Particle spectrum prediction in non-minimal supersymmetric models

Alexander Voigt

Technische Universität Dresden Institut für Kern- und Teilchenphysik

Frühjahrstagung der DPG in Dresden 5 March 2013, Session T 16.5

Study of the CE₆SSM parameter space Model definition Results

 A new spectrum generator – FlexibleSUSY Goals Code example VEV beta functions

4 Conclusions

Study of the CE₆SSM parameter space Model definition Results

A new spectrum generator – FlexibleSUSY Goals Code example VEV beta functions

Occusion

	CMSSM	non-minimal SUSY	CE ₆ SSM
solves μ problem of the MSSM	X	1	✓[hep-ph/0510419]
avoid m_h fine tuning	×	\checkmark	✓[hep-ph/1302.5291]
connection to specific gravity models	×	\checkmark	✓[hep-ph/0510419]
complete repres. of simple GUT gauge group	*	\checkmark	✓[hep-ph/0510419]
new particles and phenomena	1	1	✓[hep-ph/1302.5291]
explanation of $(g-3)^{ ext{exp.}}_{\mu}$	×	1	×

Study of the CE₆SSM parameter space Model definition Results

3 A new spectrum generator – FlexibleSUSY Goals Code example VEV beta functions

4 Conclusions

Definition of the CE₆SSM

$\begin{array}{c} Q_{i}, \ \bar{U}_{i}, \ \bar{D}_{i}, \ L_{i}, \ \bar{E}_{i}, \ \bar{N}_{i} \\ S_{i} \\ H_{1i}, \ H_{2i} \\ X_{i}, \ \overline{X}_{i} \end{array}$	MSSM fields <i>G</i> _{SM} singlet higgs-like doublets exotic colored matter	27 _i
H', H'	higgs-like doublets	$\in 27', \overline{27}'$
V_Y , V_W^i , V_g^a , V_N	gauge bosons, gauginos	∈ 78

Superpotential:

$$\mathcal{W}_{\mathsf{E}_6\mathsf{SSM}} \approx -y_e(H_{13}L_3)\overline{E}_3 - y_d(H_{13}Q_3)\overline{D}_3 - y_u(Q_3H_{23})\overline{U}_3 + \lambda_i S_3(H_{1i}H_{2i}) + \kappa_i S_3(X_i\overline{X}_i) + \mu'(H'\overline{H'})$$

GUT constraints: $m_i(M_X) = m_0, M_i(M_X) = M_{1/2}, A_i(M_X) = A$ Input parameters: $\lambda_i(M_X), \kappa_i(M_X), v, \tan \beta, s; m_{H'}, m_{\bar{H}'}, \mu', B\mu'$

Parameter space study of the $CE_6SSM - Higgs$ mass

[hep-ph/12091470]

 $\tan \beta = 2 \dots 45, \ \lambda_3 = 0 \dots 3, \ s = 10 \text{ TeV}, \ \lambda_{1,2,3} = \kappa_{1,2,3},$ $\mu' = m_{H'} = m_{\bar{H}'} = 10 \text{ TeV}, \ B\mu' = 0$

Alexander Voigt (TU Dresden)

Parameter space study of the CE₆SSM – LHC limits

[hep-ph/12091470]

 $\tan \beta = 2 \dots 45, \ \lambda_3 = 0 \dots 3, \ s = 10 \text{ TeV}, \ \lambda_{1,2,3} = \kappa_{1,2,3},$ $\mu' = m_{H'} = m_{\bar{H}'} = 10 \text{ TeV}, \ B\mu' = 0$

Alexander Voigt (TU Dresden)

Study of the CE₆SSM parameter space Model definition Results

 A new spectrum generator – FlexibleSUSY Goals Code example VEV beta functions

4 Conclusions

A new spectrum generator – FlexibleSUSY

Problem:

- CE_6SSM spec. gen. can not be generated with SARAH
- large variety of non-minimal SUSY models
 - \Rightarrow spectrum generators needed that
 - are flexible (modular, object-oriented, are easy to understand)
 - work in parameter regions where convergence is hard

Our approach:

$$\begin{array}{ccc} \mathsf{SARAH} & \longrightarrow & \mathsf{SoftSusy} + \mathsf{lattice} \end{array}$$

Goals:

- modular C++ classes to help the user modifying the generated code
- SoftSusy-like classes
- extra RGE solving methods
 - standard two-scale running method
 - lattice method + variants (Jae-hyeon Park)

```
1 Needs["SARAH'"];
2 Start["MSSM"];
3 MakeFlexibleSUSY[];
```

```
typedef Two_scale T; // or lattice
1
   MSSM<T> mssm:
2
   MSSM_parameter_point pp;
3
4
   std::vector<Constraint<T>*> constraints = {
5
     new MSSM mz constraint <T>(&mssm, pp),
6
     new MSSM msusy constraint <T>(&mssm, pp),
7
     new MSSM_sugra_constraint <T>(&mssm, pp)
8
   };
9
10
   RGFlow<T> solver;
11
   solver.add_model(&mssm, constraints);
12
   solver.solve();
13
```

For a complete SUSY spectrum generator β_{v_i} is needed at one- and two-loop level, but missing in [Martin-Vaughn hep-ph/9311340].

Current status:

Model	$\beta_{\nu_i}^{(1L)}$	$\beta_{v_i}^{(2L)}$
MSSM	✔[Chankowski Nucl.Phys. B423]	$(\checkmark)^1$ [hep-ph/0210324]
E ₆ SSM	[hep-ph/12091470]	X
$\forall \text{ SUSY model}$?	X

We currently calculate: β_{v_i} in a general spontaneously broken gauge theory at one- and two-loop order

 ${}^{1}O(g_{i}^{2}g_{j}^{2})$ terms unknown in $\beta_{v}^{(2L)}$

Alexander Voigt (TU Dresden)

- Non-minimal SUSY models are attractive extensions of the Standard Model
- Large variety of non-minimal SUSY models
- $\Rightarrow\,$ flexible / highly configurable spectrum generators are needed
 - FlexibleSUSY will provide a C++ spectrum generator that is
 - usable in parameter regions the two-scale algorithm does not converge
 - modular, object-oriented
 - easy to understand
 - easy to change and extend
 - Need to calculate $\beta_{v_i}^{(2L)}$ in general SUSY models