Precise Higgs mass calculations in supersymmetry

Alexander Voigt

In collaboration with P. Athron, T. Kwasnitza, J.-h. Park, T. Steudtner, D. Stöckinger

RWTH Aachen

DESY theory workshop, 27.09.2017

Contents

1 Supersymmetry and the Higgs sector

2 Higgs mass calculation in the MSSM

at fixed loop order in an EFT in a mixed approach

3 Summary

Contents

1 Supersymmetry and the Higgs sector

$\ensuremath{ 2 \ensuremath{ 2 \ens$

at fixed loop order in an EFT in a mixed approach

Summary

Supersymmetry

Still an attractive extension of the Standard Model!

Features:

- can predict the SM-like Higgs mass (see later)
- gauge coupling unification at $\sim 10^{16}\,\text{GeV}$ (due to extra matter)
- possible connection to super-gravity models and string theory ($\mathsf{E}_6\mathsf{SSM},\,\mathsf{MRSSM})$
- can explain deviation of $(g-2)_{\mu}$
- can stabilize the electroweak vacuum (see later)

Problem: LHC has not found any SUSY particles so far \Rightarrow SUSY particles are probably heavy

Current limits on SUSY particle masses

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	ε, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	-1) Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{split} & \text{MSUGRACIASSM} \\ & \tilde{q}^{2}_{11}\tilde{q}^{-1}_{12}\tilde{q}^{2}_{11}\tilde{q}^{-1}_{12}\tilde{q}^{2}_{11}\tilde{q}^{-1}_{12}\tilde{q}^{2}_{11}\tilde{q}^{2}_{12}\tilde$	0-3 e, µ/1-2 τ : 0 mono-jet 0 3 e, µ 0 1-2 τ + 0-1 ℓ 2 γ 7 2 e, µ(Z) 0	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 2 jets 2 jets mono-jet		20.3 36.1 32 36.1 36.1 36.1 36.1 32 32 20.3 13.3 20.3 20.3	62 6 800 GeV 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.85 TeV 1.57 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.55 TeV 37 TeV 1.8 TeV	$\begin{split} &m(j)\!=\!m(j) \\ &m(j)\!=\!m(j$	1907.0525 ATLAS-CONF-037-022 1904.0773 ATLAS-CONF-037-022 ATLAS-CONF-037-023 ATLAS-CONF-037-03 ATLAS-CONF-037-03 1007.0510 1007.0510 1007.0540 1007.0540 1007.0540 1000.0330 1000.0330 1000.0330
3 rd gen § med.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0-1 e,μ 0-1 e,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2 2 1	1.92 TeV 1.97 TeV 37 TeV	$\begin{array}{l} m(\hat{\tau}_{1}^{0}){<}600GeV \\ m(\hat{\tau}_{1}^{0}){<}200GeV \\ m(\hat{\tau}_{1}^{0}){<}300GeV \end{array}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
314 gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$, $\tilde{h}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$, $\tilde{h}_1 \rightarrow c \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$ (natural GMSB) $\tilde{h}_2 \tilde{h}_1 \tilde{h}_2 \rightarrow \tilde{h}_1 \rightarrow Z$ $\tilde{h}_2 \tilde{h}_1 \tilde{h}_2 \rightarrow \tilde{h}_1 \rightarrow K$	0 $2 e, \mu$ (SS) $0 \cdot 2 e, \mu$ $0 \cdot 2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1 \cdot 2 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2 b mono-jet 1 b 1 b 4 b	Yas Yas Yas Yas Yas Yas Yas	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	8 950 GeV 7 157570 GeV 200-720 GeV 7 90-180 GeV 205-950 GeV 7 90-180 GeV 205-950 GeV 7 90-322 GeV 7 7 90-320 GeV 300-780 GeV 7 150-660 GeV 320-800 GeV 6 320-800 GeV 320-800 GeV		$\begin{split} m(\tilde{t}_{1}^{2}) & \!$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-039 1202.1202, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{split} \tilde{t}_{k,k} \tilde{t}_{k,k}, \tilde{t} \rightarrow \tilde{t}_{k}^{2} \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{k}(\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{r}(r\tilde{r}), \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{r}(r\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2}, \tilde{t}_{k}(\tilde{r}), \tilde{t}\tilde{r}_{k}^{2}(\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{k}(\tilde{t}), \tilde{t}\tilde{r}_{k}^{2}(\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \rightarrow W \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \rightarrow W \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \\ \tilde{g} GM (wino NLSP) weak prod. \tilde{x}_{k}^{2} \\ \tilde{g} GM (bino NLSP) weak prod. \tilde{x}_{k}^{2} \end{split}$	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2 \cdot 3 e, \mu$ e, μ, γ $4 e, \mu$ $4 \cdot e, \mu + \gamma$ $\gamma G = 1 e, \mu + \gamma$ $\gamma G = 2 \gamma$	0 0 0-2 jets 0-2 b 0	165 165 165 165 165 165 165 165 165 165	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	2 99-440 GeV 2 710 GeV 2 730 GeV 3 740 GeV 4 74 4 74 4 74 4 74 5 70 GeV 5 85 GeV 6 115-270 GeV 8 85 GeV 8 90 GeV	₩ m(t ²)+m m(t ²)+m	$\begin{split} m(\tilde{t}_{1}^{0}) = 0 & \\ m(\tilde{t}_{1}^{0}) = 0, \\ m(\tilde{t}_{1}^{0}) =$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 1501.07110 1403.5086 1907.05403
Long-lived particles	Direct $\tilde{x}_1^*\tilde{x}_1^-$ prod., long-lived \tilde{x}_1^* Direct $\tilde{x}_1^*\tilde{x}_1^*$ prod., long-lived \tilde{x}_1^* Stable, stopped \tilde{y} -R-hadron Stable \tilde{y} -R-hadron Metasztable \tilde{y} -R-hadron GMSB, stable $\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1 $\tilde{x}_1^*\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1 $\tilde{x}_2^*\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1 $\tilde{x}_2^*\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1 $\tilde{x}_2^*\tilde{x}_1^* \rightarrow \tau G$, long-lived \tilde{x}_1	Disapp. trk dE/dx trk 0 trk dE/dx trk 1-2 µ 2 y displ. cc/eµ/µ displ. vtx + jet	1 jet - 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes Yes Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	11 430 GeV 2 495 GeV 2 850 GeV 2 800 GeV 2 800 GeV 2 800 GeV 2 10 700 V 1 10 700 V	1.58 TeV 1.57 TeV	$\begin{split} m(\tilde{t}_1^{-1}) & m(\tilde{t}_1^{-1}) = 100 \; \text{MeV}, \; \pi(\tilde{t}_1^{-1}) = 102 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{MeV}, \; \pi(\tilde{t}_1^{-1}) = 151 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \;$	ATLAS-CONF-017-017 1506.05322 1310.6584 1806.65129 1804.04520 1411.6795 1403.5542 1504.65162 1504.65162
RPV	$ \begin{array}{l} LFV pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} ep_{t} e\tau / \mu\tau \\ Blinear \ RPV \ CMSSM \\ \tilde{v}_{\tau}^{T} (X_{\tau}^{T}) = \langle \mathcal{M} e^{T} (X_{\tau}^{T}) = \langle $	$e\mu,e\tau,\mu\tau$ $2e,\mu$ (SS) $4e,\mu$ $3e,\mu+\tau$ 0 $4e,\mu$ $1e,\mu$ $1e,\mu$ $1e,\mu$ $1e,\mu$ $2e,\mu$	0-3 b 5 large-R je 5 large-R je 1-10 jets/0-4. 1-10 jets/0-4. 2 jets + 2 b 2 b	- Yes Yes ts - ts - ts - ts - ts -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	5. 4.2 21 1.14 Te 22 1.06 V 1.14 Te 24 1.06 TeV 24 1.06 TeV 25 1.06 TeV 26 1.0	1.9 TeV 1.45 TeV V 1.55 TeV 2.1 TeV 1.65 TeV 1.45 TeV	$\begin{split} I_{111}^{i} &= 0.11, \ J_{1121121214} = 0.07 \\ m(\xi) = m(\xi), \ c_{122} < 1 \ mm \\ m(\xi)^{i} = 0.0024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.0024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m$	1607.08073 1444.2503 ATLAS-CONF-2015-675 1405.5085 ATLAS-CONF-2015-607 ATLAS-CONF-2015-607 ATLAS-CONF-2015-607 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-035
Other	Scalar charm, $\hat{c} \rightarrow c \hat{\ell}_1^0$	0	2 c	Yes	20.3	2 510 GeV		m(\$ ⁰ ₁)<200 GeV	1501.01325
'Only	a selection of the available ma omena is shown. Many of the	uss limits on r limits are ba	new states	s or	1	0 ⁻¹ 1		Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

CP-even Higgs masses in the real MSSM $(\operatorname{Im} H_d^0, \operatorname{Im} H_u^0) \xrightarrow{\beta} (G^0, A), (\operatorname{Re} H_d^0, \operatorname{Re} H_u^0) \xrightarrow{\alpha} (h, H):$ $m_{h,H}^2 = \frac{1}{2} \left[m_Z^2 + m_A^2 \mp \sqrt{(m_Z^2 + m_A^2)^2 - 4m_Z^2 m_A^2 c_{2\beta}^2} \right]$

If $m_A \gg m_Z \Rightarrow$

$$m_h^2 pprox m_Z^2 c_{2\beta}^2 \le (91.2\,{
m GeV})^2$$
 (tree-level)

 $\Rightarrow M_h \approx 125 \,\text{GeV}$ requires large loop corrections!

$$M_h^2 = m_h^2 + \Delta m_h^2 \qquad \Rightarrow \qquad \Delta m_h^2 \ge (85 \, \text{GeV})^2$$

Because of large loop corrections Δm_h^2 :

$$\Delta M_h^{
m theo}\gtrsim (1\dots2)\,{
m GeV}$$
 at least $\Delta M_h^{
m exp}=0.24\,{
m GeV}$ [PDG-2017]

Contents

1 Supersymmetry and the Higgs sector

Higgs mass calculation in the MSSM at fixed loop order in an EFT in a mixed approach

Fixed loop order calculation

Dominant contribution to M_h at the 1-loop level:

Summary of fixed loop order calculation

Typical order of magnitude of loop contributions (depends on parameter scenario):

$$M_h = m_h + \Delta m_h^{1L} + \Delta m_h^{2L} + \Delta m_h^{3L} + \cdots$$

 $\approx [91 + O(20...30) + O(2...4) + O(1...2)] \, \text{GeV}$

Advantages:

- includes logarithmic, non-logarithmic and suppressed terms of the order $O(v^2/M_S^2)$ at fixed loop order
- precise prediction if $M_S \sim m_t$

Problem:

• large logarithmic corrections, if $M_S \gg m_t$ \Rightarrow slow convergence of perturbation series \Rightarrow large theoretical uncertainty, (1–2 GeV, or more) $M_h^{\text{exp}} = (125.09 \pm 0.24) \text{ GeV}$

Contents

1 Supersymmetry and the Higgs sector

Higgs mass calculation in the MSSM at fixed loop order in an EFT in a mixed approach

Higgs mass calculation in an EFT

Idea: Integrate out SUSY particles at M_S (expand in v^2/M_S^2) $\Rightarrow \lambda(M_S)$ is fixed by the MSSM

 \Rightarrow effectively: separation of scales M_S and M_t .

Summary of EFT approach

Typical order of magnitude of loop contributions (depends on parameter scenario, here $X_t = 0$, $M_S = 20 \text{ TeV}$):

$$M_h = m_h + \Delta m_h^{1L} + \Delta m_h^{2L} + \Delta m_h^{3L} + \cdots$$

 $\approx [O(124) + O(0.5...1) + O(0.1...0.2) + O(0.02...0.04)] \text{ GeV}$

Advantages:

- large logarithmic fixed order loop corrections are avoided
- large logarithms $\propto \ln(M_S/M_t)$ are resummed to all orders

Disadvantage: usually terms $O(v^2/M_S^2)$ are neglected

- \Rightarrow imprecise when $v \sim M_S$
- \Rightarrow large theoretical uncertainty when $v \sim M_S$

Comparison of fixed-order and EFT approaches

Contents

1 Supersymmetry and the Higgs sector

2 Higgs mass calculation in the MSSM

at fixed loop order in an EFT in a mixed approach

FlexibleEFTHiggs approach [arXiv:1609.00371]

Idea: Determine $\lambda(M_S)$ from the condition

$$(M_h^2)_{\mathrm{SM}} \equiv \lambda(M_S)v^2 + (\Delta m_h^2)_{\mathrm{SM}}^{1L} \stackrel{!}{=} (M_h^2)_{\mathrm{MSSM}}$$
 1L, $Q = M_S$

Summary FlexibleEFTHiggs approach

$$(M_h^2)_{SM} = (M_h^2)_{MSSM}$$
 1L, $Q = M_S$

Advantages:

- large logarithms $\propto \ln(M_S/M_t)$ are resummed to all orders
- all suppressed terms $O(v^2/M_5^2)$ are incorporated in λ

 \Rightarrow FlexibleEFTHiggs leads to a correct Higgs mass prediction at the full 1-loop level (including suppressed terms) with additional (N)LL resummation.

Disadvantage:

tricky to extend to 2-loop accuracy

Comparison of the three approaches

Summary

Supersymmetry is still viable, but LHC continuously excludes light SUSY scenarios

Approaches to calculate M_h :

	low M_S $M_S \lesssim 2 { m TeV}$	high M_S $M_S\gtrsim 2{ m TeV}$
fixed-order	1	×
EFT	×	1
mixed (FlexibleEFTHiggs)	1	1

FlexibleEFTHiggs:

- full NLO + (N)LL resummation
- can be applied to any BSM model (SUSY or non-SUSY)
- can be easily automatized

Backup

Comparison of the three approaches

FlexibleEFTHiggs – EFT equivalence

Proof of equivalence: Start with matching condition:

$$(M_h^2)_{\rm SM} = (M_h^2)_{\rm MSSM}$$
 1L, $Q = M_S$
 $\lambda v^2 + (\Delta m_h^2)_{\rm SM}^{1L} = (M_h^2)_{\rm MSSM}$

$$\Rightarrow$$

$$egin{aligned} \lambda(M_{\mathcal{S}}) &= rac{1}{v^2} \left[(M_h^2)_{\mathsf{MSSM}} - (\Delta m_h^2)_{\mathsf{SM}}^{1L}
ight] \ &= rac{1}{v^2} \left[(m_h^2)_{\mathsf{MSSM}} + (\Delta m_h^2)_{\mathsf{MSSM}}^{1L} - (\Delta m_h^2)_{\mathsf{SM}}^{1L}
ight] \end{aligned}$$

Now insert $(m_h^2)_{MSSM}$ and $(\Delta m_h^2)_{MSSM}^{1L}$...

FlexibleEFTHiggs – EFT equivalence

Inserting $(m_h^2)_{\text{MSSM}}$ and $(\Delta m_h^2)_{\text{MSSM}}^{1L}$ for $X_t = 0$:

$$\begin{split} \lambda(M_S) &= \frac{1}{v^2} \Biggl[\frac{1}{4} (g_Y^2 + g_2^2) v^2 c_{2\beta}^2 \\ &+ \frac{c_\alpha^2}{s_\beta^2} (\Delta m_h^2)_{\rm SM}^{1L} - \frac{c_\alpha^2}{s_\beta^2} \frac{12(y_t^{\rm SM})^2 m_t^2}{(4\pi)^2} B_0(m_h^2, M_S^2, M_S^2) \\ &- (\Delta m_h^2)_{\rm SM}^{1L} \Biggr] \end{split}$$

Now go to the decoupling limit $c_{lpha}^2/s_{eta}^2
ightarrow 1\,\dots$

FlexibleEFTHiggs – EFT equivalence

In the decoupling limit $c_{lpha}^2/s_{eta}^2
ightarrow 1$:

$$\begin{split} \lambda(M_{S}) &= \frac{1}{4} (g_{Y}^{2} + g_{2}^{2}) c_{2\beta}^{2} - 12 \frac{m_{t}^{2} (y_{t}^{\text{SM}})^{2}}{(4\pi)^{2} v^{2}} B_{0}(m_{h}^{2}, M_{S}^{2}, M_{S}^{2}) \\ &= \frac{1}{4} (g_{Y}^{2} + g_{2}^{2}) c_{2\beta}^{2} - 12 \frac{m_{t}^{2} (y_{t}^{\text{SM}})^{2}}{(4\pi)^{2} v^{2}} \bigg[-\log \frac{M_{S}^{2}}{Q^{2}} + \frac{m_{h}^{2}}{6M_{S}^{2}} + O\bigg(\frac{m_{h}^{4}}{M_{S}^{4}}\bigg) \bigg] \\ &= \frac{1}{4} (g_{Y}^{2} + g_{2}^{2}) c_{2\beta}^{2} + 12 \frac{m_{t}^{2} (y_{t}^{\text{SM}})^{2}}{(4\pi)^{2} v^{2}} \bigg[\log \frac{M_{S}^{2}}{Q^{2}} \bigg] + O\bigg(\frac{v^{2}}{M_{S}^{2}}\bigg) \\ &= \lambda^{\text{EFT,tree}} + \Delta \lambda^{\text{EFT,1L}} + O\bigg(\frac{v^{2}}{M_{S}^{2}}\bigg) \end{split}$$

In the decoupling limit $\lambda(M_S)$ in the FlexibleEFTHiggs approach is equivalent to the EFT approach at 1-loop, up to suppressed terms $O(v^2/M_S^2)$

Higgs mass uncertainty estimate

fixed-order:

•
$$|M_h^{2L}(Q_{\text{pole}} = M_S/2) - M_h^{2L}(Q_{\text{pole}} = 2M_S)|$$

•
$$|M_h^{2L}(y_t^{1L}) - M_h^{2L}(y_t^{2L})|$$

EFT (SUSYHD):

•
$$|M_h^{2L}(Q_{\text{pole}} = M_t/2) - M_h^{2L}(Q_{\text{pole}} = 2M_t)|$$

•
$$|M_h^{2L}(y_t^{2L}) - M_h^{2L}(y_t^{3L})|$$

•
$$|M_h^{2L}(Q_{match} = M_S/2) - M_h^{2L}(Q_{match} = 2M_S)|$$

•
$$|M_h^{2L} - M_h^{2L}(\lambda \to \lambda(1 + v^2/M_S^2))|$$

FlexibleEFTHiggs:

•
$$|M_h^{2L}(Q_{\text{pole}} = M_t/2) - M_h^{2L}(Q_{\text{pole}} = 2M_t)|$$

•
$$|M_h^{2L}(y_t^{2L}) - M_h^{2L}(y_t^{3L})|$$

•
$$|M_h^{2L}(Q_{match} = M_S/2) - M_h^{2L}(Q_{match} = 2M_S)|$$

Incorrect 2L logs in original FlexibleEFTHiggs-1L

Matching condition:

$$\lambda \leftarrow rac{1}{v^2} \left[(m_h^{ extsf{SM}})^2 + (M_h^{ extsf{MSSM}})^2 - (M_h^{ extsf{SM}})^2
ight]$$

Expansion of momentum iteration up to 1L level:

$$\lambda = \frac{1}{v^2} \Big[(m_h^{\mathsf{MSSM}})^2 + \Delta m_{h,\mathsf{MSSM}}^2 - \Delta m_{h,\mathsf{SM}}^2 + O(\hbar^2) \Big]$$

with

$$egin{aligned} \Delta m_{h, ext{MSSM}}^2 &= - \Sigma_{ ext{MSSM}}^{1L} + t_{ ext{MSSM}}^{1L} / v_{ ext{MSSM}} \ \Delta m_{h, ext{SM}}^2 &= - \Sigma_{ ext{SM}}^{1L} + t_{ ext{SM}}^{1L} / v_{ ext{SM}} \end{aligned}$$

Incorrect 2L logs in original FlexibleEFTHiggs-1L

Problem:
$$y_t^{\text{MSSM}} = y_t^{\text{SM}} / s_\beta [1 + O(\hbar)]$$

 \Rightarrow
 $\Delta m_{h,\text{MSSM}}^2 - \Delta m_{h,\text{SM}}^2 \propto \hbar \left[(y_t^{\text{MSSM}} s_\beta)^4 \log \frac{m_t}{M_S} - (y_t^{\text{SM}})^4 \log \frac{m_t}{M_S} \right]$
 $= \hbar \left[0 + \propto \hbar y_t^4 \log \frac{m_t}{M_S} + O(\hbar^2) \right]$
 $= O(\hbar^2 y_t^4 \log \frac{m_t}{M_S})$

 \Rightarrow incorrect 2L logs remain in FlexibleEFTHiggs-1L