.04)] \text{ GeV}$

Advantages:

- large logarithmic fixed order loop corrections are avoided
- large logarithms $\propto \ln(M_S/M_t)$ are resummed to all orders

Disadvantage: terms of $O(v^2/M_S^2)$ are neglected

- \Rightarrow imprecise when $v \sim M_S$
- \Rightarrow large theoretical uncertainty when $v \sim M_S$

Comparison of fixed-order and EFT calculation

$$\Delta M_h^{(\rm FO)} \stackrel{!}{=} \Delta M_h^{(\rm EFT)}$$

$$\Rightarrow M_S^{\rm equal} = 1.0\text{--}1.3 \,\text{TeV} \text{ for small/large tan }\beta \text{ and/or } X_t$$

[1804.09410]

Summary of fixed-order and EFT approaches

	low M_S $M_S \lesssim 1 { m TeV}$	high M_S $M_S\gtrsim 1{ m TeV}$
fixed-order	1	×
EFT	×	1
? mixed	\checkmark	1

Q: Can the fixed-order and EFT approaches be combined?

A: Yes! [1312.4937, 1609.00371, 1710.03760]

Contents

Introduction

Open questions before/after the Higgs discovery Advantages/disadvantages of SUSY How can we test a SUSY model?

2 Higgs mass prediction

Fixed-order calculation Effective field theory calculation Hybrid fixed-order/EFT calculation

3 Where is SUSY?

4 Summary

Hybrid fixed-order/EFT calculation

Goal: resum large logarithms **and** include suppressed $O(v^2/M_S^2)$ terms

Idea I: ("FeynHiggs approach" [1312.4937, 1706.00346, 1805.00867]) Replace logs from fixed-order calculation by resummed logs:

$$\mathcal{M}_h^2 = (\mathcal{M}_h^2)_{ ext{fixed-order}} - (\mathcal{M}_h^2)_{ ext{logs}} + (\mathcal{M}_h^2)_{ ext{resummed logs}}$$

Pro:

- ✓ approach applicable to any BSM model
- ✓ any EFT can be used

Contra:

- X requires knowledge of fixed-order and EFT expressions
- X care must be taken to avoid double counting

Hybrid fixed-order/EFT calculation

Idea II: ("FlexibleEFTHiggs" [1609.00371, 1710.03760]) Incorporate $O(v^2/M_5^2)$ terms into λ by using the matching condition

$$(M_h^2)_{\mathrm{SM}} \stackrel{!}{=} (M_h^2)_{\mathrm{BSM}}$$
 at $Q = M_S$
 $\lambda(M_S)v^2 + (\Delta m_h^2)_{\mathrm{SM}} = (M_h^2)_{\mathrm{BSM}}$

 \Rightarrow

$$\lambda(M_S) = rac{1}{v^2} \left[(M_h^2)_{\mathsf{BSM}} - (\Delta m_h^2)_{\mathsf{SM}} \right]$$

Continue as in in the EFT calculation

FlexibleEFTHiggs approach

Continue as in the EFT calculation:

FlexibleEFTHiggs approach

Matching condition:

$$(M_h^2)_{\rm SM} \stackrel{!}{=} (M_h^2)_{\rm BSM}$$

Pro:

- ✓ approach applicable to any BSM model
- $\checkmark\,$ very simple $\rightarrow\,$ easy to automate
- ✓ only BSM fixed-order expressions required

Contra:

- \checkmark difficult to extend to other EFTs beyond the SM (2HDM, ...)
- tricky to reach 2-loop accuracy (requires careful treatment of parameter matching)

Comparison of the three approaches in the MSSM

Preliminary work by Thomas Kwasnitza, Dominik Stöckinger, AV

Contents

Introduction

Open questions before/after the Higgs discovery Advantages/disadvantages of SUSY How can we test a SUSY model?

Piggs mass prediction

Fixed-order calculation Effective field theory calculation Hybrid fixed-order/EFT calculation

3 Where is SUSY?

4 Summary

Difficult question!

- \rightarrow Need to make precise predictions for all parameter scenarios
- \rightarrow Need to consider all different kinds of EFTs!

Scenarios with 1 light Higgs doublet

Scenarios with 2 light/intermediate Higgs doublets

Where is SUSY?

[1407.4081]

Summary

Supersymmetry is still attractive and viable, but $M_S \gtrsim 1 \text{ TeV}$ required in the MSSM to get $M_h = 125.09 \text{ GeV}$.

Higgs mass prediction can be used to constrain SUSY parameter space.

When to use fixed-order/EFT calculation?

- $M_S \lesssim 1 \, \text{TeV} \Rightarrow \text{use fixed-order}$
- $M_S \gtrsim 1 \, {
 m TeV} \Rightarrow {
 m use} \, {
 m EFT}$

Recent advances in EFT calculations:

$Model \to EFT$	Accuracy	Program
$MSSM\toSM$	$N^{3}LO + N^{3}LL$	FS
$MSSM \to split\text{-}SUSY$	$N^{2}LO + NLL$	FS, FH
$MSSM \rightarrow 2HDM(+split)$	$N^{2}LO + NLL$	FS, FH
any BSM $ ightarrow$ SM	NLO + NLL	FS, SP*
any BSM $ ightarrow$ any EFT	NLO + NLL	SP

Prospects

large zoo of models \Rightarrow automation necessary!

Backup

Higgs masses in the SM

Higgs potential

$$V_{\text{Higgs}} = -\mu^2 |\Phi|^2 + \frac{\lambda}{2} |\Phi|^4 = -\frac{\mu^2}{2} (\nu + h)^2 + \frac{\lambda}{8} (\nu + h)^4 + \cdots$$

where

$$\Phi = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(v+h) \end{pmatrix}$$

After eliminating μ^2 :

$$V_{\mathrm{Higgs}} = \lambda v^2 \frac{h^2}{2} + \cdots \qquad \Rightarrow \qquad m_h^2 = \lambda v^2 \qquad (\mathrm{tree-level})$$

Until 2012: $M_h = ? \Leftrightarrow \lambda = ?$ **Since 2012:** $M_h \approx 125 \text{ GeV} \Rightarrow \lambda \approx 0.26$

Higgs masses in the (real) MSSM

Higgs potential:

$$V_{\mathsf{Higgs}} = rac{1}{8}(g_Y^2 + g_2^2)(|h_1|^2 - |h_2|^2)^2 + rac{g_2^2}{2}|h_1^{\dagger}h_2|^2 + \cdots$$

where

$$h_1 = \begin{pmatrix} \frac{1}{\sqrt{2}}(v_1 + h_1^0) \\ 0 \end{pmatrix}, \qquad h_2 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}}(v_2 + h_2^0) \end{pmatrix}$$

After EWSB (if $m_A \gg m_Z$):

$$V_{\text{Higgs}} \approx \frac{1}{4} (g_Y^2 + g_2^2) v^2 c_{2\beta}^2 \frac{h^2}{2} + \dots = m_Z^2 c_{2\beta}^2 \frac{h^2}{2} + \dots$$

 \Rightarrow prediction:

$$m_h^2 = m_Z^2 \cos^2 2\beta \le m_Z^2 pprox (91.2 \, {
m GeV})^2$$
 (tree-level)

Where is SUSY?

I high-scale SUSY

High–scale SUSY, variation from $M_h \approx 125.1~GeV$

[1407.4081]

Where is SUSY?

IV THDM+split

Current status of (N)MSSM spectrum generators

MSSM							
Spectrum generator	fixed order	EFT	hybrid				
FeynHiggs FlexibleSUSY SOFTSUSY SARAH/SPheno	2L 3L 3L 2L	2L 3L -	NNLO + NNLL NNLO + NNLL [†] - NNLO + LL				
NMSSM							
Spectrum generator	fixed order	EFT	hybrid				
FeynHiggs FlexibleSUSY SOFTSUSY SARAH/SPheno	– 2L* 2L* 2L	- - - 1L	- NNLO + NNLL [†] - NNLO + LL				

[†] in preparation

* $O(\alpha_t^2)$ corrections in the MSSM limit, no $O(\alpha_t \lambda^2)$ corrections

Uncertainty estimate of the fixed-order $\overline{\text{DR}}'$ calculation

Calculation of m_t in two different ways as proposed in [1609.00371]:

$$\begin{split} m_t^{[1]} &= M_t + \widetilde{\Sigma}_t^{(1L),S} + M_t \left[\widetilde{\Sigma}_t^{(1L),L} + \widetilde{\Sigma}_t^{(1L),R} \right] \\ &+ M_t \left[\widetilde{\Sigma}_t^{(1L),\text{SQCD}} + \widetilde{\Sigma}_t^{(2L),\text{SQCD}} + \left(\widetilde{\Sigma}_t^{(1L),\text{SQCD}} \right)^2 \right] \\ m_t^{[2]} &= M_t + \widetilde{\Sigma}_t^{(1L),S} + m_t \left[\widetilde{\Sigma}_t^{(1L),L} + \widetilde{\Sigma}_t^{(1L),R} \right] \\ &+ m_t \left[\widetilde{\Sigma}_t^{(1L),\text{SQCD}} + \widetilde{\Sigma}_t^{(2L),\text{SQCD}} \right] \end{split}$$

Calculation of $\alpha_{\rm \textit{s}}$ and $\alpha_{\rm em}$ in two different ways:

$$\alpha_{s}^{[1]} = \frac{\alpha_{s}^{\mathsf{SM}(5)}}{1 - \Delta^{(1L)}\alpha_{s} - \Delta^{(2L)}\alpha_{s}}$$
$$\alpha_{s}^{[2]} = \alpha_{s}^{\mathsf{SM}(5)} \left[1 + \Delta^{(1L)}\alpha_{s} + (\Delta^{(1L)}\alpha_{s})^{2} + \Delta^{(2L)}\alpha_{s} \right]$$

Uncertainty estimate of FlexibleEFTHiggs-1L

$$\Delta M_{h}^{(Q_{\text{pole}})} = \max_{\substack{Q_{\text{pole}} \in [M_{t}/2, 2M_{t}]}} |M_{h}(Q_{\text{pole}}) - M_{h}(M_{t})| \qquad [1609.00371]$$

$$\Delta M_{h}^{(Q_{\text{match}})} = \max_{\substack{Q_{\text{match}} \in [M_{S}/2, 2M_{S}]}} |M_{h}(Q_{\text{match}}) - M_{h}(M_{S})| \qquad [1407.4081]$$

$$\Delta M_{h}^{(y_{t}^{\text{SM}})} = \left| M_{h}(y_{t}^{\text{SM}, (2L)}(M_{Z})) - M_{h}(y_{t}^{\text{SM}, (3L)}(M_{Z})) \right| \qquad [1504.05200]$$

$$\Delta M_{h}^{(v^{2}/M_{S}^{2})} = 0 \quad \text{(has no EFT uncertainty!)} \qquad [1609.00371]$$

Uncertainty estimate of fixed-order $\overline{\mathsf{DR}}'$ calculation

In [1804.09410] 5 sources of uncertainty were combined:

$$\Delta M_{h}^{(Q_{\text{pole}})} = \max_{\substack{Q_{\text{pole}} \in [M_{S}/2, 2M_{S}]}} |M_{h}(Q_{\text{pole}}) - M_{h}(M_{S})| \qquad [1609.00371]$$

$$\Delta M_{h}^{(Q_{\text{match}})} = \max_{\substack{Q_{\text{match}} \in [M_{Z}/2, 2M_{Z}]}} |M_{h}(Q_{\text{match}}) - M_{h}(M_{Z})| \qquad [1804.09410]$$

$$\Delta M_{h}^{(m_{t})} = \left|M_{h}(m_{t}^{[1]}) - M_{h}(m_{t}^{[2]})\right| \qquad [1609.00371]$$

$$\Delta M_{h}^{(\alpha_{s})} = \left|M_{h}(\alpha_{s}^{[1]}) - M_{h}(\alpha_{s}^{[2]})\right| \qquad [1804.09410]$$

$$\Delta M_{h}^{(\alpha_{em})} = \left|M_{h}(\alpha_{em}^{[1]}) - M_{h}(\alpha_{em}^{[2]})\right| \qquad [1804.09410]$$

Combination:

$$\Delta \mathcal{M}_{h}^{(\text{FO})} = \Delta \mathcal{M}_{h}^{(Q_{\text{pole}})} + \Delta \mathcal{M}_{h}^{(Q_{\text{match}})} + \Delta \mathcal{M}_{h}^{(m_{t})} + \Delta \mathcal{M}_{h}^{(\alpha_{s})} + \Delta \mathcal{M}_{h}^{(\alpha_{em})}$$

Uncertainty estimate of the EFT calculation

In [1804.09410] 5 sources of uncertainty were combined:

$$\Delta M_{h}^{(Q_{\text{pole}})} = \max_{\substack{Q_{\text{pole}} \in [M_{t}/2, 2M_{t}]}} |M_{h}(Q_{\text{pole}}) - M_{h}(M_{t})|$$

$$\Delta M_{h}^{(Q_{\text{match}})} = \max_{\substack{Q_{\text{match}} \in [M_{S}/2, 2M_{S}]}} |M_{h}(Q_{\text{match}}) - M_{h}(M_{S})|$$

$$\Delta M_{h}^{(y_{t}^{\text{SM}})} = \left|M_{h}(y_{t}^{\text{SM}, (2L)}(M_{Z})) - M_{h}(y_{t}^{\text{SM}, (3L)}(M_{Z}))\right|$$

$$\Delta M_{h}^{(v^{2}/M_{S}^{2})} = \left|M_{h} - M_{h}(v^{2}/M_{S}^{2})\right|$$

$$\Delta M_{h}^{(y_{t}^{\text{MSSM}})} = \left|M_{h} - M_{h}(y_{t}^{\text{MSSM}}(M_{S}))\right|$$
[1504.05200]
$$\Delta M_{h}^{(y_{t}^{\text{MSSM}})} = \left|M_{h} - M_{h}(y_{t}^{\text{MSSM}}(M_{S}))\right|$$
[Bagnaschi,AV,Weiglein]

Combination:

$$\Delta M_{h}^{(\mathsf{EFT})} = \Delta M_{h}^{(Q_{\mathsf{pole}})} + \Delta M_{h}^{(Q_{\mathsf{match}})} + \Delta M_{h}^{(y_{t}^{\mathsf{SM}})} + \Delta M_{h}^{(y_{t}^{\mathsf{MSSM}})} + \Delta M_{h}^{(y_{t}^{\mathsf{MSSM}})}$$

Effect of the 3-loop $O(\alpha_t \alpha_s^2)$ corrections to M_h

[1708.05720]

Effect of the 3-loop corrections to $\lambda(M_S)$

3-loop corrections to $\lambda(M_S)$ allow for an N³LL resummation of strong corrections $O(\alpha_t^2 \alpha_s^2)$:

[1807.03509]

Fixed-order vs. hybrid calculation in the NMSSM

Gauge Coupling Unification

